List of Tables

Table No	Title	Page No
1.1	List of most commonly used species of lactic acid bacteria in probiotic preparations	2
1.2	In vivo studies addressing the beneficial health effects of some commercial probiotic Lactobacillus strain	4
1.3	Selection criteria of probiotic organisms for human use	6
1.4	Examples of commercial fruit juice-based probiotic drinks	15
1.5	Encapsulation of probiotic microorganisms by different methods	20
2.1	Antibiotic sensitivity profiles of <i>L. plantarum</i> , <i>L. rhamnosus and L. acidophilus</i>	52
2.2	Enumeration of three strains of <i>Lactobacillus</i> (log CFU/mL) in probiotic litchi and pineapple juices during storage at refrigerated condition $(4 \pm 1^{\circ}C)$	54
2.3	Enumeration of three strains of <i>Lactobacillus</i> (log CFU/mL) in probiotic orange and guava juices during storage at refrigerated condition $(4 \pm 1^{\circ}C)$	54
2.4	Change in pH of the probiotic litchi and pineapple juices during storage refrigerated condition $(4 \pm 1^{\circ}C)$	56
2.5	Change in pH of the probiotic orange and guava juices during at storage refrigerated condition $(4 \pm 1^{\circ}C)$	56
2.6	Change in colour of the probiotic fruit juices during storage at 4 \pm 1°C	59
3.1	Validation parameters of the instrumental methods used (organic acids and minerals)	73
3.2	Total phenolic content (TPC) of the probiotic juice during storage at refrigerated condition $(4 \pm 1^{\circ}C)$	75
3.3	Total flavonoid content (TFC) of the probiotic juice during storage at refrigerated condition $(4 \pm 1^{\circ}C)$	75
3.5	Organic acid content of the probiotic fruit juices stored at refrigerated condition (4 \pm 1°C) determined by RP-HPLC expressed in g/L	83

3.6	Comparative changes in mineral elements of the probiotic fruit juices during storage $(4\pm1^{\circ}C)$	84
4.1	Experimental design of the spray drying conditions for litchi juice with <i>Lactobacillus plantarum</i> MTCC2621 and their responses	94
4.2	Fit statistics for % recovery and % survival surface plot of litchi juice with <i>L. plantarum</i> MTCC2621	95
4.3	Optimized parameters in the response optimizer	95
4.4	Optimized solution obtained using the response optimizer	96
4.5	Optimization of the spray drying condition for pineapple juice with <i>Lactobacillus plantarum</i> MTCC2621	99
4.6	Fit statistics for % recovery and % survival surface plot for pineapple juice with <i>L. plantarum</i> MTCC2621	99
4.7	Optimized parameters in the response optimizer	100
4.8	Optimized solution obtained using the response optimizer	100
4.9	Optimization of the spray drying condition for orange juice with <i>Lactobacillus plantarum</i> MTCC2621	103
4.10	Fit statistics for % recovery and % survival surface plot for orange juice with <i>L. plantarum</i> MTCC2621	103
4.11	Optimized parameters in the response optimizer	104
4.12	Optimized solution obtained using the response optimizer	104
4.13	Summary of optimized conditions obtained using the response optimizer and experimental values for three different juices	108
5.1	Viability of spray dried <i>L. plantarum</i> in different coating materials during storage $(4\pm1^{\circ}C)$	121
5.2	Physicochemical parameters of the spray-dried <i>L. plantarum</i> litchi juice powders	123
5.3	Bulk density, tapped density, hausner's ratio, carr index and polydispersity index and span value of the spray-dried <i>L</i> . <i>plantarum</i> -litchi-juice powders	123

5.4	Colour parameters of the fresh litchi juice and spray-dried <i>L</i> . <i>plantarum</i> -litchi juice powders	127
6.1	Viability of <i>Lactobacillus plantarum</i> MTCC2621 (log10 CFU/g) in litchi juice with or without encapsulation in maltodextrin plus fructooligosaccharide during exposure to simulated gastric juice (SGJ, pH 3.0) and simulated intestinal juice (SIJ, pH 7.0) for 120 min (n=3)	140