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2 Gene Expression Data Analysis 

2.1 Background of Molecular Biology 

In order to understand the volume and nature of the data pertaining to gene 

expressions, the biology of cells and their mechanism to replicate and code 

information should be understood. A cell can be divided into two classes called 

prokaryotic and eukaryotic, with the latter containing a “true” nucleus i.e. it has a 

nuclear membrane. The cell is enclosed and protected by a phospholipid bilayer with 

the nucleus embedded in the cell’s cytoplasm. The nucleus has its own nuclear 

envelope with nuclear pores located around it to allow the DNA (deoxyribonucleic 

acid) to interact with the rest of the machinery in the cytoplasm. 

Molecular Biology is the study of all the molecules in living things. These molecules 

include large molecules such as DNA or proteins, the smaller molecules like 

nucleotides and amino acids that are the building blocks for DNA and protein, and 

other small molecules such as vitamins, glucose and fats. All living organisms store 

information that is necessary for growth, reproduction and evolution in genes, which 

is a region of the DNA. The DNA is the major carrier of genetic material in living 

organisms; i.e. it is responsible for inheritance. In 1953 James Watson and Francis 

Crick deduced the three-dimensional structure of DNA.  
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The DNA is a double helix of complementary strands composed of four basic 

molecules called nucleotides, which are identical, except that each contains a different 

nitrogen base. Each nucleotide contains phosphate, sugar (of the deoxy–ribose type) 

and one of the four bases: Adenine, Guanine, Cytosine and Thymine (usually denoted 

as A, G, C, and T respectively). Each nucleotide molecule from one chain always 

bonds with a complementary nucleotide molecule from the other chain and form a 

nucleotide pair called base–pair. A base-pair is simply an interaction between the 

bases standing opposite of each other as shown in Figure 2.1. The complementary 

bases adenine and thymine are joined by hydrogen bonds, and so are the 

complementary bases cytosine and guanine. 

 

Figure 2.1: Double helix structure of the DNA 

The cell uses DNA to transmit its hereditary information to the next generation via 

segments of the DNA called a gene
 6

. The information transmitted by the DNA 

pertains to the construction of proteins, which are the functional units of life. The 

DNA molecule is directional, due to the asymmetrical structure of the sugars, which 

constitute the skeleton of the molecule. The directions of the two complementary 

DNA strands are reversed to one another. 

The genome is all the genetic material and collection of genes that is required by an 

organism to produce its proteins
 6

. A gene is a region of DNA that controls a discrete 

hereditary characteristic, usually corresponding to a single mRNA (messenger 

ribonucleic acid) carrying the information for constructing a protein. The human 

genome has about 30,000 to 40,000 genes whereas a simple yeast cell has about 6,000 

genes
 6

. The remarkable fact of life is that every multicellular organism has its entire 

genome contained in every cell
 7

. The cells of different tissues however can differ in 

terms of the amount and type of proteins produced in the cells. 
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A gene is said to be expressed if the protein which it codes for is produced or 

synthesized
 7

. In an average human there are expression levels for about 10,000 

different genes, which are collectively referred to as the expression profile of the cell
 

7
. A large number of genes located in all the cells of an organism share common 

functions, metabolism being such an example. The various internal and external 

factors however can adjust the amount of some gene expressions in different cells and 

even in the same cell. The ribosomes are the protein synthesizing factories for the cell 

and situated outside the nucleus in the cytoplasm whereas the DNA is protected inside 

the nuclear envelope. The direct interaction is therefore broken between the ribosomes 

and genes. The communication occurs via a linear molecule called messenger 

ribonucleic acid (mRNA), which is an exact copy of the gene that is being expressed. 

The mRNA is transcribed inside the nucleus and transported out to the ribosomes 

where it is translated into amino acids and subsequently into protein. A single gene is 

able to produce numerous identical protein molecules by manufacturing multiple 

copies of the corresponding mRNA molecule, as illustrated in Figure 2.2. 

Figure 2.2: Transcription and translation of mRNA into protein. 

The transcription process of the gene into mRNA is regulated by factors known as 

transcription factors
 7

. The transcription factors bind to upstream promoter elements 

(UPEs) or an enhancer which increases the accuracy and rate of mRNA synthesis 

respectively
 6

. The transcription factors can also be used to repress the expression of a 

certain gene. The gene expression profile therefore provides information about the 
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biological state of the cell, and is measurable through the concentration of the 

respective mRNA molecules produced by a cell. 

 

Figure 2.3: Central Dogma of Molecular Biology 

The Central Dogma is the transcription of DNA to RNA and subsequent translation of 

RNA to protein, as shown in Figure 2.3. In the transcription phase, the enzyme RNA 

polymerase creates a copy of a gene from the DNA to messenger RNA (mRNA) 

inside the nucleus. The mRNA travels from nucleus to the cytoplasm for protein 

synthesis, where it then binds with ribosome, a complex molecule based on ribosomal 

RNA (rRNA) and proteins. In the translation phase, the mRNA is used as a blueprint 

for the production of a protein. The mRNA moves along the protein synthesis site i.e. 

ribosomes, with a set of three-nucleotides called codons. Transfer RNA (tRNA) 

provides a compatible anticodon and is hybridised onto the mRNA. Finally, the amino 

acids bound to the RNA form polypeptide chain. This process continues until the 

translation process reaches a stop codon, which terminates the polypeptide synthesis. 

The entire process is called gene expression. 

2.2 Microarray Data – Generation and Analysis 

The importance of microarray technology lies in the fact that microarrays can measure 

the expression levels for thousands of genes simultaneously during essential 

biological processes across collections of related samples
 8

. Specifically the 

microarray measures the amount of mRNA in a cell, which is quantitatively related to 
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the amount of protein synthesised
 8

. The amount of mRNA for various genes is 

assumed to be directly proportional to the gene expression levels
 9

. 

Figure 2.4: Illustration of the DNA microarray 

The basic structure of the DNA microarray, shown in Figure 2.4, consists of a 

substrate (silicon, glass or plastic) onto which single stranded DNA molecules, each 

with different sequences, are deposited
 9

. The single stranded DNA molecules are 

referred to as probes, and are arranged in a regular grid-like pattern on the substrate
 10

. 

The types of probes deposited on the substrate depend on the purpose of the array. 

One of the most popular ways to measure the gene expression in a microarray is to 

compare the expression level of a set of genes from a cell maintained in a particular 

condition (test condition) to the same set of genes from a reference cell maintained 

under normal conditions (normal condition).  

The procedure firstly involves extracting the mRNA molecules
 11

 of a biological 

sample and then reverse transcribing them into complementary DNA (cDNA) 

sequences. The sample containing these cDNA molecules is often referred to as the 

target
 9

. The target sample is then transcribed back to cRNA that is labelled with 

biotin. The solution is then placed onto the array where it diffuses and hybridises to 

the corresponding probes. The mixture is then washed, stained and finally exposed to 

an appropriate light source with the correct wavelength for excitation of the dye. The 

image captured contains multiple features, or hybridised spots, with the intensity of 
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each feature related to the amount of mRNA
 8

. The various steps of a microarray 

expression study are shown in Figure 2.5. 

 

Figure 2.5: Oligonucleotide array with the steps involved in an expression study 

The DNA microarray is therefore a useful and capable tool for measuring the large 

amounts of data embedded in the human genome. The most important aims when 

analysing a gene expression experiment, as mentioned by Domany
 7

, can be 

summarised as follows: 

1. Identifying the genes that are associated with cancers and other important 

processes by using their expression profiles. 
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2. Partition tumours into classes based on their expression profiles and in familiar 

clinical classification. Expression profile classification can be used as a 

diagnostic or therapeutic tool. 

3. Use the data analysis to obtain information relating to the unknown functions 

of certain genes. 

In the field of molecular biology, gene expression profiling is the measurement of the 

activity (the expression) of thousands of genes at once, to create a global picture of 

cellular function. Gene expression profiling of cancer tissues is expected to contribute 

to the understanding of cancer biology as well as development of new methods of 

diagnosis and therapy.  

Though the assembly of time-series data collected through repeated sampling across 

an entire disease process would provide essential information for the lucid 

understanding of the system, it is ethically infeasible to collect time-series data to 

study disease progression due to the need for immediate treatment upon diagnosis. 

Oncogenesis
 3,12

 is the process by which normal cells acquire the properties of cancer 

cells leading to the formation of a cancer or tumour. Hence a static sample can be 

regarded as a snapshot of the dynamic cancer process and so it is possible to construct 

a cancer progression model using data acquired from static samples
 13

. 

In the cancer gene expression database (CGED), the gene expression data is derived 

from static expression experiments that analyze samples from many individuals. 

These samples are often snapshots of the progression of a disease such as cancer
 14

 

and used for the purpose of data mining. Presently, cancer research makes use 

primarily of DNA microarrays but due to lowering costs, a technique superior to 

microarray technology known as RNA-Sequencing
 15,16

, is becoming more common 

as a method for cancer gene expression profiling. 

2.3 Gene Expression Data 

A microarray experiment is generally carried out to monitor the expression level of 

genes at a genome scale. The processed data can then be represented in the form of a 
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matrix, called gene expression matrix, where each row corresponds to a particular 

gene and each column could either correspond to an experimental condition or a 

specific time point at which expression of the genes has been measured. The 

expression levels for a gene across different experimental conditions are cumulatively 

called the gene expression profile, and the expression levels for all genes under an 

experimental condition are cumulatively called the sample expression profile.  

An expression profile (of a gene or a sample) can be thought of as a vector
 17

 and can 

be represented in vector space. For example, an expression profile of a gene can be 

considered as a vector in n dimensional space (where n is the number of conditions), 

and an expression profile of a sample with m genes can be considered as a vector in m 

dimensional space (where m is the number of genes). In the example given below, the 

gene expression matrix X with m genes across n conditions is considered to be an m x 

n matrix, where the expression value for gene i in condition j is denoted as    . 

   

   

   

 
   

   

   

 
   

 
 
 
 

   

   

 
   

  

The expression profile of a gene i can be represented as a row vector: 

                    

The expression profile of a sample j can be represented as a column vector: 

    

   

   

 
   

  

2.4 Data Mining in Gene Expression Data Analysis 

Analysis of gene expression data can be classified into two main categories namely 

supervised and unsupervised approach.  
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2.4.1 Supervised Approach 

In a supervised approach or classification, prior knowledge about genes is directly 

exploited by the learning algorithm, known as the learner. The learner is trained by a 

teacher (the classification labels), to identify a particular class of a gene to which it 

belongs and assign the gene to the set of classes. In the presence of proper training 

samples, supervised methods can yield very high performance in grouping genes with 

particular functions together. However, obtaining labelled data is a very tedious, time-

consuming and costly task and is sometimes not even possible due to the dependence 

on human annotators. In the case of supervised learning, the annotation of either the 

gene or the sample can be used and clusters of genes or samples can be created in 

order to identify patterns that are characteristic for the cluster. For example, sample 

expression profiles can be separated into ‘disease state’ and ‘normal state’ groups, and 

then one can look for patterns that separate the sample profile of the ‘disease state’ 

from the sample profile of the ‘normal state’.  

Some of the most popular algorithms under this approach belong to the categories of 

decision tree, instance-based and Bayesian Networks. 

Decision tree learners such as C4.5
 18

 use a method known as divide and conquer to 

construct a suitable tree from a set of labelled training data using the concept of 

information entropy. The divide and conquer algorithm partitions the data until every 

leaf contains one case, or until further partitioning is not possible because two cases 

have the same values for each attribute but belong to different classes. CART
 19

 

(Classification And Regression Trees) is a robust classifier for any real-life 

application that attempts to construct an optimal decision tree to classify new 

instances. The decision tree J48 implements the C4.5 algorithm for generating a 

pruned or unpruned C4.5 tree. However, decision tree learners suffer from limitations 

such as (i) empty branches with many nodes having zero or close to zero values which 

makes the tree bigger and more complex, (ii) insignificant branches, since all the 

selected discrete attributes used to build a decision tree are not significant for 

classification task, and (iii) over-fitting, that takes place when the model tries to 

correctly classify all training cases in the absence of conflicting cases. Nearest 

neighbour or instance-based classifiers
 20

 such as the kNN classify unknown instances 
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by computing the k closest neighbours of an instance of an unknown class and the 

class is assigned by voting among those neighbours. The limitations of such 

algorithms are that (i) all the training samples are stored and a classifier is not built 

until a new (unlabeled) sample needs to be classified, (ii) additional computational 

costs is incurred due to comparison of the new unlabelled data with the stored training 

samples, and (iii) they assign equal weight to each attribute in the data irrespective of 

the relevance of the attribute. A Bayesian Network (BN) is a directed acyclic 

graphical model that depicts the probability relationships among a set of variables 

features. Naïve Bayes classifier
 21

 is a probabilistic classifier that takes into 

consideration that all attributes (features) independently contribute to the probability 

of a certain decision with equal importance. However, they are (i) not suitable for 

datasets with many features due to the infeasibility in terms of time and space, and (ii) 

before the induction, the numerical features need to be discredited in most cases. 

2.4.2 Unsupervised Approach 

The unsupervised approach involves the use of clustering algorithms to identify genes 

with similar expression patterns. Clustering is unsupervised because the learning 

methods try to find an interesting structure in the gene expression data in the absence 

of training samples and without any knowledge of the genes’ functions. For example, 

if in a given cluster many genes are found to be in the same class, it may be 

hypothesized that the genes have some functional or regulatory relationship. Unlike 

supervised learning, there is no teacher in unsupervised learning to provide the true 

classifications, which is also convenient as unannotated data can be utilized
 22

. The 

expression data is analysed to identify patterns that can group genes or samples into 

clusters without the use of any form annotation. For example, genes with similar 

expression profiles can be clustered together without the use of any annotation. 

However, annotation information may be taken into account at a later stage to make 

meaningful biological inferences. This issue is addressed by using partitional, 

hierarchical, density-based, model-based or subspace clustering algorithms, based on 

the proximity between genes or conditions in the expression matrix. 

In the case of partitioning approaches, algorithms like PAM
 23

 and CLARANS
 24

 

have been observed to be robust. However, they suffer from limitations such as (i) the 
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number of clusters are to be known apriori, (ii) the proximity measure used may be 

inadequate in finding the ‘true’ number of biologically relevant clusters. Similarly, the 

algorithms following the hierarchical approach such as CURE
 25

, ROCK
 26

 and 

BIRCH
 27

 can be found advantageous from the biologists’ perspectives as they help to 

represent the cluster-cluster association, apart from individual co-expressed gene 

group representation. However, they also suffer from limitations such as (i) difficulty 

in deciding the appropriate stopping criteria, and (ii) simultaneous representation of 

disjoint, embedded and intersected clusters. Density-based approaches, DBSCAN
 28

 

and DENCLUE
 29

 have already been established as being good at finding clusters of 

all shapes. They are capable of identifying global as well as local (embedded) 

clusters. However, two limitations of such approaches are that  (i) they are input 

parameter sensitive, and (ii) ineffective in finding intersected patterns over high 

dimensional data. A model-based approach, such as COBWEB
 30

 and SOM
 31

 

provides an estimated probability that a single gene may exhibit membership in more 

than one cluster indicating that a gene may have a high correlation with two totally 

different clusters. It discovers good values for its parameters iteratively and can 

handle various shapes of data. However, it suffers from the limitations that (i) it can 

be computationally expensive since a large number of iterations may be required to 

find its parameters, and (ii) it assumes that the dataset fits a specific distribution 

which is not always true. Graph theoretic algorithms are suitable for subspace and 

high dimensional data clustering, such as CLICK
 32

 and CAST
 33

. The algorithms 

under this approach do not require a user-defined number of clusters, can handle 

outliers efficiently and they are capable of discovering intersected and embedded 

clusters. However, they are limited by (i) the difficulty faced in determining a good 

threshold value, and (ii) they require apriori knowledge of the dataset. Among the soft 

computing approaches, Fuzzy C-Means (FCM)
 34

 and Genetic Algorithms (GA) such 

as GENCLUST
 35

 have been used effectively in clustering gene expression data. The 

Fuzzy C-Means algorithm requires the number of clusters as an input parameter. The 

GA based algorithms can detect biologically relevant clusters but are dependent on 

proper tuning of the input parameters. 

It has been found that partitioning approach is not suitable for gene expression data 

because the number of clusters ‘k’ is not known apriori. Also, the hierarchical 
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approach has its limitations since determining the termination criteria is difficult. The 

density based, model based and graph theoretic based approaches have been found to 

be more suitable for clustering gene expression data. 

2.4.3 Discussion 

Generating high-quality gene clusters and assigning data objects to a set of classes 

with an aim to identify the underlying biological mechanism of the gene clusters are 

the important goals of clustering gene expression data. It is essential to have relatively 

high-quality clusters first, in order to get a correct, informative biological explanation 

of the gene cluster. To get high-quality cluster results, most of the current approaches 

rely on choosing the best cluster or classification algorithm, in which the design 

biases and assumptions meet the underlying distribution of the dataset. Hence a 

clustering algorithm attempts to organize the data based on (i) an internal criterion, 

(ii) the characteristics of the used (dis)similarity function and (iii) the dataset itself. 

The existing clustering/classification approaches are not without their biases and 

limitations, as detailed below. 

 Prior information of the dataset: Different clustering solutions may seem 

equally plausible without a priori knowledge about the underlying data 

distributions. Usually, the underlying data distribution of the gene expression 

datasets is unknown. Every clustering algorithm implicitly or explicitly assumes a 

certain data model and it may produce erroneous or meaningless results when these 

assumptions are not satisfied by the sample data. Thus, the availability of prior 

information about the data domain is crucial for successful clustering, though such 

information can be hard to obtain, even from experts. 

 The best clustering algorithm: Many clustering algorithms are available and 

different clustering algorithms may generate different clustering results in the 

same dataset due to their bias and assumptions. It is well known that no single 

clustering algorithm performs best across various datasets. Therefore, it is a 

challenging and daunting task for genomic researchers to choose the best 

clustering algorithm for a particular gene expression dataset, since the results of 

different clustering algorithms may not be consistent. 
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 Evaluation of Results: Quite naturally, two different clustering algorithms when 

applied to the same dataset can produce different results. One way to evaluate the 

results is to use cluster validity indexes
 36

 but, again, it may not be an impartial 

evaluation of the clustering results. The probability may be that different 

solutions obtained by different clustering algorithms may be equally possible, 

especially in the absence of any previous knowledge about the best way to 

evaluate the results. 

 Noise in the gene expression dataset: The results of clustering algorithms are 

easily corrupted by the addition of noise, which is very common in gene 

expression analysis as the experimental measurement may not be very accurate or 

error may be introduced by the data transformation. Therefore, obtaining high 

quality clustering results in presence of noise in the gene expression data is a very 

challenging task. 

 Similarity Measure: Many clustering algorithms require a definition of a metric 

to compute the distance between data points. Thus, their performance is often 

directly influenced by the dimensionality of the dataset used for calculating the 

chosen distance metric. 

 Repeated runs: Cluster analysis frequently involves repeated runs of different 

clustering algorithms with random restart, followed by a selection of an 

individual solution that maximizes a user defined criterion. 

 Biological Interpretation: Another drawback is that the clustering quality and 

cluster interpretation are treated as two isolated research problems and are studied 

separately. But cluster quality and cluster interpretation are closely related and 

must be addressed in a coherent and unified way. It is essential to have relatively 

high-quality clusters first in order to get a correct, informative biological 

explanation of the gene cluster. Otherwise, the biological explanation will be 

incorrect or misleading, no matter how good or robust the text summarization 

technique is. 

Hence, one requires an effective combination of several clustering algorithms to 

improve the clustering quality, which brings us to the question as to how to combine 
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different clustering results and how to ensure symmetrical and unbiased consensus 

with regard to all the component partitions. 

2.5 Ensemble Approach 

Existing classification and clustering algorithms alone cannot provide accurate 

analysis of high dimensional data, whereas ensemble methods, after combining the 

output of several algorithms, are able to improve the robustness and stability of the 

analysis and thus improve the overall prediction accuracy. Ensemble methods should 

combine the strengths of the individual clustering algorithms to provide an overall 

improved clustering of the dataset, which can go beyond what is typically achieved by 

a single clustering algorithm
 37

. The result of an ensemble process is a consensus and 

combination of all the individual base algorithms that takes care of the possible errors 

made during clustering by a single algorithm, Moreover, cluster ensembles can also 

address the problem of local optima and obtain a globally optimum solution i.e. a 

stable clustering solution. More importantly, ensembles exempt the user from 

deciding on a particular clustering algorithm, thereby avoiding the risk of a poor 

choice, though it should be applied and interpreted with caution
 22

. Hence ensemble-

based methods are preferred for cancer classification considering the “curse of 

dimensionality” and the small sample size. A high degree of accuracy and a low 

computational complexity is critical for robust and accurate cancer classification
 38

.  

An ensemble is expected to be:  

 Robust, showing better than average performance than the single clustering 

algorithms 

 Consistent, the result should be similar to the results of the individual clustering 

algorithm 

 Novel, in uncovering solutions unattainable by single clustering algorithms 

 Stable, i.e., should not be sensitive to noise and outliers 

Ensemble approaches can be of three types: supervised, unsupervised and semi-

supervised. The main features of these approaches are summarised in Table 2.1. 
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Table 2.1: Comparison among supervised, unsupervised and semi-supervised ensemble 

approaches 

Supervised Unsupervised Semi-Supervised 

 uses labelled data  uses unlabeled data 

 uses unlabeled data to either 

modify or reprioritize hypotheses 

obtained from labeled data  

 makes use of classification 

algorithms 

 makes use of clustering 

algorithms 

 uses both classification and 

clustering algorithms 

 can yield high performance in 

the presence of proper training 

samples (i.e. labelled data) 

 generating high quality clusters 

is biased towards the dataset and 

input parameters 

 attempts to combine all the 

supervised and unsupervised 

results by consensus 

 obtaining labelled data is a 

daunting task, requires the 

efforts of  human annotators 

 suffers from label 

correspondence problem due to 

use of unlabeled data 

 Unlabeled data may have a high 

likelihood of wrong 

interpretation if wrong model is 

selected 

2.5.1 Supervised Ensembles 

Research on ensemble based classifiers and their use have expanded rapidly in recent 

times and researchers have used many terms to describe combining models involving 

different learning algorithms. Elder and Pregibon
 39

 used the term ‘Blending’, 

Dietterich
 40

 called it an ‘Ensemble of Classifiers’, Steinberg
 41

 termed it a ‘Committee 

of Experts’, while Breiman
 42

 referred to it as ‘Perturb and Combine (P&C)’. Several 

other terms can also be found in the literature
 43

. However, the concept of combining 

models is actually quite simple: train several models using the same dataset, or from 

samples of the same dataset and combine the output predictions, typically by voting 

(for classification problems) or by averaging output values (for estimation problems).  

2.5.1.1 The Ensemble Framework 

The task of constructing an ensemble can be broken down into two subtasks: (i) 

selection of a diverse set of base level models or classifiers with consistently 

acceptable performance, and (ii) appropriate combination of their predictions with due 

weightage. 

The building blocks for a classifier ensemble are as follows. 

i. Training set, which is a labeled dataset used for ensemble training where the 

instances are described as attribute-value vectors. 

ii. Base Inducer is an induction algorithm that obtains a subset of attributes of the 
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training set to form a classifier. 

iii. Diversity Generator is responsible for generating diverse classifiers. 

iv. Combiner combines the classifications of the various classifiers. 

The building blocks for a classifier ensemble are shown in Figure 2.6. The dataset(s) 

D1, D2, …, Dn may be considered to be either multiple datasets or may also be 

considered as individual samples drawn from a single dataset. 

 

Figure 2.6: The general process of Classifier Ensemble 

2.5.1.2 Ensemble Diversity 

Diversity is the degree to which classifiers disagree in the errors they make. This 

allows the voted accuracy to be greater than the accuracy of any single classifier. It is 

well known that the combination of the output of several classifiers is only useful if 

they disagree on some inputs
 44,45

. Constructing a diverse committee in which each 

hypothesis is as different as possible, while still maintaining consistency with the 

training data, is known to be a theoretically important property of a good ensemble 

method
 46

. Some methods of achieving diversity are mentioned below. 

Different classifier models: For effectiveness, one can use several types of learning 

algorithms from different backgrounds, e.g., decision trees, neural networks and 

nearest neighbour classifiers. However, the same classifier can also be used with a 
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slight change in the user-defined parameters, leading to significant variation in 

classification results.  

Different feature subsets: Classifiers may be built using different subsets of features 

of the training dataset. An ensemble works only when some redundancy is present in 

the features in the training dataset. Deterministic and random approaches can be used 

for selecting different feature subsets of the input data. In the deterministic approach, 

prior knowledge of the input data is required, whereas the random approach uses a 

random subspace method for selecting feature subsets. 

Different Training sets: A single learning algorithm is run on different random sub-

samples of the training data to produce different classifiers. It works well for unstable 

learners, when the output of the classifier undergoes major changes given only small 

changes in the training data. Random sub-samples of the training data can be 

generated using re-sampling and re-weighing.  

2.5.1.3 Combination methods 

Some considerations in combining the results of the base-classifiers are the following. 

(i) Weighting methods are suitable when the same task is achieved with similar 

amounts of success by the base classifiers, (ii) Continuous output methods are used 

when each classifier outputs a vector of continuous-valued measures that can 

represent estimates of class posterior probabilities or class-related confidence values 

that represent support for possible classification hypotheses, and (iii) Meta-learning 

methods are useful when the instances are consistently classified or misclassified by 

the base line classifiers, such as in stacked generalization
 47

. 

2.5.1.4 Popular Ensemble Methods 

Classification tasks are generally improved by creating an ensemble or committee of 

base classifiers and their output is combined using some form of consensus, to arrive 

at a prediction for unseen data. Though this helps in achieving a more accurate 

classification of unknown data, it is at the expense of increased model complexity
 48

. 

The generalization property of the ensemble approach is explained using the classic 

bias-variance decomposition analysis
 49

. Bias is a measure of the quality or accuracy 
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of an algorithm, whereas variance is a measure of the specificity or precision of a 

match. A high bias and a high variance is an indication of a poor match; hence 

minimization of bias and variance is needed. Since this cannot be achieved 

independently, there is a trade-off between the two. Methods like bagging improve 

generalization by decreasing variance
 50

 while methods similar to boosting achieve 

this by decreasing bias
 51

. 

Boosting 

Boosting
 52

 is a model averaging method where one first creates a ‘weak’ classifier. A 

weak classifier is one whose classification performance is only slightly better than any 

random classifier of the ensemble committee. The models are built successively with 

each one being trained on a dataset in which the misclassified instances of the 

previous model are given more weight. Finally, the outputs of all the successive 

models are combined using voting according to their weights, into one classifier 

whose accuracy is higher than that of the individual classifiers. The original boosting 

algorithm combined three weak learners to generate a strong learner. 

Adaptive Boosting, or AdaBoost
 53

, improves the boosting algorithm by iteratively 

increasing the weights of all misclassified instances, while the weights of correctly 

classified instances are decreased. Arcing
 54

 is a form of boosting that weighs 

incorrectly classified cases more heavily. A distributed version of AdaBoost, the P-

AdaBoost algorithm
 55

 executes the AdaBoost algorithm for a limited number of steps 

to yield the estimated weights of the instances which are then used to train the 

classifiers. Zhang and Zhang
 56

 proposed a boosting-by-resampling version of 

Adaboost, where a local error is calculated for every training instance which is then 

used to update the probability so that the current instance is chosen for the training set 

for the next iteration.  

Bagging 

In view of the significant improvement in the classification accuracy by combining 

classifiers, Breiman
 42

 introduced the method of Bagging. Bagging, like boosting, is a 

technique that improves the accuracy of a classifier by generating a composite model 
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that combines multiple classifiers, all of which are derived from decision tree models 

generated from bootstrap samples (with replacement) of a training dataset. Both 

methods follow a voting approach, though implemented differently, in order to 

combine the outputs of the different classifiers. In bagging, each instance is chosen 

with equal probability, while in boosting, instances are chosen with a probability that 

is proportional to their weight. Furthermore, as mentioned earlier, bagging needs to 

have an unstable learner as the base inducer, while in boosting inducer instability in 

not necessary, only that the error rate of every classifier needs to be kept below 0.5. 

Wagging
 57

 is a variant of bagging in which each classifier is trained on the entire 

training set, but each instance is stochastically assigned a weight. 

Random Forests 

Breiman
 58

 proposed the method of Random Forests, which uses a large number of 

individual, unpruned decision trees and adds an additional layer of randomness to 

bagging. In addition to constructing each tree using a different bootstrap sample of the 

data, random forests construct the classification or regression trees by splitting each 

node using the best predictor for that node from a randomly chosen subset. The 

classification of an unlabeled instance is performed using majority vote. Kamath and 

Cantu-Paz
 59

 proposed the use of a sub-sample of the instances to determine the best 

split point for each feature. The feature and split value that optimize the splitting 

criterion are chosen as the decision at that node. This technique results in different 

trees for different sub-samples since the split made at a node may vary with the 

sample. These trees can now be combined into ensembles. Another method for 

randomization of the decision tree through histograms was proposed in Kamath et al.
 

60
 to make the features discrete, at the same time reducing computation time to handle 

large datasets. 

Although random forests were defined for decision trees only, this approach is 

applicable to all types of classifiers. An advantage of the random forest method is its 

speed of computation and its ability to handle a very large number of input attributes. 

Stacked Generalization 
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Stacking is a technique that combines the base classifiers through a meta-classifier to 

maximize the generalization for achieving the highest accuracy
 47

. The method 

attempts to work out the reliability of classifiers for optimum accuracy by using a 

meta-learner. Stacking combines models built by different inducers to create a meta-

dataset containing a tuple for every tuple in the original dataset. It uses the predicted 

classifications by the classifiers as the input attributes in place of the original input 

attributes. A test instance is first classified by each of the base classifiers. These 

classifications are fed into a meta-level training set from which a meta-classifier is 

produced. This classifier combines the different predictions into a final one. The 

original dataset is partitioned into two subsets such that one subset is reserved to form 

the meta-dataset and the other subset is used to build the base-level classifiers. The 

performance of the base-level learning algorithms in correctly classifying the 

instances is reflected in the meta-classifier predictions. The performance of stacking 

can be improved by using output probabilities for every class label from the base-

level classifiers. 

Besides the development of more effective ensemble methods, current studies also 

focus on more objective comparison
 61

. For example, a recent study by Ge and Wong
 

62
 compared the single classifier of decision trees with six ensemble methods 

including random forests, stacked generalization, bagging, Adaboost, LogitBoost, and 

Multiboost using three different feature selection schemes (Student t-test, Wilcoxon 

rank sum test, and genetic algorithms). Wang et al.
 63

 employed stacked generalization 

to predict membrane protein types. A SVM and a kNN were used as the base 

classifiers and a decision tree was adopted to combine the base classifiers. Netzer et 

al.
 64

 developed a feature selection approach using the principle of stacked 

generalization. The feature selection algorithm termed stacked feature ranking is 

reported to identify important markers and improve sample classification accuracy 

2.5.1.5 Comparison of the Four Supervised Ensemble Methods 

The advantages of using the three basic supervised ensemble methods are summarized 

in Table 2.2. 
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Table 2.2: Comparison among the four major supervised ensemble methods 

Advantages of  

Bagging Boosting Random Forests 
Stacked 

Generalization 
 works by reducing 

variance by voting 

 improves generalization 

by decreasing bias 
 robust, fast and accurate 

 uses diverse base 
classifiers 

 improves 

performance if the 

learning algorithm is 

unstable 

 simple and easy to 

implement and can be 

applied on a wide 

variety of problems 

 can estimate missing 

data and maintain 

accuracy 

 uses a meta-learner 
to achieve high 
accuracy 

 Simple and easy to 
understand and 
implement 

 non-parametric and 

flexible, can work with 

any learning algorithm 

 runs efficiently on large 

data bases and can 

handle a large number 

of input attributes 

 shows good 
performance in lieu 
of storage and time 
complexity 

2.5.1.6 Selection of Size of Ensemble Basket 

Supervised ensemble selection is important for two reasons: efficiency and predictive 

performance
 65

. A large ensemble incurs a higher computational cost than a smaller 

one. The main criterion for constructing an efficient ensemble is determining the 

number of base classifiers in the ensemble committee. Generally speaking, there is no 

ensemble method which outperforms other ensemble methods consistently. Strategies 

for creation of ensembles include (i) using a parameter to control the number of 

iterations, which will then determine the ensemble size as in bagging, and (ii) 

determining the ensemble size at the time of training by monitoring the performance 

of the ensemble. An algorithm that decides whether a sufficient number of 

classification trees have been created using an out-of-bag error estimate, incorporating 

bagging for ensemble construction, was proposed by Banfield et al.
 66

. Rokach
 67

 

proposed pruning of the ensemble after letting it extend in an unlimited manner in 

order to get a more effective and compact ensemble. Liu et al.
 68

 showed that a small 

ensemble can be constructed from a larger one while maintaining the accuracy and 

diversity of the full ensemble. Empirical studies conducted by Margineantu and 

Dietterich
 69

 suggest that pruned ensembles may be more accurate than the original 

ensemble.  

Earlier, it was thought that using more base learners will lead to a better performance. 

However, Zhou et al.
 70

 proved the “many could be better than all” theorem which 

suggested selection of a few base learners instead of all to compose an ensemble. 

Such ensembles are known as selective ensembles. 
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2.5.1.7 Choosing the Best Ensemble Method for a Problem in Hand 

Choosing the best ensemble method is a MCDM (Multiple Criteria Decision Making) 

problem since there is trade-off in the relationships among the criteria and some 

criteria cannot be measured in proportionate units. 

The main selection criteria include
 71

: 

 Accuracy of classification shown by the ensemble 

 Computational Cost for constructing the ensemble and also the time required for 

classifying an unseen instance 

 Scalability of the ensemble method to work with large datasets 

 Flexibility in order to provide a solution to binary and multiclass classification 

tasks 

 Usability in terms of controllable parameters that are comprehensive and can be 

easily tuned 

 Interpretability of the ensemble results 

 Software Availability so that the practitioner can move from one software to 

another, without having to replace his ensemble method 

Since there are different ensemble approaches available, it becomes difficult for a 

researcher to make an informed decision regarding the choice of the correct ensemble 

method. An appropriate ensemble technique can be selected considering the problem 

at hand, by keeping in mind the above mentioned selection criteria. 

2.5.1.8 Use of Supervised Ensemble Methods in Microarray Data 

Bagging and Boosting methods were applied for classification of normal and tumor 

cells using gene expression data by Ben-Dor et al.
 72

 and Dudoit et al.
 73

. LogitBoost
 74

 

gave a more accurate classification of gene expression data by replacing the 

exponential loss function used in AdaBoost with a log-likelihood loss function. To 

improve the performance of AdaBoost, Long
 75

 proposed several customized boosting 
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algorithms for the base classifiers used in AdaBoost for microarray data classification. 

By comparing the performance of bagging and boosting to a single tree classifier 

using seven publicly available datasets, Tan and Gilbert
 76

 demonstrated that the 

ensemble methods are more robust and accurate in microarray data classification. 

The multiple feature subsets used in random forests are appropriate for high-

dimensional microarray data, as shown by Lee et al.
 77

 in an experimental comparison 

of bagging, boosting and random forests. The experimental results using ten 

microarray datasets by Diaz-Uriarte and de Andres
 78

 suggest that random forests can 

accurately interpret data and at the same time output smaller gene sets as compared to 

other methods. Izmirlian
 79

 also pointed out a few other advantages of random forests 

when used for microarray data, such as robustness to noise, independence from tuning 

parameters and a favourable speed of computation. 

Variants of random forests have also performed well in classification of microarray 

data. The results obtained by Zhang et al.
 80

 suggest that a deterministic forest of 

classification trees show better interpretation of high-dimensional data while the 

performance is comparable to that of random forests. A tree ensemble method called 

extra-trees proposed by Geurts et al.
 81

 has shown an improvement over random 

forests in performance. 

2.5.2 Unsupervised Ensembles 

The purpose of a cluster ensemble is to build a robust clustering portfolio that can 

perform as well, if not better, than a single best clustering algorithm across a wide 

range of datasets. Different clustering algorithms take different approaches. Hence a 

cluster ensemble can be used to generate cluster results using various clustering 

algorithms and then the results can be integrated using a consensus function to yield 

stable results. Given a set of objects, a cluster ensemble consists of two principal 

steps: (i) Ensemble construction, which is creation of a set of partitions
 
using some 

clustering algorithm, and (ii) Consensus Function, where a new partition is obtained 

from the individual partitions of step (i). 
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2.5.2.1 Cluster Ensemble Framework 

The two step process of a cluster ensemble, i.e. Ensemble Construction and 

Consensus Function is shown in Figure 2.7. 

Figure 2.7: The general process of Cluster Ensemble 

2.5.2.2 Ensemble Constructor  

The set of clusters that will be combined is generated in this step. The selection of an 

appropriate generation mechanism is important as the final result will depend on the 

clusters generated in this step. The generating process should be diverse to 

compensate for clustering error of one algorithm by another.  

Topchy et al.
 82

 demonstrated that during the ensemble constructor step when a proper 

consensus function is applied to weak clustering algorithms, these simple and fast 

procedures can produce quality consensus clusters. Hence, one should make a 

judicious choice of diverse clustering algorithms to uncover more information about 

the data. 

Diversity in the individual clustering of a given dataset can be achieved by a number of 

approaches, such as 

a) Using different clustering algorithms to produce partitions for combination
 83,84

, 

b) Changing initialization or other parameters of a clustering algorithm
 85,86
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 82,83
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d) Partitioning different subsets of the original data
 84,87,88

 and 

e) Projecting data onto different subspaces
 83,89

. 

These diversity generation mechanisms are presented in Figure 2.8. 

 

Figure 2.8: Clustering Ensemble generation mechanism 

2.5.2.3 Consensus Functions 

Finding consensus among the individual clustering algorithms is a challenging and 

daunting task. The consensus function should be capable of improving the results, 

leading to two main consensus function approaches. 
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 Counting pairs: These measures count the pairs of objects on which two 

partitions agree or disagree, e.g., Rand index
 90

, Jaccard coefficient
 91

, Mirkin 

distance
 92

 and their variations. 

 Set matching: These measures are based on set cardinality comparisons, e.g., 

Purity and Inverse Purity
 93

, F-measure
 94

 and Dongen measure
 95

. 

 Information Theory based: These measures quantify the information shared 

between two partitions, e.g., Class Entropy
 96

, Normalized Mutual Information
 97

 

and Variation of Information
 98

.  

 Kernel measures are defined specifically for the median partition problem, e.g., a 

Graph Kernel based measure
 99

 and a Subset Significance based measure
 100

. 

In principle, it is not necessary for a particular consensus clustering to strictly follow 

the object co-occurrence approach or the median partition approach. For example, 

there could be two consensus clustering methods based on genetic algorithms, one 

following the co-occurrence approach and the other the median partition approach. 

Figure 2.9 presents the main consensus functions. 

 

Figure 2.9: Principal consensus functions techniques 
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individual clustering algorithms. The Voting approach attempts to solve this problem 

by using heuristics such as bipartite matching and cumulative voting.  

A voting consensus algorithm using the assumption that the number of clusters in 

each partition is the same as the final number of clusters in the consensus partition 

was proposed by Dudoit and Fridlyand
 84

 and Fischer and Buhmann
 101

. It is similar to 

the plurality voting used in a supervised classifier ensemble
 102

, and is applied to 

obtain the final cluster for each object, after solving the labeling correspondence 

problem through maximum likelihood computation using the Hungarian
 103

 method. 

The Voting-Merging
 104

 method combines clusters in a two step process: a voting 

process is used to solve the label correspondence problem, followed by the merging of 

the votes to decide the final partition. 

Co-Association Matrix Methods 

To avoid the label correspondence problem, co-association methods
 105

 are used to 

map the partitions in the cluster ensemble into an intermediate representation: the co-

association matrix. This matrix can be viewed as a new similarity measure between 

two objects from the set of objects O. Objects oi and oj are similar if they tend to 

appear together in the same cluster. Using the co-association matrix as the similarity 

measure between objects, the consensus partition is obtained by applying a clustering 

algorithm.  

Fred and Jain
 105

 proposed an algorithm where the co-association matrix is viewed as 

an adjacency matrix of a graph. From this a minimum spanning tree is obtained, one 

that contains all the nodes of the graph with the minimum weights in their edges. 

Then the weak links between nodes are cut using a threshold r. Algorithms such as 

Single Link (SL)
 106

, Complete Link (CL), Average Link (AL) and other hierarchical 

clustering algorithms can be used in variants of this method.  

An algorithm based on the concept of normalized edges to measure the similarity 

between clusters was proposed by Li et al.
 107

. It involves the application of a 

hierarchical clustering algorithm to the co-association matrix, to improve the quality 

of the consensus partition. 
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Graph and Hypergraph Methods 

The combination problem uses a graph or hypergraph where the vertices represent the 

objects to be clustered and the objects on a hyperedge belong to the same cluster. 

According to Strehl and Ghosh
 97

, the similarity measure between partitions decides 

the consensus partition, which is the information shared by all the partitions, 

measured by Normalized Mutual Information (NMI). They proposed three heuristics 

to obtain the consensus partition. The Cluster-based Similarity Partitioning Algorithm 

(CSPA) forms a hypergraph from a co-association matrix and then the consensus 

partition is obtained by partitioning this graph using the METIS
 108

 algorithm. In 

HyperGraphs Partitioning Algorithm (HGPA), the hypergraph is partitioned by 

eliminating the minimum number of hyperedges in k connected components of 

approximately the same dimension by the HMETIS
 109

 hypergraph partitioning 

package. The Meta-CLustering Algorithm (MCLA) first forms a similarity matrix 

between the clusters, which is the adjacency matrix upon which the graph is then 

constructed. The clusters obtained by partitioning this graph using the METIS 

algorithm are called meta-clusters. The final partition is obtained by assigning the 

object to the meta-cluster where it appears the maximum number of times. 

Fern and Brodley
 88

 proposed the Hybrid Bipartite Graph Formulation (HBGF) 

algorithm where an edge exists between two nodes if one node represents a cluster 

and the other node represents an object belonging to this cluster. Then the METIS 

algorithm is used to obtain the consensus partition by partitioning this graph. Abdala 

et al.
 110

 proposed a graph based clustering ensemble algorithm building on the 

random walk algorithm for the combination of image segmentations
 111

. 

Mirkin Distance-Based Methods 

In these methods, the consensus partition is obtained by the solution to the median 

partition problem using the Mirkin distance as dissimilarity measure between 

partitions. Since it is suitable for a small number of objects and partitions, several 

heuristics have been proposed. Filkov and Skiena
 112

 proposed three heuristics: the 

output of the Best-of-k (BOK) heuristic is the partition in the cluster ensemble that 



Chapter 2 

42 

minimizes the distance from it to all the other partitions in the ensemble. Simulated 

Annealing One-element Move (SAOM) follows the idea of guessing an initial 

partition and iteratively changing it by moving an object from one cluster to another. 

Best One-element Move (BOM) also starts with an initial partition and generates new 

partitions by moving the object from one cluster to another, always checking if this 

partition is a better than the previous one.  

Four new heuristics proposed by Gionis et al.
 113

 are the Balls algorithm, 

Agglomerative algorithm, the Furthest algorithm and LocalSearch algorithm. The 

Balls algorithm builds a graph where the edges are weighted by the distances between 

pairs of objects. The triangle inequality of the Mirkin distance is applied iteratively, 

yielding a new cluster for the consensus partition. The Agglomerative algorithm is 

based on the Average-Link agglomerative clustering algorithm. The Furthest 

algorithm starts by placing all the objects in one cluster and the objects which are the 

furthest away are placed in different clusters iteratively. The cost of the new partition 

is computed and the procedure is repeated until a worse solution is obtained. The 

LocalSearch algorithm starts with an initial partition and the cost of moving objects 

from one cluster to another is computed repeatedly until there is no move that can 

improve the cost. Two other algorithms used are the CC-Pivot
 114

 and CCLP-Pivot
 114

. 

In the CC-Pivot algorithm, a partition is obtained using a relation between the objects 

and repeatedly selected pivot objects. CCLP-Pivot is a linear programming based 

version of the CC-Pivot.  

Finite Mixture Model-Based Methods 

A consensus function obtained as the solution of a maximum likelihood estimation 

problem using the EM
 115

 algorithm was proposed by Topchy et al.
 116

. This approach 

is based on a finite mixture model for the probability distributions for assigning labels 

to the objects in the partitions.  

Genetic Algorithm Methods 

Consensus clustering is arrived at by determining which partitions of the set of objects 

(chromosomes) have the highest fitness value. The Heterogeneous Clustering 
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Ensemble proposed by
 117,118

 creates an ordered pair of partitions from the objects and 

a fitness value is computed for the comparison of the amount of overlap between the 

partitions in each chromosome. Luo et al.
 87

 proposed minimizing an information 

theoretical criterion using a genetic algorithm to obtain the consensus function. 

Analoui and Sadighian
 119

 used a finite mixture of multinomial distributions and the 

corresponding maximum likelihood problem is solved using a genetic algorithm to 

obtain the consensus function. 

Locally Adaptive Clustering Algorithm Methods 

Partitions obtained using Locally Adaptive Clustering (LAC)
 120

 algorithms can be 

combined to yield the consensus function. The dataset is generally made up of 

numerical data. Two consensus functions were proposed by Domeniconi and Al-

Razgan
 121

: In the Weighty Bipartite Partition Algorithm (WBPA), first the weighted 

distance of each object to every cluster in a partition is computed. Then the 

similarities between a pair of objects is calculated and stored in a matrix, which is 

repeated for all partitions. Next, a graph is built from this matrix and the METIS 

algorithm is used to obtain the consensus partition. The second consensus function 

algorithm, Weighted Subspace Bipartite Partitioning Algorithm (WSBPA), is based 

on the partitioning of a bipartite graph. A third heuristic proposed by Domeniconi and 

Al-Razgan
 121

 adds a weight factor to each cluster obtained by WBPA. 

Kernel Based Methods 

The Weighted Partition Consensus via Kernels (WPCK) algorithm was proposed by 

Vega-Pons et al.
 100

. The consensus partition is defined through the median partition 

problem by using a positive semi-definite kernel
 122

 as a similarity measure between 

partitions. It follows the traditional methodology of the clustering ensemble 

algorithms but before combining, the relevance of each partition in the cluster 

ensemble is calculated in an intermediate step called the Partition Relevance Analysis, 

followed by the combination. Another clustering ensemble method called WKF was 

presented by Vega-Pons et al.
 99

, where the similarity measure is based on a graph 

kernel function and it was extended to GKWF to take care of categorical and mixed 

data
 123

. 
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2.5.2.4 Comparison of the Consensus Methods 

A comparison based on the merits and demerits of the different consensus methods 

discussed in Section 2.5.2.3 is summarized in Table 2.3. For computational 

complexity, n is the number of objects, m is the number of partitions and k is the 

number of clusters in the consensus partition. The quadratic cost on the number of 

objects is used as a threshold to determine whether an algorithm has high or low 

computational complexity. The value heuristic is applied when it is very difficult to 

determine the computational complexity, since it is not easy to determine how many 

steps are needed to reach a convergence criterion. 

2.5.2.5 Improving the Combination Process 

Generally, clustering ensemble algorithms give equal importance to all partitions 

obtained in the ensemble construction step and hence use all of them in the consensus 

step. However, in particular situations, all clusters in the cluster ensemble may not 

have the same quality, i.e., the information that each one contributes may not be the 

same. Therefore, a simple average of all clusters does not have to be the best choice. 

To account for difference in the quality of clusters, there are two approaches. Both 

approaches inspect the generated partitions and make a decision that assists the 

combination process. The first consists of selecting a subset of clustering algorithms 

to create an ensemble committee, whose results will be combined to obtain the final 

solution. The other approach consists of setting a weight to each partition in order to 

give a value according to its significance in the clustering ensemble. 

These two techniques do not have to be exclusive. A selection based on weighting the 

partitions already selected could be performed. Any of these variants could improve 

the quality of the final result. However, their use implies extra computational cost. 

Therefore, in a practical problem, the user should analyze the characteristics of the 

problem at hand, and decide whether to use a clustering discrimination technique or 

not, according to their requirements. 
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Table 2.3: Comparison among different approaches of consensus function 

Consensus 

Function Merits Demerits 

Computational 

Complexity 

Relabeling 

and Voting 

 easy to understand and 

implement 

 suitable when the labels 

associated with each 

object is the same for all 

clustering algorithms 

 labelling correspondence problem makes 

the combination of clusters difficult. 

 requires all partitions to have the same 

number of clusters 

 the label correspondence problem solved 

by the Hungarian algorithm leads to high 

computational cost  

Heuristic 

dependent 

O(k
3
) 

Co-

association 

matrix 

 very easy to implement 

and understand 

 final clustering depends on the similarity 

measure and the clustering  algorithm 

applied 

 not suitable for large datasets 

High 

O(n
2
) 

Graph and 

hypergraph 

 popular method,  easy to 

understand and implement 

 has low computational 

complexity 

 not strictly used as a solution for 

consensus clustering but proposed as a 

solution for the median partition problem  

 the methods need a (hyper)graph 

partitioning algorithm in the final step 

Low 

HGPA O(knm),  

MCLA O(k
2
nm

2
) 

and HBGF 

O(knm) 

CSPA O(kn
2
m) 

Mirkin 

distance 

 uses Mirkin distance as 

dissimilarity measure 

between partitions 

 easy to understand and 

program 

 has high computational complexity 

  not suitable for large datasets 

Heuristic 

dependent 

Finite 

mixture 

models 

 has a low computational 

complexity 

 data is modeled as random variables  

  it is assumed that data are independent 

and identically distributed 

 the number of clusters in the consensus 

partition has to be specified 

Low 

O(knm) 

Genetic 

algorithms 

 uncovers partitions that 

other methods may skip  

 algorithms cannot test whether a solution 

is optimal or not 

 heuristic nature of algorithms may 

produce different results in successive 

runs 

Heuristic 

dependent 

Locally 

adaptive 

clustering 

 heuristics such as WBPA 

has a low computational 

complexity and is more 

efficient than others  

 can be applied on datasets of numerical 

data  

 the number of clusters in the consensus 

partition has to be specified 

 the methods need a (hyper)graph 

partitioning algorithm in the final step 

Low 

O(n
2
) 

O(knm) 

Kernel 

based 

 uses a kernel function as 

similarity measure 

between partitions 

 Partition Relevance Analysis increases 

the quality of the consensus at the cost of 

computational complexity 

Heuristic 

dependent 

2.5.2.6 Use of Unsupervised Ensemble Methods in Microarray Data 

Although unsupervised ensemble clustering techniques have improved the accuracy 

and the reliability of clustering results for microarray data, some issues exist 

considering the fact that classes of functionally correlated genes are not very distinct 

and same gene may belong to several functional classes. Gasch and Eisen
 124

 and 

Avogadri and Valentini
 125

 have proposed solutions to tackle this fuzzy nature of 

clusters in gene expression data. Nonetheless, unsupervised clustering methods have 
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been applied in the discovery of new subclasses of diseases
 126,127

 and for detection of 

subsets of co-expressed genes
 128

. Methods for the improvement of accuracy and 

reliability of the clustering results are given in
 84,129,130,131

. Yu Z et al.
 132

 have 

proposed a graph-based consensus clustering algorithm to determine the number of 

classes in microarray data. 

2.5.3 Semi-Supervised Learning 

Semi-supervised learning is a new direction in Machine Learning research and uses 

both labelled and unlabeled data for training and lies between supervised learning and 

unsupervised learning
 133

. In other words, semi-supervised learning can be viewed as: 

• supervised learning aided by additional unlabeled data; 

• unsupervised learning aided by additional labelled data. 

Semi-supervised learning tries to uncover relationship in a dataset by using a small 

amount of labelled data along with a large amount of unlabeled data. This leads to a 

considerable improvement in learning efficiency.  

The goal of semi-supervised learning is to train a classifier f from both the labelled 

and unlabeled data, such that it is better than the supervised classifier trained on the 

labelled data alone. Figure 2.10 shows the general process of semi-supervised 

learning. 

Figure 2.10: The General Process of Semi-Supervised Learning 
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To obtain labelled instances is often difficult, expensive, or time consuming as the 

efforts of experienced human annotators are required for manual classification 

whereas unlabeled data may be more readily available. Since semi-supervised 

learning uses a large amount of unlabeled data along with a small amount of labelled 

data to build classifiers, it requires less human effort while giving improved results. 

Hence semi-supervised learning is of great interest both in theory and in practice. 

2.5.3.1 Methods Adopted For Semi-Supervised Learning 

Being an active research area, semi-supervised learning is going through an 

experimental phase and there is no concrete taxonomy on the methods adopted for its 

approaches. Nevertheless, the semi-supervised methodologies can be broadly divided 

into five major approaches
 134

, which are shown in Figure 2.11. 

 

Figure 2.11: Semi-Supervised Learning Methodologies 
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been proposed to avoid this problem such as ‘unlearning’ unlabeled points if the 

prediction confidence drops below a threshold. 

Self-training has been used in natural language processing tasks such as word sense 

disambiguation
 135

, identification of subjective nouns
 136

, classification of dialogues
 137

 

and object detection systems from images
 138

. 

Mixture Models 

The idea behind mixture models is that unlabeled data contains mixed instances from 

all classes. If the probability distributions of instances from each class are known, the 

mixture may be decomposed into individual classes. If the generative mixture model 

is correct, the unlabeled data may improve accuracy
 139,140,141

 and the semi-supervised 

learning is likely to be effective. But the unlabeled data may degrade performance if 

the choice of a model is wrong. It is thus important to carefully construct the mixture 

model to reflect reality. 

One way to avoid the danger of using the wrong model is to use a model based on 

domain knowledge. Nigam et al.
 142

 applied the EM algorithm on a mixture of 

multinomials for text classification. Since EM is prone to local maxima, Nigam et al.
 

143
 made use of active learning to select a starting point. Fujino et al.

 144
 made use of a 

‘bias correction’ term and discriminative training using the maximum entropy 

principle in mixture models. Another method, ‘Cluster-then-label’, clusters the entire 

dataset using different clustering algorithms and then labels the clusters
 145,146

. 

Co-Training and Multiview Learning 

Co-training
 147,148 

assumes that (i) features can be split into two sets, i.e. two views; 

(ii) each sub-feature set is good enough to train a good classifier; (iii) the two sets are 

independent of each other for a given class
 149

. Initially two separate classifiers are 

trained with the labelled data on the two sub-feature sets respectively. Each classifier 

then classifies the unlabeled data, and ‘teaches’ the other classifier with the few 

unlabeled examples and the predicted labels. Hence an iterative classification of 

unlabelled data is performed by the classifiers, with the help of the predicted labels. 
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Nigam and Ghani
 150

 compare co-training and EM and their experimental results show 

that co-training performs well if there is a natural split of the features. They also 

introduced the co-EM algorithm that uses EM to iteratively label unlabelled data. 

Jones
 151

 used co-training, co-EM and other related methods for information 

extraction from text. Balcan and Blum
 152

 show that co-training can be quite effective 

even when using one labelled point to learn the classifier, which was also confirmed 

by Zhou and Xu
 153

. 

In contrast to splitting of features in co-training, Goldman and Zhou
 154

 use two 

different classifiers that use the entire feature set to teach one another. Zhou and 

Goldman
 155

 also proposed a single-view multiple-learner Democratic Co-learning 

algorithm. Tri-training using three learners was proposed by Zhou and Li
 156

, where 

majority voting on an unlabeled data point is used to train the third classifier. Johnson 

and Zhang
 157

 proposed a two-view model that uses a weaker conditional 

independence assumption of the feature set. 

Li et al.
 158

 proposed a co-training algorithm for heterogeneous microarray datasets 

having both labelled and unlabeled samples. Qi et al.
 159

 introduced a Bayesian 

generalization approach that trains a kernel classifier using both labelled and 

unlabeled gene expression data. 

Multiview learning is a generalization of co-training and k views; hence the algorithm 

has access to k learners. The learners might be of different types (i.e., decision trees, 

SVM, neural networks, etc.) but they take the same features of instance x as input. 

The goal of multiple learners is to produce multiple hypotheses to minimise risk and 

to make similar predictions, i.e. agree with each other on any given unlabeled 

instance. Multiview learning has been applied to semi-supervised regression
 160,161

 and 

to structured output spaces
 162,163

. 

S3VMs 

S3VM
 133

 is an extension of support vector machines that uses unlabeled data, 

whereas SVM uses only labelled data. The S3VM objective prefers the decision 

boundary to be in a low density gap in the dataset, such that only a few unlabeled 
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instances are close to the decision boundary. The goal is to find a labelling of the 

unlabeled data. The decision boundary has the smallest generalization error bound on 

unlabeled data
 164

 and the unlabeled data guides the linear boundary away from dense 

regions. Shi and Zhang
 165

 used a low density separation (LDS) approach for outcome 

prediction for different types of cancer while Wang et al.
 166

 extract information from 

unlabeled gene expression data for estimating the Bayes decision boundary by 

developing a large margin semi-supervised learning method. 

Graph-Based Methods 

The nodes in graph-based semi-supervised methods are the labelled and unlabeled 

instances in the dataset and an edge represents the similarity between two instances. 

Nodes that are connected by a large-weight edge tend to have the same label, and they 

are assumed to be similar to their neighbours in the graph, which in turn, are similar to 

their neighbours’ neighbours. These methods usually assume label predictions to be 

smooth over the graph.  

Graph-based methods can be viewed as estimating a function f on the graph that 

satisfies two things at the same time: (i) the prediction function f(x) should be close to 

the given labels on the labelled nodes, and (ii) the label function f should be smooth 

on the whole graph. This can be expressed in a regularization framework where the 

first term is a loss function, and the second term is a regularizer. Graph-based semi-

supervised learning algorithms differ from each other in the choice of the loss 

function and the regularizer. To construct a good graph is more important than to 

choose among the methods. A semi-supervised logistic model construction of a 

nonlinear discriminant procedure, based on both labelled and unlabeled datasets, 

using graph-based regularization is given in Kawano et al.
 167

. 

Mincut, a graph-based semi-supervised learning algorithm, was proposed by Blum 

and Chawla
 168

, by finding a partition which minimizes a cost function defined on the 

graph. For a two class problem, the classes are labelled as source and sink. Mincut 

tries to find a minimum set of edges, the removal of which will block all flow from 

the sources to the sinks. The nodes connecting to the sources are labelled positive, and 

those to the sinks are labelled negative. Mincut can be applied to multiple perturbed 
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graphs and the labels are determined by a majority vote. Blum et al.
 169

 perturbed the 

graph by adding random noise to the edge weights. Pang and Lee
 170

 used mincut to 

improve the classification of a sentence. 

A harmonic function is a graph-based semi-supervised learning algorithm. A 

harmonic function is a function that has the same values as the given labels on the 

labelled data and satisfies the weighted average property on the unlabeled data. In 

other words, the value assigned to each unlabeled vertex is the weighted average of its 

neighbours’ values. Grady and Funka-Lea
 171

 applied the harmonic function method to 

medical image segmentation tasks. 

Manifold Regularization: Mincut and the harmonic function are learning algorithms 

that learn a function f that is restricted to the labelled and unlabeled vertices in the 

graph. One cannot predict the label on an unseen test instance, unless the instance is 

included as a new vertex into the graph and the computation is repeated. The label 

function f assigns labels to instances which sometimes may not be correct due to label 

noise. Manifold regularization addresses these two issues by defining f in the entire 

feature space
 172,173

. 

2.5.3.2 Comparison among Semi-Supervised Learning Methods 

A comparison based on the merits and demerits of the different semi-supervised 

learning methods discussed in Section 2.5.3.1 is summarized in Table 2.4. 

2.5.3.3 Use of Unsupervised Ensemble Methods in Microarray Data 

By integrating consensus clustering with semi-supervised clustering for analyzing 

gene expression data showed an improvement in the clustering quality by reducing the 

impact of noise and high dimensionality in microarray data, as opposed to using 

consensus clustering or semi-supervised clustering separately
 174

. Hence semi-

supervised learning has been used with some amount of success to reveal functional 

associations among genes
 158,174

, outcome prediction for different types of cancer
 165

 

and discovering human disease-causing genes
 175,176

. It has also proved to be effective 

in protein classification
 177

, peptide identification in shotgun proteomics
 178

 prediction 
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of transcription factor-gene interaction
 179

 and gene expression-based cancer subtype 

discovery
 180,181,182

. 

Table 2.4: Merits and demerits of the different methods of Semi-Supervised Learning 

Method Merits Demerits 

Self 

Training 

 One of the simplest methods, 

easy to use 

 A wrapper method, applies to 

existing (complex) classifiers 

 Often used in real tasks like 

natural language processing 

 Early mistakes in heuristic solutions could 

reinforce themselves, e.g., “un-label” an instance 

if its confidence falls below a threshold 

 Convergence to a solution is a problem but in 

special cases self-training is equivalent to the 

Expectation-Maximization (EM) algorithm 

Generative 

Models 

 Clear, well-studied probabilistic 

framework 

 Can be extremely effective for 

correctly selected models 

 Model identifiability is a problem, difficult to 

verify the correctness of the model 

 Unlabeled data may have a high likelihood of 

wrong interpretation  if generative model selected 

is wrong 

S3VMs 

 Applicable wherever SVMs can 

be used 

 Has a clear mathematical 

framework 

 Optimization is difficult since it can be trapped in 

bad local optima 

 The assumption that ‘unlabeled data from 

different classes are separated by a large margin’ 

may lead to a potentially lower gain than 

generative model or graph-based methods  

Graph 

Based 

Algorithms 

 Has a clear mathematical 

framework 

 Performance is strong if the graph 

happens to fit the task 

 Can be extended to directed 

graphs also 

 Performance is bad if the graph structure is 

incorrect 

 Sensitive to graph structure and edge weights 

Multi-view 

Algorithms 

 Simple wrapper method that can 

be applied to almost all existing 

classifiers 

 It is less sensitive to mistakes 

than self-training 

 Natural feature splits (i.e., multiple views) may 

not exist 

 Models using both features, e.g., image and text, 

should give better performance 

2.5.4 Discussion 

Ensemble techniques have demonstrated their strength in supervised, unsupervised or 

semi-supervised scenarios where base models are combined by learning from labeled 

data or by consensus. This is particularly useful since the results of different 

classification and clustering algorithms may not be consistent. Hence, an effective 

combination of algorithms is required to improve clustering quality. There are two 

main issues that are involved in design of the ensembles. 

a. The diversity of the algorithms: The diversity and the quality of the base 

classifiers and clustering algorithms highly influence the quality of results 

produced by the ensemble and should not be influenced by the dimensionality of 

the data or the biases of the participating classifiers or clustering methods. 
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b. The integration of the outputs of the base algorithms: A better understanding 

of the relationship between the performance of various combination and 

consensus functions to obtain a consensus that will work for any type of data 

(numerical, categorical and mixed) vis-a-vis the basic properties (diversity and 

quality) of ensembles is necessary. 

The idea of ensemble learning is to employ multiple learners and combine their 

predictions for better accuracy, especially for an application like cancer data 

classification. An ensemble is largely characterized by the diversity generation 

mechanism and the choice of its consensus or combination procedure. Diversity is the 

degree to which classifiers disagree in the errors they make. This allows the voted 

accuracy to be greater than the accuracy of any single classifier. Diversity can be 

achieved by employing different classifier models, different feature subsets and 

different training data sets
 183

. The result of a clustering ensemble process is a 

consensus of all the individual base classifiers and base clustering algorithms that 

takes care of the possible errors made during clustering by a single algorithm, and 

also gives more weight to the decision arrived at by a majority of the algorithms. 

More importantly, ensembles exempt the user from deciding on a particular classifier 

or clustering algorithm, thereby avoiding the risk of making a wrong selection. 

Ensembles are also characterized by their ability to deal with small sample size and 

high dimensionality; hence they have been widely applied to microarray data analysis. 

An in-depth study of the above issues will provide useful guidance for applying 

ensemble techniques in practice. 

2.6 K-Fold Cross Validation 

K-fold cross validation is used in the field of machine learning to determine how 

accurately a learning algorithm will be able to predict data that it was not trained on. 

Suppose we have a model with one or more unknown parameters, and a data set to 

which the model can be fit (the training data set). The fitting process optimizes the 

model parameters to make the model fit the training data as well as possible. If an 

independent sample of validation data is taken from the same population as the 
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training data, it will be observed that the model does not fit the validation data as well 

as it fits the training data. This is called over-fitting, and generally happens when the 

size of the training data set is small, or when the number of parameters in the model is 

large. 

To avoid over-fitting, cross validation is used to estimate the expected level of fit of a 

model to a data set that is independent of the data that were used to train the model. 

The basic idea behind cross validation is not to use the entire data set when training a 

learner. Some of the data is removed before training begins and when the training is 

done, the data that was removed can be used to test the performance of the learned 

model on “new” data. 

In k-fold cross-validation, the data set is divided into k equal size subsets. Of the k 

subsets, one subset is retained as the validation data to be used as the test set and the 

other k-1 subsets are put together to form a training set, as shown in Figure 2.12. The 

cross-validation process is then repeated k times (the folds), with each of the k subsets 

used exactly once as the validation data. The k results from the folds can then be 

averaged (or combined) to produce a single estimation. The advantage of this method 

is that all observations are used for both training and validation and each data point 

gets to be in a test set exactly once and in a training set k-1 times. The disadvantage of 

this method is that the training algorithm has to be rerun from scratch k times, which 

means it takes k times as much computation to make an evaluation. 

Figure 2.12: K-fold cross validation 

Experiment 1 

Total number of samples 

Experiment 2 

Experiment 3 

Experiment 4 
Test Samples 
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Unfortunately, there is no theoretically ‘perfect’ way of determining the appropriate k 

value. Using the value k = 10 seems to be a good rule of thumb
 184

, although the true 

best value differs for each algorithm and each dataset. 

2.7 Discussion 

Ensemble techniques have demonstrated their strength in supervised, unsupervised or 

semi-supervised scenarios where base models are combined by learning from labelled 

data or by consensus. Use of ensembles has led to improvements in accuracy. In 

addition, information explosion has motivated the need for learning from multiple 

sources with the sole objective of understanding data better. This has led to rapid 

developments in the field of ensemble research, with an aim to combine the 

complementary predictive powers of multiple models. The availability of various 

learning packages has further fuelled growth and interest in this research area. 

2.8 Validity Measures 

Grouping of gene expression data results in groups of co-expressed genes, groups of 

samples with a common phenotype, or “blocks” of genes and samples involved in 

specific biological processes. However, different clustering and classification 

algorithms, or even an ensemble using different base clustering / classification 

algorithms, generally result in different sets of clusters
 185

. The validation techniques 

have the potential to provide an analytical assessment of the amount and type of 

structure captured by a partitioning and should be a key tool in the interpretation of 

clustering results. Therefore, it is important to compare various clustering and 

classification results and select the one that best fits the “true” data distribution.  

Validation is the process of assessing the quality and reliability of the cluster sets 

derived from various clustering processes. Generally, cluster validity has three 

aspects. First, the quality of clusters can be measured in terms of homogeneity and 

separation on the basis of the definition of a cluster. Objects within one cluster are 

similar to each other and different from objects in other clusters. The second aspect 
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comes from “ground truth” of the clusters. The “ground truth” could come from 

domain knowledge, such as the clinical diagnosis of normal or cancerous tissues. 

Cluster validation is based on the agreement between clustering results and the 

“ground truth”. The third aspect focuses on the reliability of the clusters or the 

likelihood that the cluster structure is not formed by chance.  

Validation techniques can be divided into two main categories: external and internal 

validation measures
 186

.  

2.8.1 External Validity Measures 

External validity measures generally use supervised information. These indices 

mainly quantify how good is the obtained partitioning with respect to prior class 

labelled information available or a given “gold” standard which is another partition of 

the objects. Evidently, this is useful to permit an entirely objective evaluation and 

comparison of clustering algorithms and clusters on benchmark data. Adjusted rand 

index, Rand index, F-measure, Purity, NMI are some common examples of external 

validity indices. 

2.8.1.1 Rand Index 

Rand index
 90

 is a measure of the similarity between two clusters. The Rand index is 

defined as the number of pairs of objects that are either in the same group or in 

different groups in both partitions divided by the total number of pairs of objects. 

             
   

       
  (2.1) 

Where a is the number of object pairs (gi, gj), where Cij = 1 and Pij = 1, b is the 

number of object pairs (gi, gj), where Cij = 1 and Pij = 0, c is the number of object 

pairs (gi, gj), where Cij = 0 and Pij = 1, d is the number of object pairs (gi, gj), where 

Cij = 0 and Pij = 0. 

The Rand index lies between 0 and 1. The maximum value i.e., 1 is achieved when 

both partitions, C and P, agree perfectly. 
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2.8.1.2 Adjusted Rand Index 

The problem associated with Rand index is that it does not show a constant value for 

random partitions
 187

. So Hubert and Arabie
 188

 overcome the deficiency of Rand 

index and assume randomness for partitions. So modified Rand index (RI) is defined 

as follows: 

     
  
 
                              

  
 
 
 
                       

  (2.2) 

As in the case of Rand index, here also a is the number of object pairs (gi, gj), where 

Cij = 1 and Pij = 1, b is the number of object pairs (gi, gj), where Cij = 1 and Pij = 0, c is 

the number of object pairs (gi, gj), where Cij = 0 and Pij = 1, d is the number of object 

pairs (gi, gj), where Cij = 0 and Pij = 0. 

ARI
 188

 gives value between [0,1], 1 for best partitioning result and 0 for worst 

partition, -1 value shows random partitioning result. 

2.8.1.3 Jaccard Coefficient 

The Jaccard Coefficient measures the proportion of pairs that are in the same cluster C 

and in the same partition P from those that are either in the same cluster or in the 

same partition
 189

. The Jaccard Coefficient is defined as 

    
 

     
  (2.3) 

where a=SS if the pair belongs to the same cluster C and to the same group P, b = SD 

if the pair belongs to the same cluster C and to different groups P and c = DS if the 

pair belongs to different clusters C and to the same group P. 

As in the Rand Index, the values of these coefficients lie between 0 and 1, and values 

close to 1 indicate high agreement between C and P. 

2.8.1.4 Fowlkes-Mallows Index 

The Fowlkes-Mallows Index
 190

 is the geometrical mean of two probabilities: the 

probability that two random objects are in the same cluster given they are in the same 
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group, and the probability that two random objects are in the same group given they in 

the same cluster
 189,190

. The FM Index is defined as: 

     
 

     

 

     
  (2.4) 

Similar to Jaccard Coefficient, here a=SS if the pair belongs to the same cluster C and 

to the same group P, b = SD if the pair belongs to the same cluster C and to different 

groups P and c = DS if the pair belongs to different clusters C and to the same group 

P. 

As in the Rand Index and Jaccard Coefficient, values close to 1 indicate high 

agreement between C and P. 

2.8.1.5 F-Measure 

The F-Measure
 191

 is the harmonic mean of two measures called Precision and Recall, 

as follows. 

 Precision: This measure is defined as the fraction of a cluster that consists of 

objects of a specific class. The precision of a cluster    with respect to class    is 

represented by  

 
                 

    

  
  (2.5) 

 Recall: This measure is defined as the proportion of objects of a class in a cluster. 

The recall of a cluster    with respect to class    is represented by  

 
              

    

  
  (2.6) 

where      equals number of data items belonging to class    and cluster   ,    is 

the number of data items belonging to cluster    and    denotes number of data 

items belonging to class   . 
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The F-Measure is defined as the rate at which a cluster contains only objects of a 

particular class and all objects of that class. Thus, the F-Measure of a cluster    with 

respect to class    is represented by the following expression: 

           
                                     

                               
  (2.7) 

F-Measure is useful in the sense that it provides an objective information on the 

degree to which a clustering algorithm is able to recover the original clusters. It is 

measured in the range [0, 1] and high values indicate a good quality of clustering. 

2.8.1.6 Z-score  

Z-score
 192

 is calculated by investigating the relation between a clustering obtained by an 

algorithm and the functional annotation of the genes in the cluster in terms of mutual 

information (MI). The z-score represents a standardized distance between the MI 

value obtained by clustering and those MI values obtained by random assignment of 

genes to clusters. Higher z-scores indicate that the clustering results are more 

significantly related to the gene function, indicating a more biologically relevant 

clustering result. 

2.8.2 Internal Validity Measures 

In cases where no “gold” standard is available, an evaluation based on internal 

validation measures becomes appropriate. Internal validation techniques do not use 

additional knowledge in the form of class labels, but base their quality estimate on the 

intrinsic information of the data. Specifically, they attempt to measure how well a 

given partitioning corresponds to the natural cluster structure of the data
 193

. Some of 

the popular validity measures are discussed next. 

2.8.2.1 Cluster Homogeneity 

Homogeneity
 194

 measures the quality of clusters on the basis of the definition of a 

cluster, i.e. objects within a cluster are similar while objects in different clusters are 

dissimilar. It is calculated as follows. 
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 Compute the average value of similarity between each gene gi and the centroid of 

the cluster    to which it has been assigned. 

       
 

    
                  

  

     

  (2.8) 

 where   
  is the centroid of   . 

 Calculate the average homogeneity for the clustering C weighted according to the 

size of the clusters as 

      
 

   
     

    

       (2.9) 

2.8.2.2 Connectivity 

Let        be defined as the j
th

 nearest neighbor of observation i, and let          
 be 

zero if i and        are in the same cluster and 1/j otherwise. Then, for a particular 

clustering partition C = {C1,...,CK} of N observations into K disjoint clusters, the 

connectivity is defined as 
193

 

                    

 
   

 
    (2.10) 

where L is a parameter that determines the number of neighbors that contribute to the 

connectivity measure. The connectivity has a value between zero and ∞ and should be 

minimized. 

2.8.2.3 Silhouette Index 

Silhouette index
 195

 is used to assess the quality of any clustering solution and reflects 

the compactness and separation of clusters. It is the average of each observation’s 

silhouette value. The silhouette value measures the degree of confidence in the 

clustering assignment of a particular observation, with well-clustered observations 

having values near 1 and poorly clustered observations having values near -1. For 

observation i, it is defined as
 195
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  (2.11) 

where    is the average distance between i and all other observations in the same 

cluster and    is the average distance between i and the observations in the “nearest 

neighboring cluster”. 

2.8.2.4 Davies-Bouldin Index 

Let    be a measure of dispersion of cluster    and               the dissimilarity 

between two clusters. The dispersion of a cluster Ci is defined as 

 

    
 

  
      

  
 

    

  (2.12) 

The Davies-Bouldin index
 196

 is defined as 

      
 

 
   

 

   

  (2.13) 

where                             and     is a similarity index between 

   and    satisfying the condition      
     

   
  

2.8.2.5 Dunn Index 

The Dunn Index
 197

 is defined as: 

 
                           

        

                  
    (2.14) 

where d(Ci,Cj) =             
       is the dissimilarity between two clusters    and 

  . 

Diameter of the cluster C is                        . 
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2.8.2.6 p-Value 

The reliability of the resulting clusters can be estimated by the p-value
 198

 of a cluster. 

It measures the probability of finding the number of genes involved in a given Gene 

Ontology (GO) term (i.e., function, process and component) within a cluster. From a 

given GO category, the probability p of getting k or more genes within a cluster of 

size n, is defined as: 

 
     

  
 
     

   
 

  
 
 

   

   

  (2.15) 

A cumulative hyper-geometric distribution is used to compute the p-value. A low p-

value indicates that the genes belonging to the enriched functional categories are 

biologically significant in the corresponding clusters.  

2.9 Protein-Protein Interaction (PPI) Data 

A Protein-Protein Interaction (PPI) network can be described as a complex system of 

proteins linked by interactions as shown in Figure 2.13(a). The computational 

analysis of PPI networks begins with the representation of the PPI network structure 

in the form of a mathematical graph consisting of nodes and edges
 199

.  

  
(a) (b) 

Figure 2.13: (a) A PPI network  (b) a protein complex 
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Proteins are represented as nodes in such a graph; two proteins that interact physically 

are represented as adjacent nodes connected by an edge. Based on this graphic 

representation, various computational approaches, such as data mining, machine 

learning, and statistical approaches, can be designed to reveal the organization of PPI 

networks at different levels. 

In PPI networks, clusters correspond to two types of modules: protein complexes and 

functional modules. Protein complexes are groups of proteins that interact with each 

other at the same time and place, forming a single multi-molecular machine. Figure 

2.13(b) shows an example of a protein complex
 200

. Functional modules consist of 

proteins that participate in a particular cellular process while binding to each other at a 

different time and place. The methods of data mining can be applied to identify 

various aspects of network organization
 201

. For example: (i) Proteins located at 

neighbouring positions in a graph are generally considered to share functions (“guilt 

by association”). On this basis, the functions of a protein may be predicted by 

examining the proteins with which it interacts and the protein complexes to which it 

belongs. (ii) Densely connected subgraphs in the network are likely to form protein 

complexes that function as single units in a particular biological process. (iii) 

Investigation of network topological features can shed light on the biological system. 

2.10 Analysis of PPI Data Using Data Mining 

Techniques 

In the “post-genome” era, proteomics
 202,203

 has become an essential field and drawn 

much attention. Proteomics is the systematic study of the many and diverse properties 

of proteins with the aim of providing detailed descriptions of the structure, function, 

and control of biological systems in health and diseases. 

A particular focus of the field of proteomics is the nature and role of interactions 

between proteins. Protein-protein interactions
 202,204,205,206,207,208

 play different roles in 

biology depending on the composition, affinity and lifetime of the association. It has 

been observed that proteins seldom act as single isolated species while performing 
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their functions in a living organism. The study of protein interactions is fundamental 

to understand how proteins function within a cell. 

Protein-protein interaction plays a key role in the cellular processes of an organism. 

An accurate and efficient identification of protein-protein interaction is fundamental 

for us to understand the physiology, cellular functions and complexity of an organism. 

The knowledge of protein-protein interaction can provide important information on 

the possible biological function of a protein. Much effort has been done to detect and 

analyze protein-protein interactions using experimental methods such as the yeast 

two-hybrid system which is well known. Recently, several algorithms have been 

developed to identify functional interactions between proteins using computational 

methods which can provide clues for the experimental methods and could simplify the 

task of protein interaction mapping. As the prediction task becomes harder the need 

for methods that can accommodate high levels of missing values and are directly 

interpretable by biologists increases. 

2.10.1 Properties of PPI networks 

The simplest representation of PPI networks takes the form of a mathematical graph 

consisting of nodes and edges (or links). Proteins are represented as nodes and an 

edge represents a pair of proteins which physically interact. The degree of a node is 

the number of other nodes with which it is connected. It is the most elementary 

characteristic of a node. It has been determined that most proteins participate in only a 

few interactions, while a few participate in dozens of overlapping interactions. Hu and 

Pan
 209

 observed that a protein-protein interaction network has three main properties 

called scale invariance, dis-assortivity and small-world effect. There has been much 

work that has been done to study these properties and to uncover new ones.  

2.10.2 PPI Network and Protein Complexes 

A Protein complex (or multi-protein complex) is a group of two or more interacting 

proteins. No protein is an island by itself or, rather, very few proteins are. Most 

proteins seem to function with complicated cellular pathways, interacting with other 

proteins either in pairs or as components of large complexes. So identification of 

protein complexes is crucial for understanding the principles of cellular organization 
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and functions. As the size of protein-protein interaction sets increase the general trend 

is to represent the interaction as a network and to develop effective algorithms to 

detect significant complexes in such networks. There have been various methods that 

have been proposed to detect protein complexes. 

Partitional clustering approaches can partition a network into multi separated sub-

networks. As a typical example, the Restricted Neighborhood Search Clustering 

(RNSC) algorithm
 210

 arrived at the best partition of a network by using a cost 

function. The method starts with randomly partitioning a network and iteratively 

moves a vertex from one cluster to another with an aim to decrease the total cost of 

the clusters. When some moves have been reached without decreasing the cost 

function, the algorithms stops. This method can obtain the best partition by running 

multiple number of times. However, it needs the number of clusters apriori and the 

results depend heavily on the quality of initial clustering. Moreover, it cannot detect 

overlapping protein complexes since it assigns each vertex to a specific cluster. 

Hierarchical clustering approaches build (agglomerative), or break up (divisive), a 

hierarchy of clusters. The traditional representation of this hierarchy is a tree called a 

dendrogram. Agglomerative algorithms are bottom-up algorithms that iteratively 

merge vertices, whereas divisive algorithms top-down algorithms that recursively 

divide a graph into two or more sub-graphs. For iteratively merging vertices, the 

similarity or distance between two vertices needs to be measured. The Super 

Paramagnetic Clustering (SPC) algorithm
 211

 is an example of iterative merging. For 

recursively dividing a graph, the vertices or edges to be removed are to be selected 

properly. Girvan and Newman
 212,213

 decomposed a network based on the graph 

theoretical concept of betweenness centrality. Hierarchical clustering approaches use 

a dendrogram to display the hierarchical organization of biological networks. As with 

most methods of predicting protein complexes from PPI data, hierarchical clustering 

approaches are also prone to false positives due to the noise present in PPI data
 214

. 

Density-based clustering approaches detect densely connected sub-graphs from a 

network. However, all methods of protein interaction predictions are known to yield a 

non-negligible rate of false positives and to miss a fraction of existing interactions. 

Thus, only mining fully connected sub-graphs is too restrictive to be used in real 
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biological networks. In general, sub-graphs are identified by using a density threshold. 

A variety of alternative density functions have been proposed to detect dense sub-

graphs
 215,216,217,218

. The Clique Percolation Method (CPM)
 219

 detects overlapping 

protein complexes as k-clique percolation clusters. A k-clique is a complete sub-graph 

of size k. The Cluster Periphery-tracking algorithm (DPClus)
 216

 detects protein 

complexes by first selecting the node with the highest weight (seed node) as the initial 

cluster and then iteratively augments this cluster by including vertices one by one, 

which are closely related with the current cluster. Clique Finder (CFinder)
 220

 takes a 

parameter k as input and detects all the k-cliques of the input network. A k-clique 

percolation cluster is then constructed by linking all the adjacent k-cliques as a bigger 

subgraph. It can detect overlapping clusters. Dense-neighbourhood Extraction using 

Connectivity And conFidence Features (DECAFF)
 221

 incorporates functional 

information to detect dense and reliable subgraphs as protein complexes. Two 

subgraphs having a large overlap are merged using a hub-removal algorithm. False 

protein complexes with low reliability are filtered out using a probabilistic model. 

COre-AttaCHment (COACH)
 222

 defines core vertices from the neighborhood graphs 

as the hearts of protein complexes. Then it includes attachments into these cores to 

form biologically meaningful structures. The COACH method is able to detect the 

overlapping cores.  

There are some other methods for protein complex detection. Jung et al.
 223

 proposed 

a protein complex prediction method based on simultaneous protein interaction 

networks. This concept is introduced to specify mutually exclusive interactions (MEI) 

as indicated from the overlapping interfaces and to exclude competition from MEIs 

that arise during the detection of protein complexes. Ozawa et al.
 224

 introduced a 

combinatorial approach for prediction of protein complexes focusing not only on 

determining member proteins in complexes but also on the PPI organization of the 

complexes. Cannataro et al.
 225

 proposed a new complex meta-predictor which is 

capable of predicting protein complexes by integrating the results of different 

predictors. It is based on a distributed architecture that wraps predictor as web/grid 

services that is built on top of the grid infrastructure. 

Every new method proposed for protein complex detection comes up with its own 

comparative analyses with some earlier methods. It has been noticed that due to the 
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differences in PPI and benchmark datasets, evaluation criteria, threshold settings and 

parameters used, the results of the comparative analyses and surveys
 226,227,228,229

 on 

complex detection vary. Also, the “gold standard” complex data have become more 

enriched, new methods have emerged
 230,217,200

 and new evaluation measures have 

been proposed. 

2.11 Discussion 

There are two groups of people who are involved in the clustering of biological data. 

One is the biologist who uses an existing clustering algorithm to solve an underlying 

biological problem. The challenge before the biologist is to make an appropriate 

choice of an algorithm since different algorithms will produce different results. The 

other is the developer of clustering algorithms, who consistently strives to improve 

existing algorithms, so that the underlying biological problems can be solved 

efficiently. A proper amalgamation of these two groups will lead to rapid 

advancement in this field. 

A clustering algorithm’s suitability to cluster biological data depends upon certain 

desirable features such as speed, minimum number of input parameters, robustness to 

noise and outliers, redundancy handling and independence of object order input. 

Though the features of many clustering algorithms match these requirements, they 

have not yet been applied to clustering biological data. Moreover, not all validity 

measures are suitable for all gene datasets; hence a judicious choice of the 

applicability of the validity measure has to be made. 

It is well known that most clustering methods are highly sensitive to input data and a 

slight variation or change in the data may result in very different gene clusters. If the 

information from genomic knowledge bases, such as GO, could be incorporated (data 

fusion) earlier in the analysis of genomic data, that additional information about genes 

and their relationship with each other will improve stability, accuracy and/or 

biological relevance of the cluster results. 
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Due to its ability to improve the results obtained from base classifiers and simple 

clustering algorithms, ensemble approaches have been very effective in combining 

independent, diversified models for the purpose of improving accuracy in prediction. 

The combination process integrates information from all partitions in the ensemble, so 

that possible errors of the individual algorithms could be compensated. That way the 

consensus obtained from a set of partitions of the same dataset may represent a better 

solution. 

In the subsequent chapters the ensemble approaches for clustering microarray data 

will be applied with an aim to improve the stability, accuracy and biological relevance 

of the clustering results. 


