

Chapter 1

1.1	Post-harvest treatment of Phytoremediator plants	20
1.2	General Morphology of the Diatom frustule	22
1.3	Diatom, Navicula sp	23
1.4	Scanning electron microscopy of four different diatom	25
	species representing centric and pennate symmetry	

3.1	Eichhornia crassipes (water hyacinth) plant	96
3.2	Percent Pb removal by <i>E. crassipes</i> at 15, 20 and 30 ppm Pb at 2^{nd} day	98
3.3	Photosynthetic rate in <i>E. crassipes</i> at different concentrations of Pb for 10 days of exposure	99
3.4	Total chlorophyll content of <i>E. crassipes</i> at different pH with 30.0 mg/L initial conc. as observed after 5^{th} and 10^{th} day of exposure	100
3.5	 (a) SEM image of <i>E. crassipes</i> leaves after 2nd days in control; (b) The EDX spectrum of cross-section of leaf of control of <i>E. crassipes</i> 	101
3.5	(c) SEM images of longitudinal sections of <i>E. crassipies</i> leaf treated with Pb (30 mg/L); (d) EDX taken from the leaf of Pb exposed plants	102
3.6	(a, b) SEM-EDX images of <i>Eichhornia crassipes</i> shoot (petiole) biomass without absorption of Pb^{2+} ions	102
3.6	(c ,d) SEM-EDX images of <i>Eichhornia crassipes</i> petiole biomass with absorption of Pb ²⁺ ions	103
3.7	(a, b) The SEM micrographs showed changes of the vascular cells of the root samples exposed to 30mg/L Pb treatment; (b). EDX confirmed the presence of Pb	103

3.7	(c, d) SEM micrograph of control root cross section of <i>E</i> .	104
	crassipes	
3.8	Pb accumulation in vascular bundles of E. crassipes	104
3.9	Scanning electron micrograph and EDX spectra of Pb	104
	distribution in root of E .crassipes. Pb internalization was	
	confirmed by SEM (a); studies in combination with EDX	
	(b)	
3.10	SEM-EDX spectra of Pb distribution in epidermis of root of	105
	E. crassipes	
3.11	SEM micrograph of <i>E. crassipes</i> root (a) control; (b) Pb (II)	105
	loaded.	
3.12	EDX micrograph of <i>E. crassipes</i> root (c) control; (d) Pb (II)	106
	loaded Magnification: 3000X	

4.1	Some of the morphological changes in <i>T. natans</i> on 3^{rd} , 5^{th}	120-121
	and 7 th day intervals	
4.2	Graphical representation of effect of arsenic on total	122

- chlorophyll content4.2(A) Graphical representation of amount of proline synthesis 122
- under stress condition
 - 4.3 (A) *T. natans* in control condition; (B) *T. natans* after 126-127 arsenic treatment; (C) SEM micrograph of leaves of control *T. natans*; (D) Leaves of arsenic treated *T. natans*; (E) EDX of leaves of control *T. natans*; (F) EDX of leaves of arsenic treated *T. natans*
 - 4.3 (G) Arsenic treated shoot of *T. natans*; (H) Control shoot of 127-128 *T. natans*; (I) EDX of shoot of control *T. natans*; (J) EDX of shoot of arsenic treated *T. natans*
 - 4.3 (K) Internal distributions of electron dense deposition of 128 elements in the vascular bundles of *T. natans* shoot (As treated)
 - 4.3 (L) Arsenic treated root of *T. natans*; (M) Control root of *T.* 129 *natans*; (N) EDX of root of control *T.* natans; (O) EDX of

root of arsenic treated T. natans

4.4.1	FTIR spectra of control leaf of T. natans	132
4.4.2	FTIR spectra of arsenic treated leaf	132
4.4.3	FTIR spectra of control shoot of T. natans	132
4.4.4	FTIR spectra of arsenic treated shoot	133
4.4.5	FTIR spectra of control root of T. natans	133
4.4.6	FTIR spectra of arsenic treated root	133

5.1	M. hastata in natural condition	151
5.2	Graphical representation of total chlorophyll content in M.	156
	hastata	
5.3	Phytoaccumulation of Cd by M. hastata	157
5.4	SEM- EDX micrographs of leaf surface of <i>M. hastata</i> (A–F)	159-160
	(A) leaf epidermis of plant grown in 15mg/L Cd solution	
	(1400X); (B) leaf epidermis of control plant (650X); (C)	
	magnified view of stomata showing diameter in control leaf	
	(1500X); (D) showing closing of stomata (1500X); (E) EDX	
	spectra of control plant leaf; (E) magnified view of plate; (F)	
	EDX spectra of Cd treated plant, showing the presence of	
	Cd ions along with other ions	
5.5	SEM- EDX micrographs (A) Shoot of <i>M. hastata</i> exposed to	161
	15 mg/L Cd for 10 days ; (B) the control shoot ; (C) EDX	
	spectra of control shoot; (D) EDX spectra of Cd treated	
	shoot	
5.6	(A, B) SEM micrographs Control root; (C, D) Cd treated M.	162
	hastata root, showing some surface shrinking after metal	
	binding; (E) Energy-dispersive X- ray spectra of control	
	root; (F) EDX spectra of treated root confirmed the presence	
	of Cd	
5.7	TEM Micrograph of chloroplast in the leaf cells of M .	163
	hastata (A) Control leaf showing numerous chloroplasts;	
	(B) showing one chloroplast; (C) Cd treated with 15 mg/L	
	for 10 days; (D) to show the effect of Cd on thylakoid inside	

the chloroplast

1 1 6 5
4-165
165
166
167
171
171
171
172
172
172

6.1	E. crassipes and T. natans plants in control condition	200
6.2	Graphical representation of total chlorophyll content in T.	203
	natans	
6.3	Graphical representation of total chlorophyll content in E.	204
	crassipes	
6.4	SEM-EDX of fresh shoot of T. natans control (i, a); and	211-212
	exposed to Sb (ii, b) for 10 th days	
6.4	SEM- EDX of control (d, iii); and treated (Sb) (c, iv) root of	212-213
	T. natans plant	
6.4	SEM- EDX of control (e, v); and treated (Sb) (f, vi) shoot of	213-214
	E. crassipes plant	

- 6.4 SEM- EDX of control (g, vi) and Sb treated root (h, viii) of 215 *E. crassipes*
- 6.4 Sb accumulation by the root hair of *E. crassipes*; (h) Root 216 hair of control plant; (i) Root hair of Sb treated plant
- 6.5 TEM micrograph shows a young mesophyll cell of control 218 plant of *T. natans* showing numerous chloroplasts (A); A chloroplast with well-organized inner membranes with both grana and stroma in a cell of a young control leaf of *T. natans* (B); Chloroplast with a well-developed and organized thylakoid system in a cell of a mature control leaf (B); Damaged disintegrating chloroplasts showing the presence of irregular, rounded shape, numerous starch grains (C); disturbance of the orientation of the grana (D)
- 6.6 TEM micrograph shows a bean shaped mesophyll 218 chloroplast of control plant *E. crassipes*. The grana are orderly arranged and interconnected with stroma thylakoids (A); A mesophyll chloroplast of *E. crassipes* plant treated with 7.47 mg/L Sb solution showing a large starch grain and disturbed grana structure (B)
- 6.7 Transmission electron micrographs of root cells of *E*. 220 crassipes showing numerous mitochondrion in the cortical cells of control plant (A); Ruptured mitochondria and reduced number of cristae of mitochondria in the cortical cells exposed at 7.47 mg/L SbCl₃ solution (B)
- 6.8 TEM micrographs of transverse section of roots of *T*. 220 *natans*; (A) Control plant showing the vacuoles; (B) SbCl₃ treated plant root showing the deposition within the vacuole
- 6.9 TEM micrographs of root cells of *E. crassipes*; In the 221 control plant root cell no deposition within the vacuole (A); black deposits were found in the vacuole of SbCl₃ treated plant root cells (B)
- 6.10 TEM micrograph of root cells of *T. natans* showing 221 mitochondria, vacuole and Golgi appear well preserved (A);After application of Sb, the disorganization of microtubules

in Golgi body appeared (B)

6.11 TEM micrographs of root cells of *T. natans* of control plant 222
(A); The cell wall treated with 7.47mg L⁻¹ Sb, showing numerous black deposits in the wall of the cell (B)

7.1	Diatoms in the environment (Source: Author)	239
7.2	SEM image of a pinnate diatom of Navicula species	240
	(Source: author)	
7.3	Growth curve of the Navicula sp.in WC media	251
7.4	Growth Curve of different Subcultures of diatom Navicula	251
	sp.	
7.5	Variation of chlorophyll with As concentration	252
7.6	Living diatoms seen in light microscope. Navicula sp.;	252
	Microscope magnification was set on 400 times. Diatom	
	growth in Control media (A) and As containing media (B)	
7.7	As accumulation in Navicula species	254
7.8	SEM micrograph of control group of Navicula colony (A);	255
	An X-ray emission spectrum from an unexposed diatom	
	sample showed no As peaks (B)	
7.8	SEM micrograph of As treated of Navicula colony (C, D);	255-256
	An X-ray emission spectrum from an As exposed diatom	
	sample showed As peaks (E)	
7.9	SEM images showing the pore sizes of control media (A);	257
	(B) Pore sizes of diatom Navicula within Arsenic Medium	
7.10	Scanning Electron Microscopic view and EDX of a diatom,	258-259
	Navicula sp. It showed nanometer sized in control (A, I); (B,	
	II) in As media	
7.11	XRD pattern of the diatom Navicula sp.	259
7.12	FTIR spectra of diatom Navicula sp. treated with As	260
	solution	
7.13	FTIR spectra of control diatom group	261
7.14	Zeta potential profile of control (A); As treated diatom(B)	263