Contents

Dedication			
Abstract		i-v	
Declaration	Declaration		
Certificate		vii-viii	
Acknowledge	ements	ix-x	
Contents		xi-xxii	
Lists of Table	es	xxiii-xxv	
List of Figure	es	xxvi -xxxi	
List of Abbre	eviations	xxxii-xxxvi	
Chapter 1	Introduction	1.1-1.38	
1.1	The background and the biology of Musa	1.1	
1.2	The production	1.2	
1.3	Banana the potential food for health	1.4	
1.4	Effect of ripening stages on the biochemical and nutritional	1.6	
	properties of banana		
1.5	Utilization of banana and plantain as value added products	1.9	
1.6	Banana peel	1.10	
	1.6.1 Prospects for utilization as by-products	1.10	
	1.6.2 Chemical properties and bioactive compounds	1.10	
	present in banana peel		
	1.6.3 Utilization of peel as value added products	1.12	
	1.6.4 Extraction of cellulose from peel and its utilization	1.14	
1.7	Encapsulation of bioactive compounds by co-crystallization	1.15	
	and its application in functional food formulation		
1.8	Dehydration of banana and plantains	1.18	
	1.8.1 Mathematical modeling	1.20	
	1.8.2 Moisture sorption isotherm (MSI)	1.22	
1.9	Scope and objectives of the present investigation	1.25	
	References	1.26	

Chapter	2 Bioche	mical composition of pulp and peel of culinary	2.1-2.60
	banana	at various developmental stages and to identify the	
	best stag	ge	
	2A) Nut	ritional composition of culinary Musa ABB pulp at	2.1
	dif	ferent stages of development	
2.1	Introductio	on	2.1
2.2	Material a	nd methods	2.2
	2.2.1	Sample collection and preparation	2.2
	2.2.2	Chemical analysis	2.3
	2.2.2.1	The proximate composition	2.3
	2.2.2.2	Estimation of pH, titratable acidity, ascorbic acid,	2.5
		cellulose and lignin	
	2.2.2.3	Starch and sugars	2.5
	2.2.2.4	Pectin, tannin, phytic acid estimation	2.5
	2.2.2.5	Total polyphenols and antioxidant activity analysis	2.6
	2.2.2.6	Estimation of carotenoids, vitamin A and thiamine	2.6
	2.2.2.7	Minerals estimation	2.7
	2.2.2.8	Fatty acid analysis	2.7
	2.2.2.9	Amino acid analysis	2.7
	2.2.2.10	Estimation of phenolic compounds by HPLC	2.8
	2.2.3	The colour measurement	2.8
	2.2.4	Determination of pulp to peel ratio	2.9
	2.2.5	Statistical analysis	2.9
2.3	Results and	discussion	2.9
	2.3.1	Proximate compositions	2.9
	2.3.2	pH, ascorbic acid, cellulose and lignin	2.10
	2.3.3	Starch, amylose, sugar and pectin contents	2.12
	2.2.4	Tannin and phytic acid contents	2.13
	2.3.5	Total polyphenols, DPPH radical scavenging activity,	2.14
		total carotenoids, vitamin A and thiamine contents	
	2.3.6	Minerals content	2.15
	2.3.7	Fatty acids composition	2.15

xii

	2.3.8	Amino acids composition	2.16
	2.3.9	Estimation of polyphenols by HPLC	2.19
	2.3.1	0 Colour measurement	2.22
	2.3.1	1 Optimum stage of harvesting	2.23
2.4	Conclu	isions	2.24
2B)	Nutritio	onal composition of culinary Musa ABB peel at different	2.25
	stages o	f development	
2.5	Introduc	ction	2.25
2.6	Materia	l and methods	2.26
	2.6.1	Sample collection and preparation	2.26
	2.6.2	Physiochemical analysis	2.26
	2.6.2.1	Estimation of minerals, fatty acids, polyphenols and amino	2.27
		acids	
	2.6.2.2	Fourier transform infrared spectroscopy (FT-IR)	2.27
	2.6.2.3	Microstructure Study by SEM	2.28
	2.6.2.4	X-ray Diffraction (XRD)	2.28
	2.6.3	Statistical Analysis	2.28
2.7		and discussion	2.28
	2.7.1	Physicochemical analysis	2.28
	2.7.1.1	Proximate composition	2.28
	2.7.1.2	Starch, amylose and sugar content	2.31
	2.7.1.3	Cellulose, lignin, hemicelluloses, pectin and tannin content	2.32
	2.7.1.4	Total polyphenols, flavonoids and antioxidant activity	2.34
	2.7.1.5	Minerals content	2.36
	2.7.1.6	Fatty acids and amino acid composition	2.38
	2.7.1.6	Polyphenols analysis by HPLC	2.39
	2.7.1.7	Fourier transform infrared spectroscopy (FT-IR)	2.43
	2.7.1.8	Scanning electron microscopy	2.47
	2.7.1.9	X-ray Diffraction Pattern (XRD)	2.47
2.8	Conclu	ision	2.51
	Refere	nces	2.53

Chapter 3 R		esistant starch development from pulp and its application	3.1-3.54
	i	n food model	
		3A) Effect of modified resistant starch of culinary	3.1
		banana on physicochemical, functional,	
		morphological, diffraction and thermal properties	
3.1	Introdu	ction	3.1
3.2	Materia	ls and methods	3.3
	3.2.1	Raw materials	3.3
	3.2.2	Starch isolation	3.3
	3.2.3	Chemical analysis	3.4
	3.2.4	Functional Properties	3.4
	3.2.4.1	Water holding capacity, starch swelling power and	3.4
		solubility	
	3.2.4.2	Freeze-thaw stability and paste clarity	3.5
	3.2.4.3	Pasting Properties	3.5
	3.2.5	Structural analysis of starch	3.6
	3.2.5.1	X- Ray diffraction	3.6
	3.2.5.2	Fourier transforms infrared (FT-IR) spectra	3.6
	3.2.5.3	Morphological analysis by SEM	3.6
	3.2.6	Thermal characteristics by thermogravimetric analysis	3.7
		(TGA)	
	3.2.7	Development of type III resistant starch (RS) from	3.7
		culinary banana starch	
	3.2.7.1	Autoclaving and cooling method	3.7
	3.2.7.2	Enzyme debranching method	3.7
	3.2.7.3	Chemical analysis of RS	3.8
	3.2.8	Statistical analysis	3.8
3.3	Results	and discussion	3.8
	3.3.1	Chemical composition of culinary banana starch	3.8
	3.3.2	Functional properties of culinary banana starch	3.10
	3.3.2.1	Water holding capacity, starch swelling power and	3.10

solubility

3.3.2.2	Freeze-thaw stability and paste clarity	3.11
3.3.2.3	Pasting properties	3.12
3.3.3	Structural analysis	3.13
3.3.3.1	X- Ray diffraction	3.13
3.3.3.2	Fourier transforms infrared (FT-IR) spectra	3.14
3.3.3.3	Morphological analysis by SEM	3.16
3.3.4	Thermal stability by thermogravimetric analysis (TGA)	3.16
3.4	Development of type III resistant starch (RS) from culinary	3.17
	banana starch	
3.4.1	RS production by hydrothermal method	3.17
3.4.2	Effect of enzyme concentration on starch debranching	3.18
3.4.3	Effect of storage temperature on RS content	3.19
3.4.5	Chemical analysis	3.20
3.4.6	Scanning electron microscopy (SEM)	3.21
3.4.7	FT-IR spectra of RS	3.23
3.4.8	Thermogravimetric analysis (TGA)	3.24
3.5	Conclusion	3.27

3B) Effect of partial replacement of wheat flour with type III 3.28 resistant starch and flour of culinary banana on the chemical composition, textural properties and sensory quality of brown bread

Introduction		3.28
Mater	als and methods	3.29
3.7.1	Raw materials	3.29
3.7.2	Starch isolation and modification in to RS	3.29
3.7.3	Preparation of brown bread incorporated with RS	3.30
3.7.3.1	Brown Bread Making Procedure	3.31
3.7.4	Chemical composition	3.31
3.7.5	Physical properties	3.31
3.7.5.1	Proofing of dough	3.31
3.7.5.2	2 Water retention, weight and volume of baked bread loaves	3.32
	Materi 3.7.1 3.7.2 3.7.3 3.7.3 3.7.3 3.7.4 3.7.5 3.7.5.1	 Materials and methods 3.7.1 Raw materials 3.7.2 Starch isolation and modification in to RS 3.7.3 Preparation of brown bread incorporated with RS 3.7.3.1 Brown Bread Making Procedure 3.7.4 Chemical composition

	3.7.5.3	Texture profile analysis of bread crumb	3.33
	3.7.5.4	Crumb colour	3.33
	3.7.6	Sensory evaluation	3.34
	3.7.7	Statistical analysis	3.34
3.8	Result	s and discussion	3.34
	3.8.1	Effect of RS and KF on chemical composition of brown	3.34
		bread	
	3.8.2	Physical properties of brown bread	3.35
	3.8.2.	1 Proofing of dough	3.35
	3.8.2.	2 Water retention, loaf weight and volume of baked product	3.36
	3.8.2.	3 Texture profile analysis	3.41
	3.8.2.	4 Colour attributes	3.44
	3.8.3	Sensory analysis	3.45
3.9 Conclusion			3.46
Refer	rences		3.48
Chap	oter 4	Isolation and characterization of cellulose nanofiber from	4.1-4.49
		peel and its application in developing nanopaper	
	4 A)	Isolation and characterization of cellulose nanofibers from	4.1
		culinary banana peel using high-intensity ultrasonication	
		combined with chemical treatment	
4.1	Introd	uction	4.1
4.2	Materi	als and methods	4.3
	4.2.1	Raw materials and chemicals	4.3
	4.2.2	Preparation of peel flour	4.3
	4.2.3	Isolation of cellulose fibers (CFs) and cellulose nanofibers (CNFs)	4.3
	4.2.4	Characterization of cellulose nanofibers (CNFs)	4.6
	4.2.4.1	Microstructure evaluation by scanning electron microscopy	4.6
		(SEM)	

	4.2.4.2	2 Transmission electron microscopy (TEM)	4.6
	4.2.4.3	3 X-ray diffraction (XRD)	4.6
	4.2.4.4	Fourier transform infrared spectroscopy (FT-IR)	4.7
	4.2.4.5	5 Thermogravimetric analysis (TGA)	4.7
4.3	Result	s and discussion	4.7
	4.3.1	Visual examination on appearance of CNFs suspensions	4.7
	4.3.2	Microstructure evaluation by scanning electron microscopy	4.10
		(SEM)	
	4.3.3	Transmission electron microscopy (TEM)	4.12
	4.3.4	X-ray diffraction (XRD)	4.13
	4.3.5	Fourier transform infrared spectroscopy (FT-IR)	4.14
	4.3.6	Thermogravimetric analysis (TGA)	4.15
	4.4	Conclusion	4.17
4B)	Produ	ction of renewable high performance cellulose nanopaper	4.19
	from o	culinary banana (Musa ABB) peel and its characterization	
4.5	Introdu	uction	4.19
4.6	Materi	als and methods	4.20
	4.6.1	Raw materials and isolation of CNF	4.20
	4.6.2	Preparation of cellulose nanopaper (CNP)	4.20
	4.6.3	SEM and TEM micrographs of CNP	4.22
	4.6.4	X-ray diffraction (XRD)	4.22
	4.6.5	Fourier transform infrared spectroscopy (FT-IR)	4.22
	4.6.6	Solid-state ¹³ C nuclear magnetic resonance (NMR) measurements	4.22
	4.6.7	Thermogravimetric analysis (TGA)	4.23
	4.6.8	Photoluminescence (PL) and uv-vis spectroscopy	4.23
	4.6.9	Mechanical properties	4.23
	4.6.10	Particle size distribution and zeta potential	4.23
4.7	Result	s and discussion	4.24
	4.7.1	Structural morphology by SEM	4.25
	4.7.2	Nanostructure evaluation by TEM	4.26
	4.7.3	X-ray diffraction (XRD)	4.27

	4.7.4	Fourier transform infrared spectroscopy (FT-IR)	4.29
	4.7.5	Cross polarization ¹³ C NMR spectroscopy	4.30
	4.7.6	Thermogravimetric analysis (TGA/DTG)	4.34
	4.7.7	Photoluminescence (PL) and uv-vis spectroscopy	4.36
	4.7.8	Mechanical property	4.37
	4.7.9	Particle size distribution	4.40
4.8	Concl	lusions	4.41
	Refer	rences	4.43
Chap	ter 5	Encapsulation of natural antioxidant from culinary banana	5.1-5.26
		pulp and peel	
5.1	Introd	luction	5.1
5.2	Mater	rials and methods	5.2
	5.2.1	Raw materials and preparation of the sample extract	5.2
	5.2.2	Preparation of cocrystallized powder	5.2
	5.2.3	Total polyphenols content	5.3
	5.2.4	Loading capacity and entrapment yield	5.3
	5.2.5	HPLC analysis of phenolic compounds	5.3
	5.2.6	Characterization of the cocrystallized products	5.3
	5.2.6.	1 Moisture content and water activity	5.3
	5.2.6.	2 Solubility	5.4
	5.2.6.	3 Flowability	5.4
	5.2.6.	4 Colour attributes	5.4
	5.2.6.	5 Fourier transform infrared spectroscopy (FTIR)	5.5
	5.2.6.	6 Differential scanning calorimetry (DSC)	5.5
	5.2.6.	7 X-ray diffraction (XRD)	5.5
	5.2.6.	8 Microstructure evaluation	5.5
	5.2.7	Water gain, hygroscopicity and chemical stability during storage	5.5
	5.2.8	Statistical Analysis	5.6
	5.3	Results and discussion	5.6
	5.3.1	Total polyphenols, antioxidant activity, entrapment yield and	5.6
		loading capacity	

5.3.2 Polyphenols analysis by HPLC	5.8	
5.3.3 Characterization of the cocrystallized products	5.8	
5.3.3.1 Moisture content and water activity	5.8	
5.3.3.2 Solubility and flowability of cocrystal powders	5.10	
5.3.3.3 Colour attributes	5.12	
5.3.3.4 Fourier transform infrared spectroscopy (FT-IR)	5.13	
5.3.3.5 Differential scanning calorimetry (DSC)	5.14	
5.3.3.6 X-ray diffraction (XRD)		
5.3.3.6 Microstructure evaluation	5.20	
5.3.3.7 Water gain, hygroscopicity during storage	5.22	
5.4 Conclusions	5.22	
References	5.24	

Chapter 6 Drying characteristics by hot air oven, optimization of 6.1-6.74 process parameters in vacuum drying for pulp slices and peel paste and storage study of culinary banana flour

6A)	Drying	characteristics	and	assessment	of	6.1
	physicoc	hemical and micr	ostruct	ural properties	s of	
	dried cul	inary banana				

6.1	Introdu	oduction		
6.2	Materia	Materials and methods		
	6.2.1	Sample preparation	6.3	
	6.2.2	Experimental procedure	6.3	
	6.2.3	Drying kinetics	6.5	
	6.2.4	Effective moisture diffusivity	6.6	
	6.2.5	Activation energy	6.7	
	6.2.6	Physicochemical analysis	6.7	
	6.2.6.1	Microstructure evaluation	6.7	
	6.2.6.2	Texture analysis	6.7	
	6.2.6.3	Nonenzymatic browning	6.8	
	6.2.6.4	Rehydration ratio	6.8	
	6.2.6.5	Determination of DPPH radical scavenging activity and total	6.9	

polyphenols

	6.2.7	Statistical analysis	6.9				
6.3	Results and discussion						
	6.3.1	Drying characteristics	6.9				
	6.3.2	Mathematical modeling for fitting drying curves	6.11				
	6.3.3	Effective moisture diffusivity	6.14				
	6.3.4	Activation energy	6.16				
	6.3.5	Physicochemical analysis	6.17				
	6.3.5.1	Microstructure evaluation	6.17				
	6.3.5.2	Textural property	6.19				
	6.3.5.3	Nonenzymatic browning	6.20				
	6.3.5.4	Rehydration ratio	6.20				
	6.3.5.5	Determination of DPPH radical scavenging activity and	6.21				
		total polyphenols					
	6.4	Conclusions	6.22				
6B)	Modeling and optimization of the process parameters in vacuum						
	drying	drying of culinary banana pulp slices and peel paste by					
	applica	application of artificial neural network and genetic algorithm					
6.5	Introduction						
6.6	Materials and methods						
	6.6.1	Sample preparation	6.24				
	6.6.2	Experimental design	6.25				
	6.6.3	Experimental procedure					
	6.6.4	Quality evaluation	6.26				
	6.6.5	Response surface methodology	6.26				
	6.6.6	Artificial neural network (ANN) development and coding	6.27				
	6.6.7	Genetic algorithm (GA) as an optimizing tool for process	6.30				
		parameters					
6.7	Results and discussion						
	6.7.1	Modeling of the process parameters by response surface	6.31				

methodology

	6.7.2	Modeling of the process parameters by artificial neural network	6.36		
	6.7.3 Comparative study between RSM and ANN model				
	6.7.4	Effect of independent variables on rehydration ratio of dried	6.41		
		culinary banana			
	6.7.5	Effect of independent variables on DPPH radical scavenging	6.42		
		activity			
	6.7.6	Effect of independent variables on colour of dried culinary	6.43		
		banana			
	6.7.7	Effect of independent variables on hardness of dried culinary	6.43		
		banana slices			
	6.7.8 Microstructure evaluation by scanning electron microscope6.7.9 Optimization of process parameters by GA				
	6.7.10	Validation of the GA	6.48		
	6.8	Conclusion	6.49		
6C)	Moisture sorption isotherm of culinary banana flour and its				
	antiox	idant stability during storage			
6.9	Introdu	uction			
6.10	Materi	Materials and methods			
	6.10.1	Raw materials	6.52		
	6.10.2	Antioxidant stability during storage	6.52		
	6.10.3	Moisture sorption isotherm (MSI) studies	6.52		
	6.10.4	Fitting to existing mathematical models and data analysis	6.54		
	6.10.5	Determination of net isosteric heat of sorption	6.55		
6.11	Results and discussion				
	6.11.1	Antioxidant stability during storage	6.56		
	6.11.2	Moisture sorption characteristics of culinary banana flour	6.57		
		Mathematical Modeling and Fitting of Moisture Sorption	6.59		
	6.11.3	Mathematical Modering and Pitting of Molsture Solption	0.59		
	6.11.3	Data	0.39		

6.12	Conclusions			6.64
	Refer	6.66		
Chap	ter 7	er 7 Conclusions and future scope		7.1-7.10
		7.1	Conclusions	7.1
		7.2	Future scope of the present investigation	7.7
			List of publications	7.8