

.....

#### Chapter 1

| 1.1       | BCF and TF used to assess metal uptake in various            | 5     |
|-----------|--------------------------------------------------------------|-------|
|           | macrophytes                                                  |       |
| 1.2       | Different phytoremediation processes                         | 9     |
|           |                                                              |       |
| Chapte    | er 2                                                         |       |
| 2.1       | A number of aquatic plants have been tested for the          | 48-49 |
|           | remediation of trace elements from water in literature study |       |
| 2.2       | Heavy metal removal capacity of the water hyacinth from      | 50    |
|           | different sources                                            |       |
| 2.3       | Toxicity of Cd. Cu and Zn for different microalgae according | 64    |
|           | to different authors                                         |       |
| Chapter 3 |                                                              |       |

| 3.1 | Pb accumulation (mg/g) dry wt. and bioaccumulation factor  | 99  |
|-----|------------------------------------------------------------|-----|
|     | (BCF) in plant segment after 10 <sup>th</sup> day exposure |     |
| 3.2 | Photosynthesis rate in carbon dioxide/meter-square/hr      | 99  |
| 3.3 | Percentage of elements in E. crassipes roots determined by | 101 |
|     | EDX (wt %)                                                 |     |

### Chapter 4

| 4.1 | Summary of studies investigating As uptake by plants                      | 116 |
|-----|---------------------------------------------------------------------------|-----|
| 4.2 | Some of the morphological changes on $3^{rd}$ , $5^{th}$ and $7^{th}$ day | 120 |
|     | intervals                                                                 |     |
| 4.3 | Total chlorophyll content in the T. natans species                        | 121 |
| 4.3 | (A) Amount of proline synthesis in the T. natans is given                 | 122 |
|     | below                                                                     |     |
| 4.4 | Accumulation of As by the T. natans                                       | 123 |

| 4.5       | BCF and TF of <i>T.natans</i> on 7 <sup>th</sup> day                                                        | 124 |
|-----------|-------------------------------------------------------------------------------------------------------------|-----|
| 4.6       | Assignment of important bands for FTIR Spectra of control                                                   | 131 |
|           | and arsenic treated leaves                                                                                  |     |
| 4.7       | Assignment of important bands for FTIR Spectra of control                                                   | 131 |
|           | shoot and arsenic treated shoot                                                                             |     |
| 4.8       | Assignment of important bands for FTIR Spectra of control root and arsenic treated root of <i>T. natans</i> | 131 |
| Chapter 5 |                                                                                                             |     |

| 5.1 | Aquatic plants that accumulate Cd from water environment     | 148 |
|-----|--------------------------------------------------------------|-----|
| 5.2 | BCF values (dry weight basis), root to stem and stem to leaf | 158 |
|     | TF values, and BAC values of <i>M. hastata</i>               |     |

Difference between adsorption bands  $(cm^{-1})$  of *M. hastata* 5.3 169-170 leaf, shoot and root before and after adsorption of  $Cd^{2+}$  ion on it

#### Chapter 6

| 6.1 | Some of the morphological changes on 10 <sup>th</sup> day are discussed | 202 |
|-----|-------------------------------------------------------------------------|-----|
|     | below                                                                   |     |
| 6.2 | Total chlorophyll content in the two species                            | 202 |
| 6.3 | Phytoremediation potential of <i>T.natans</i> in removal of Sb          | 205 |
| 6.4 | Phytoremediation potential of E. crassipes in removal of Sb             | 206 |
| 6.5 | Removal efficiency of Sb from the solution by T. natans                 | 207 |
| 6.6 | Removal efficiency of Sb from hydroponic solution by E.                 | 207 |
|     | crassipes                                                               |     |
| 6.7 | Calculation of Translocation factor (TF) and Bioaccumulation            | 207 |
|     | factor (BCF) in T.natans after 10 days of harvesting                    |     |
| 6.8 | Calculation of Translocation factor (TF) and Bioaccumulation            | 208 |
|     | factor (BCF) in E. crassipes after 10 days of harvesting                |     |
|     |                                                                         |     |

## Chapter 7

| 7.1 | Major nutrients and micronutrients for freshwater "WC"       | 247 |
|-----|--------------------------------------------------------------|-----|
|     | medium                                                       |     |
| 7.2 | As accumulation by Navicula sp. at different period of their | 253 |

# growth after ICP-OES analysis

| 7.3       | Elemental composition of Navicula sp. in control and As      | 257 |
|-----------|--------------------------------------------------------------|-----|
|           | treated environment                                          |     |
| 7.4       | Results of diatoms analysis by FT-IR. Band attributions were | 262 |
|           | made according to Bellamy [74] and Colthup et al. [75]       |     |
| Chapter 8 |                                                              |     |

| 8.1 | Validity of the methodology applied | 276 |
|-----|-------------------------------------|-----|
| 8.2 | Validity of the findings            | 277 |