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3 Classification of Microarray Cancer 

Data Using Ensemble Approach 

In this chapter a method referred to as SD-EnClass is presented, for combining 

classifiers from different classification families into an ensemble, based on a simple 

estimation of each classifier’s class performance. The experimental comparison of the 

base classifiers J48, NB, IBK and the ensemble method are performed on nine 

microarray cancer datasets. The results show that the proposed model improves 

classification accuracy as opposed to simply selecting the best classifier in the 

combination. A comparison of the performance of the ensemble model is also done as 

a comparison with Bagging, Boosting and Stack Generalization. In the second stage, a 

meta-ensemble is constructed by combining the results of the proposed method with 

the results of Boosting, Bagging and Stacking using the combining method proposed, 

to obtain results which are significantly better than using Boosting, Bagging or 

Stacking alone. 

3.1 Introduction 

Many methods have been proposed in microarray classification, including subspace 

clustering
 231,232

 and ensemble methods such as Bagging and Boosting
 42,76

, for 



Chapter 3 

 

71 

building classifiers from microarray gene expression data to be used for classifying 

unknown data. An ensemble of classifiers is a set of classifiers whose individual 

predictions are combined in some way to classify new examples, with an intention of 

improving classification accuracy over an average classifier. Since it is not known 

apriori which classifier is best for a particular classification problem, an ensemble 

reduces the risk of selecting a poorly performing classifier. 

In view of the significant improvement in the classification accuracy through 

combining classifiers, Breiman
 42

 introduced Bagging, which combines outputs from 

decision tree models generated from bootstrap samples (with replacement) of a 

training dataset. Models are combined by simple voting. Fruend and Schapire
 53

 

introduced Boosting, an iterative process of weighing more heavily the incorrectly 

classified cases by decision tree models, and then combining all the models generated 

during the process. Arcing
 54

 is a form of boosting that, like the original boosting, 

weighs incorrectly classified cases more heavily, but instead of the Fruend and 

Schapire’s
 53

 formula for weighing, weighted random samples are drawn from the 

training data. Wolpert
 47

 used regression to combine neural network models which 

was later known as Stacking. These are just a few of the well known algorithms 

currently described in the literature, and many more methods have been developed by 

researchers as well. A survey by Kiliç and Tan
 233

 provides an insight to algorithms 

that can handle binary classification problems.  

3.2 Background 

A classifier h is a function that maps a vector of attribute values x (also called 

example) to classes in C= {C1, C2,…., Cn}. An ensemble classifier consists of a set of 

classifiers H = {h1, h2, ……, hk} whose output is dependent on the outputs of the 

constituent classifiers
 234

.  

The performance of an ensemble mostly depends on the individual performance of the 

classifiers present in the ensemble. Two key requirements of the classifiers forming 

the ensemble are: 
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 diversity of classifiers in nature  

 accuracy in the classifier predictions  

Similar classifiers usually make similar errors, so forming an ensemble with similar 

classifiers would not improve the classification rate. Also, presence of a poorly 

performing classifier may cause performance deterioration in the overall performance. 

Similarly, presence of a classifier that performs much better than all of the other 

available base classifiers may cause degradation in the overall performance. Another 

important factor is the amount of correlation among the incorrect classifications made 

by each classifier. If the consistent classifiers tend to misclassify the same instances, 

then combining their results will have no benefit. In contrast, a greater amount of 

independence among the classifiers can result in errors by individual classifiers being 

overlooked when the results of the ensemble are combined. 

3.3 Construction of Ensembles 

The task of constructing an ensemble can be broken down into two subtasks: (i) 

selection of a diverse set of base level models or classifiers with consistently 

acceptable performance, and (ii) appropriate combination of their predictions with due 

weightage. Next, these two subtasks along with some other important factors are 

discussed. 

3.3.1 Classifier Selection 

In supervised classification, classifiers are trained to become experts in some local 

area of the total feature space. For each example (say x), a classifier is identified 

which is most likely to produce the correct classification label, as shown in Figure 

3.1. The output of the classifiers identified as the best for a given classification 

problem, is selected. Usually, the input sample space is partitioned into smaller areas 

and each classifier (say hi) learns the example in each area. It is similar to the divide 

and conquer approach. Here, multiple local experts may be nominated to make the 

decision. Finally, a subset of classifiers performing consistently well with high 

classification accuracy for several real-life datasets is selected as the base classifiers. 
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Figure 3.1: Classifier Selection 

3.3.2 Fusion 

Here, the outputs of many different classifiers are mixed instead of extracting a single 

best classifier. Each classifier in the ensemble has some knowledge of the entire 

feature space and tries to solve the same classification problem using different 

methods based on different training sets, classifiers or parameters. The final output is 

determined by fusing the decisions of the individual classifiers as shown in Figure 

3.2. The fusion can be at the data level as well as the decision level. All the classifiers 

in the ensemble are trained over the entire feature space. 

Figure 3.2: Fusion 

3.4 Existing Methods 

Several methods have been developed for the construction of ensembles. Some 

methods are general and they can be applied to any learning algorithm whereas others 

are specific to particular algorithms. Some of the basic approaches for the 

construction of ensembles are as follows. 
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3.4.1 Different Classifier Models 

For effectiveness, several types of learning algorithms from different backgrounds 

e.g., decision tree, neural network and nearest neighbour can be used. However, the 

same classifier can also be used with a slight change in the user-defined parameters, 

leading to significant variation in classification results.  

3.4.2 Different Feature Subsets 

Classifiers are built using different subsets of features of the training dataset. It works 

only when some redundancy in features is present on the training dataset. Both the 

deterministic and random approaches can be used for selecting different feature 

subsets of input data. In the deterministic approach a prior knowledge about the input 

data is required, whereas, the random approach uses random subspace method for 

selecting the different feature subsets. Here, each classifier is selected on a random 

space, and a feature in the subset is selected with a probabilistic approach. Random 

forests, which uses decision trees, is an example of this method. However, a common 

problem with this random method is that some subspaces lack information and as a 

result may not give good performance.  

3.4.3 Different Training Sets 

One learning algorithm is run on different random sub-samples of training data to 

produce different classifiers. It works well for unstable learners, i.e., output classifier 

undergoes major changes given only small changes in training data. Random sub-

samples of the training data can be generated using re-sampling and re-weighing. 

Bagging and wagging use re-sampling, while Boosting and Arcing uses re-weighing 

of the training dataset. 

3.4.4 Different Combination Schemes  

Different classifiers are trained on the training data and their outputs are combined 

using different combination schemes like majority voting, algebraic combiners, etc. to 

get the final output.  
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3.5 Ensemble Combination Methods 

An ensemble of classifiers can be trained simply on different subsets of the training 

data, different parameters of the classifiers, or even with different subsets of features 

as in random subspace models. The classifiers can then be combined using one of the 

combination methods as shown in Figure 3.3. 

Figure 3.3: Ensemble Combination Methods 

3.5.1 Weighting Methods 

When classifiers are combined by assigning weights to their classification, the weight 

determines the contribution made by the classifier to the final ensemble. Let us denote 

the decision of classifier ht on class cj as dt,j such that dt,j is 1 if ht selects cj and 0 

otherwise. The ensemble then chooses class J that receives the largest total vote. 

Majority Voting: In this approach each classifier has equal vote and the most popular 

classification is the one chosen by the ensemble as a whole
 235

. The most basic variant 

is the plurality vote, where the class with the most votes wins.  
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 J  = class selected 

 dt,j(x) = support given by the t
th 

classifier to the j
th 

class for the instance x. 

 T = total number of classifiers. 

In general, there are three versions of majority voting as shown below. 

a) One on which all classifiers agree (unanimous voting). 

b) Predicted by at least one more than half the number of classifiers (simple 

majority). 

c) One that receives the highest number of votes, whether or not the sum of those 

votes exceeds 50% (plurality voting or just majority voting). 

However, none of these versions is free from the common limitations of majority 

voting. 

Weighted Majority Voting: If one has evidence that certain experts are more qualified 

than others, weighing the decisions of those qualified experts more heavily may 

further improve the overall performance. Further, it is assumed that the classifiers are 

assigned weights according to their performances such that classifier ht is assigned 

weight wt. 

The total weights received by a class is the sum of the product of the weights the 

classifiers, wt and their respective decisions, dt,j. The class receiving the highest 

weighted vote is selected as the final decision of the ensemble. Thus, according to this 

assumption an ensemble will select class J if equation (3.2) holds
 71

: 

    

 

   
              

    

 

   
      (3.2) 

where: 

 wt  = weight of the t
th 

classifier. 

3.5.2 Combining Continuous Outputs 

Continuous output is interpreted as the degree of support given to a class by a 

classifier, usually accepted as the value of the posterior probability for that class
 235

. 

Algebraic combiners are used to merge the decisions of the classifiers in continuous 

output format, following the convention as given above and µj (x) = total support for 

the j
th 

class for instance x. 
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A. Sum Rule: The total support for a class is calculated as the sum of the supports 

given to that class by all the classifiers. After calculating the total supports for all the 

classes, the class with the highest support is selected as the final output. The sum rule 

has found to be useful in reducing noise in large sets of weak classifiers
 236,237

. 

            

 

   
     (3.3) 

B. Mean Rule: This rule is similar to the sum rule but the total support is normalized 

by 
 

 
 (T=number of classifiers) 

238
 

       
 

 
     

 

   
     (3.4) 

C. Weighted Sum Rule: By this rule, the support for a class is calculated by the sum 

of the product of the classifiers weight and their respective supports
 239

. 

              

 

   
     (3.5) 

D. Product Rule: Here, supports provided by the classifiers to a particular class are 

multiplied to obtain the final support for that class. This rule is very sensitive to the 

pessimistic classifiers as a low support can remove any chance of getting selected by 

that class
 240,241

. The rule assumes noise free and reliable confidence estimates. It fails 

if these estimates may be accidentally zero or very small. 

            

 

   

     (3.6) 

E. Maximum Rule: As the name suggests, this rule selects the maximum of all the 

supports of the different classifiers for a particular class. The maximum rule, 

however, fails for simple classifiers that are not sensitive to small differences that are 

detected by more complicated classifiers
 242

. 

             
            (3.7) 
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F. Minimum Rule: This rule selects the minimum of all the supports of the different 

classifiers for a particular class
 242

. 

             
            (3.8) 

G. Median Rule: This rule selects the median of the supports of the different 

classifiers for a particular class
 243

. 

                
            (3.9) 

H. Generalized Mean Rule: Many of the above rules are in fact special cases of the 

generalized mean rule, which is as follows
 71

 

          
 

 
     

 

   
     

 
 

 
 (3.10) 

From the above discussion it is apparent that only under very strict conditions a fixed 

rule is really the best combination. They will certainly be sub-optimal if the base 

classifiers generate unreliable confidences (e.g. caused by a small training set or by 

overtraining). But if the available set of objects is sufficiently large, then an improved 

result may be found by carefully training the combining classifier. 

The methods of combination are summarized in Table 3.1. 

3.6 Related Work 

In the past decade, researchers have devoted their efforts to the study of ensemble 

decision tree methods for microarray classification. Ensemble decision tree methods 

combine decision trees generated from multiple training datasets by re-sampling the 

training dataset. Bagging, Boosting and Stacking are some of the well-known 

ensemble methods in the machine learning field. How well an ensemble works is 

dependent on the performance of the individual classifiers present in the ensemble 

basket. In order to obtain an improvement the base classifiers need to be accurate 

(better than chance) and diverse from each other
 244

.  
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Table 3.1: Summary of rules of Combination Methods 

Approach Method Formula Effectiveness 

Class 

Label 

Combinati

on 

Majority 

Voting 
     

 

   
          

      

 

   
 

Gives average performance when 

majority does not give accurate 

prediction 

Weighted 

Majority 

Voting 
   

 

   
              

    

 

   
     

Performs well only if the weights 

of the classifiers are assigned 
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Continuou

s Output 

Combinati

on 

Sum Rule            

 

   
    

Gives average performance when 

majority does not give accurate 

prediction 

Weighted 

Sum Rule 
             

 

   
    

Performs well only if the weights 

of the classifiers are assigned 

precisely 

Mean Rule       
 

 
     

 

   
    

Performance is significantly 

affected by outliers 

Product 

Rule 
           

 

   

    Sensitive to low probability value 

Maximum 

Rule 
            

           Chooses the most optimistic value 

Minimum 

Rule 
            

           
Performance is significantly 

affected by outliers 

Median Rule                
           

Performance is significantly 

affected by outliers 

Generalized 

Rule          
 

 
     

 

   
     

 
 

 Affected by Outliers 

where: 
dt,j(x) = support given by the t

th 
classifier to the j

th
   

             class for the  instance x. 

    wt  = weight of the t
th 

classifier. 

      T = total number of classifiers. 

µj (x) = total support for the j
th 

class for instance x. 

Diversity is necessary because if a classifier makes a misclassification, there may be 

another classifier that may compensate for it by correctly classifying the misclassified 

sample. 

Many researchers have also made an objective comparison of ensemble methods to 

demonstrate their advantage using different parameters
 61

 on microarray data. 

Ge and Wong
 62

 made a comparison of a single classifier of decision trees with six 

ensemble methods, viz. random forests, stacked generalization, bagging, Adaboost, 

LogitBoost, and Multiboost using three different feature selection schemes. Statnikov 

et al.
 245

 compared random forests with SVM for microarray-based cancer 

classification across 22 datasets. Analysis of gene microarray data at the pathway 
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level
 246

 is also a very active research topic. Bertoni et al.
 247

 investigated the use of 

random subspace ensembles of SVMs. Re and Valentini
 248

 showed that simple 

ensemble methods can obtain results comparable with state-of-the-art data integration 

methods for gene function prediction.  

An ensemble framework based on the support vector machine that integrates diverse 

datasets in the context of the Gene Ontology hierarchy was developed by Guan et al.
 

249
 to confirm functions for a mitochondrial protein of Saccharomyces cerevisiae. 

Cesa-Bianchi et al.
 250

 experimentally showed that the key factors for the success of 

hierarchical ensemble methods are the integration among multilabel hierarchical, data 

fusion, and cost-sensitive approaches, as well as the strategy of selecting negative 

examples for the purpose of gene functional inference. 

3.7 Base Classifiers 

A main task of microarray classification is to build a classifier from historical 

microarray gene expression data, and then use the classifier to classify future coming 

data. Many methods have been used in Microarray classification, and typical methods 

are Support Vector Machines (SVMs)
 251,252

, k-nearest neighbour classifier
 253

, C4.5 

decision tree
 254,255

, rulebase classification method
 253

 and ensemble methods, such as 

bagging and boosting
 42,76

. 

The classifiers selected for our ensemble are J48 (decision tree), IBK (instance based 

learner) and Naive Bayes (probabilistic) and they have been selected as base 

classifiers based on the following grounds. 

 all these classifiers performed consistently well over several real-life UCI datasets 

 they are from three different classification algorithms families 

 they belong to three different states i.e., stable, unstable and probabilistic. 
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3.7.1 J48 

Decision tree J48 implements Quinlan’s C4.5 algorithm
 18

 for generating a pruned or 

unpruned C4.5 tree. Decision trees are built from a set of labelled training data using 

the concept of information entropy. Based on each attribute of the data, a decision can 

be arrived at by splitting the data into smaller subsets. 

J48 examines the normalized information gain (difference in entropy) that results 

from choosing an attribute for splitting the data. To arrive at a decision, the attribute 

with the highest normalized information gain is used. Then the algorithm recursively 

moves on to the smaller subsets and the splitting procedure stops if all instances in a 

subset belong to the same class. Next, a leaf node is created in the decision tree 

indicating the class. In case none of the features give any information gain, then J48 

creates a decision node higher up in the tree using the expected value of the class. 

J48 can handle both continuous and discrete attributes, training data with missing 

attribute values and attributes with differing costs. It also provides an option for 

pruning trees after creation. 

3.7.2 IBk 

Instance-based classifiers
 20

 such as the kNN classifier operate on the assumption that 

classification of unknown instances can be done by relating the unknown to the 

known according to some distance/similarity function. The probability of two 

instances far apart in the instance space (as defined by the appropriate distance 

function) belonging to the same class is less likely than two closely situated instances. 

The algorithm computes the k closest neighbours of an instance of an unknown class 

and the class is assigned by voting among those neighbours. To prevent ties, the value 

of k is taken as an odd number for binary classification. Plurality voting or majority 

voting is used for multiple classes but the latter can sometimes result in no class being 

assigned to an instance, while the former can result in classifications being made with 

very low support from the neighbourhood. Another option is to weight each 

neighbour by an inverse function of its distance to the instance being classified. 
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3.7.3 Naïve Bayes (NB) 

Naïve Bayes classifier
 21

 is a probabilistic classifier based on the Bayes theorem 

assuming a strong (Naïve) independence of attributes. The classifier is termed naive 

since it relies on two important simplifying assumptions, (i) the predictive attributes 

are conditionally independent given the class, and (ii) no hidden or latent attributes 

influence the prediction process. The method is designed for use in supervised 

classification tasks in which the performance goal is to accurately predict the class of 

the test instances in which the training instances include class information. Naïve 

Bayes classifiers take into consideration that all attributes (features) independently 

contribute to the probability of a certain decision. It analyses independently all the 

attributes of the data with equal importance and hence Naïve Bayes classifiers can be 

trained very efficiently in a supervised learning setting. 

3.8 Ensemble Methods 

The ensemble approach has become a leading technique in supervised or 

unsupervised analysis problems, due to its ability to improve the results obtained from 

base classifiers and simple clustering algorithms. It has been very effective in 

combining independent, diversified models for the purpose of improving accuracy in 

prediction. The combination process integrates information from all partitions in the 

ensemble, so that possible errors of the individual algorithms could be compensated. 

That way the consensus obtained from a set of partitions of the same dataset may 

represent a better solution. 

3.8.1 Bagging 

Bagging
 42

 is an ensemble method where the same learning algorithm is used for 

different training datasets to obtain different classifiers. The diversity amongst the 

training datasets is achieved by a bootstrap technique used to re-sample the training 

dataset. As shown in Figure 3.4, each classifier is then trained on a re-sample of 

instances, which then assigns a predicted class to this set of instances. The individual 

classifiers’ predictions (having equal weightage) are then combined by taking 

majority voting. 
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 Di :- Class Prediction by the i
th

 Classifier 

Figure 3.4: Block diagram of multiple classifier systems based on Bagging 

3.8.2 Boosting 

Boosting
 53

 uses a re-sampling technique different from Bagging. In this case a new 

training dataset is generated according to its sample distribution. The first classifier is 

constructed from the original dataset where every sample has an equal weight (Figure 

3.5). In the succeeding training dataset, the weight is reduced if the sample has been 

correctly classified otherwise it is increased if the samples are misclassified. In the 

committee decision, a weighted voting method is used so that a more accurate 

classifier is given greater weightage than a less accurate classifier. 

 

 Di : - Class Prediction by the ith Classifier 

Figure 3.5: Block diagram of multiple classifier systems based on Boosting 

3.8.3 Stacked Generalization 

Stacked generalization (or stacking) proposed by Wolpert
 47

, performs its task in two 

phases (Figure 3.6): (i) the layer-1 base classifiers are trained using bootstrapped 

samples of the level-0 training dataset and (ii) the outputs of layer-1 are then used to 
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train a layer-2 meta classifier. The purpose is to check whether the training data have 

been properly learned. For example, if a particular classifier incorrectly learned a 

certain region of the feature space, and hence consistently misclassifies instances 

coming from that region, then the Level-2 classifier may be able to learn this behavior, 

and along with the learned behaviors of other classifiers, it can correct such improper 

training. Polikar
 235

 proposed to use class probabilities rather than class labels as the 

output in the level-1 dataset, so as to improve the stacking performance. 

 

Figure 3.6: Multiple classifiers based on Stack Generalization 

A summary of the existing ensemble methods is summarized in Table 3.2 

Table 3.2: Summary of the Existing Ensemble Approaches 
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3.9 Motivation  

Based on the empirical study on these various combination methods and limited 

experimental study, it has been observed that:  

 most classifiers are application dependent and inconsistent in performance over 

majority of datasets 

 an ensemble method with an appropriate set of base classifiers are found to 

perform better than the individual classifiers 

 appropriate training samples can improve the performance of the classifiers 

significantly 

 performance of the majority of combination methods are affected by the presence 

of outliers 

 the sum rule or the weighted majority voting give good results 

 a significant improvement in classification accuracy becomes possible with a 

meta-ensemble i.e., ensemble of ensembles, if the base ensemble methods 

perform consistently well and the combination method is carefully selected 

Algorithms from different classification families can be used with appropriate 

combination method to form an effective ensemble.  

 To reduce error rates, it is a necessary condition to combine the relatively 

uncorrelated output predictions. With highly correlated output predictions, there is 

little scope for the reduction in error, as the committee of experts has no diversity 

to draw from.  

 A strong reason for combining models across different algorithm families can be 

stated as - different algorithms will provide uncorrelated output estimates because 

of their varied classification functions. 

 Abbott
 256

 showed considerable differences in classifier performance class by class 

- information that is clear, once classifier is obscure to another. Since it is difficult 

to know a priori which algorithm(s) will produce the lowest error for each domain 

(on unseen data), combining models across algorithm families mitigates that risk 

by including contributions from all the families.  
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The motivation is to devise a cost effective ensemble method, SD-EnClass, not 

influenced by the biasness of the base classifiers and which shows consistently 

improved detection rates compared to the base classifiers in the combination. Hence,  

 The selection of the base classifiers has been done based on the fact they are 

diverse in nature and have been established over the 2 class problem. 

 To eliminate the biasness of individual classifiers, the ensemble method is 

adopted so that the overall classification accuracy is improved and also the errors 

of one classifier are averaged out by the correct classification of another 

classifier. 

 Bagging and Boosting of each of the base classifiers is done so as to derive the 

maximum benefit in terms of classification accuracy. 

 The individual ensemble approaches are also not totally free from their 

limitations, so an approach of creating an ensemble of ensembles 257 is found to 

be suitable to maximise classification accuracy. 

3.10 Experimental Design Methodology 

Tenfold cross-validation is used in this experiment where the dataset is partitioned 

into ten sets of equal size. Nine of these sets are combined and used for training while 

the remaining one is used for testing. Then the process is repeated with nine different 

sets combined for training and so on until all the ten individual partitions have been 

used for testing. The final accuracy of an algorithm will be the average of the ten 

trials. The datasets were obtained from Kent Ridge Biological Dataset Repository
 258

. 

Table 3.3 shows the summary of the characteristics of the nine datasets. Since 

determining how much data is needed for training and testing is one of the key issues 

of data mining, we have worked around this issue by using varying proportions of 

training and test datasets to avoid over-fitting, but without compromising on accuracy. 

Therefore, the proportion of the training data was consistently kept below 60% in the 

experiments conducted.  

The performances tabulated in Table 3.5 are an average of the experiments using 

tenfold cross-validation with varying proportions of training and test datasets. 
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Table 3.3: Basic information of the datasets used 

Dataset 
Training 

Instances 

Test 

Instances 

Total 

Instances 

No of 

Attributes 

Leukemia 38 34 72 7129 

Colon 32 30 62 2000 

CNS 33 27 60 7129 

Ovarian 144 109 253 15154 

Prostate  75 61 136 12601 

PCO 21 15 36 12601 

Lung Cancer 105 76 181 12533 

Breast Cancer 51 46 97 24481 

Lymphoma 50 46 96 4026 

3.11 Software Used For Comparison 

All the algorithms were executed in WEKA (Weka 3.6.2) package which is available 

online (http://www.cs.waikato.ac.nz/ml/weka/) with their default parameter settings in 

a high-end workstation with 3.33 GHz Intel Xeon processor and 8 GB RAM and the 

proposed model was implemented in the same environment using Java (jdk1.6). 

Default settings are used for all compared ensemble methods as they showed a high 

accuracy on an average. 

3.12 The Proposed SD-EnClass 

The model for combining classifiers into an ensemble is based on a simple estimation 

of each classifier’s expertise (accuracy) on class prediction. This technique is a simple 

combining method which can use any ‘n’ stronger learners as base classifiers to build 

an effective ensemble. Predictions of the ‘n’ classifiers are combined to obtain the 

best prediction for a given test instance. In the experimental setup, decision trees, 

Bayesian classifier and k-nearest neighbour learners are selected as the base learners 

based on their consistent performance over real-life datasets such as UCI, as 

mentioned in Section 3.6. 

The model utilizes the expertise of a classifier in classifying a part of the problem 

better than the other classifiers in the ensemble. It explores the necessary property of 

the diversity among the base classifiers to have a good performing ensemble. It is 
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known that different classifiers handle the problem of classification at hand 

differently. So an attempt has been made to combine the results of such diverse 

classifiers to obtain a better classification result than using a single classifier alone. 

The architecture of the proposed model is shown in the Figure 3.7. It is a two-layer 

model, where each layer is dedicated with a definite functionality. The output of the 

Layer-1 is used as input by the Layer-2. Layer-1 deals with the training and selection 

of the base classifiers, while Layer-2 deals with the combination of the predictions of 

the selected base classifiers. 

 

Figure 3.7: Architecture of the Proposed SD-EnClass 

3.12.1 Distinct Training Sample Selection 

The proposed SD-EnClass uses a 2-step technique, referred as SD-Prune-Redundant, 

to select a distinct subset of training samples by discarding the redundant training 

instances. This forms the input to the tenfold cross-validation. Since the performance 

of classifiers is dependent on its training, so effort is made to create a training set 

which is complete in nature i.e, the training set should hold instances that would 

represent the entire domain space. Steps of SD-Prune-Redundant are given in Figure 

3.8. 

S1. Convert training dataset DTrain into market-basket form DMB using Algorithm 1; 

S2. Filter DMB using Algorithm 2 to remove duplicate training instances.  

 

 

PERFORMANCE STORAGE 

PROPOSED SD-Enclass 

FINAL PREDICTIONS 

LAYER 2 

INPUT TEST INSTANCES 

BC1 BC2 BC3 BCk LAYER 1 
Training 

Sample ••• 



Chapter 3 

 

89 

ALGORITHM 1:MB-Representation Algorithm 

Input: Training Dataset DTrain  

Output: Market-Basket representation of DTrain  i.e., DMB
 
 

Step-1: Read the raw training dataset , say DTrain 

Step-2: For each attribute ai of DTrain 

Step-3: Compute no. of intervals, say α, for ai adaptively on the distribution of data 

Step-4: Assign α no of bits for ai towards market-basket representation of DTrain  

Step-5: Next i  

Step-6: End 

(a) 

ALGORITHM 2:Find-Distinct 

Input: DMB 

Output: DMB 
`
 

Step-1: Read DMB; 

Step-2: For each pair of instances from DMB 

Step-3: Compute similarity Sij by counting number of agreements, i.e. no of positions 

attribute values of i
th

 and j
th

 instances match 

Step-4: if Sij = N i.e. the total number of dimensions of DMB then select mean of these 

two instances 

Step-6: Next pair  

Step-7: End 

(b) 

Figure 3.8: (a) Market Basket Conversion (b) Distinct training instance selection 

3.12.2 Working of the SD-Enclass 

Since determining how much data is needed for training and testing is one of the key 

issues of data mining, a way to worked around this issue is by using varying 

proportions of training and test datasets so as to avoid over-fitting, without 

compromising on accuracy. For this purpose, tenfold cross-validation is used in this 

experiment. In tenfold cross-validation, a data set is equally divided into 10 folds 
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(partitions) with the same distribution. In each test 9 folds of data are used for training 

and one fold is for testing (unseen data set). The test procedure is repeated 10 times. 

The final accuracy of an algorithm is the average of the 10 trials.  

Initially, the base classifiers are trained with the distinct training dataset. Next, the 

performance of the base classifiers using the test dataset is evaluated. The classifier 

with the highest class performance for a certain class out of the base classifiers 

becomes the expert of that class. The class-specific performance of a classifier is 

calculated as: 

Class specific accuracy = (Total no of correctly predicted instances for a class) / 

(total no of predicted instances of that class). 

To evaluate the class performance of a classifier, a confusion matrix as shown in 

Table 3.4 is used. The elements in this table characterize the classification behaviour 

of a given classifier. The sum of the row elements represent the number of total 

instances present in each class, whereas the sum of the column elements gives the 

total number of instances predicted as that class. 

Table 3.4: Confusion Matrix 

Classes Predicted A Predicted B Predicted C 
Class-wise no of 

Instances 
Actual A x y z x+p+l (for A) 
Actual B p q r y+q+m (for B) 
Actual C l m n z+r+n (for C) 

No of Predicted 
Class Instances 

x+y+z 
(for A) 

p+q+r 
(for B) 

l+m+n 
(for C)  

As shown in Table 3.4 the total number of instances present for class A is (x+p+l), and 

the total number of instances predicted for class A is (x+y+z). Here, the number of 

classes in the table is taken to be three, for more number of classes the rows and 

columns will increase respectively. 

Example 3.1: Let, the total number of predicted instances for class A be 100, and total 

number of correctly predicted instances for class A is 90, then the (CSA) for class A 

for that classifier is 90/100 i.e., 0.9.  
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The class specific accuracy (CSA) for each base classifier is computed for each class 

and the accuracy values are stored using a 2-D link list structure. For the experimental 

setup the number of base classifiers is chosen to be three (n=3). In the link list 

structure, the nodes in the rows correspond to the number of base classifiers in the 

ensemble and the column nodes correspond to the number of classes in the dataset. 

From this data structure, the class expert for a given class is easily found. During 

classification of an instance, the instance is first classified by the base classifiers and 

the individual predictions of the base classifiers are combined as follows: 

S1. For a given instance, if all the classifiers predict the same class then the ensemble 

goes by the same decision. 

S2. If the predictions of majority classifiers (2 out of 3) match, then any of the 

following situations may arise: 

[a] C3 is an expert in the class it predicts, whereas C1 and C2 are not, then the 

prediction given by C3 is taken as the decision of the ensemble. 

[b] C3 is an expert in the class it predicts and anyone of the classifiers, C1 and 

C2, is also an expert in its predictions then the ensemble looks for the class 

probabilities of the respective classifiers and selects the one with the highest 

value.  If a further tie exists between the probability values then the ensemble 

goes with the majority. 

S3. If the predictions of all the classifiers disagree then any of the following situations 

may arise: 

[a] One of the classifiers could be an expert in its prediction then the ensemble 

goes by that classifier’s decision. 

[b] Two classifiers could be experts in its class predictions. In such a case, the 

decision of the classifier which has a higher class probability is taken as the 

final decision. 
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[c] All the three classifiers could be experts in its class predictions. In that case, 

the decision of the classifier which has the highest class probability is taken 

as the final decision. 

In this manner, the class predictions of the base classifiers are combined to get the 

final prediction. 

3.12.3 Performance Analysis of the Proposed Model 

Table 3.5: Performance Analysis of the Proposed Model 

Datasets J48 NB IBK SD_EnClass 

Leukemia 91.18 88.24 73.53 92.45 

Colon 98.39 66.13 91.94 94.40 

CNS 90.00 75.00 83.33 90.15 

Ovarian 98.91 94.07 98.42 98.89 

Prostate 26.47 26.47 52.94 52.94 

PCO 85.71 42.85 90.48 90.48 

Lung Cancer 81.88 95.30 97.97 81.88 

Breast Cancer 73.68 36.84 68.42 73.49 

Lymphoma 91.67 88.54 91.67 93.22 

In this phase the performance of the proposed model is tested. Our model directly 

uses the outputs of the base classifiers and also improves the quality of the training 

data. This is done by discarding redundant training instances and retaining only a 

distinct subset of training samples. The outputs of J48, IBK and Naïve Bayes 

classifiers are combined with the combination rule that has proposed earlier and the 

results are depicted in Table 3.5. 

It is observed that the proposed model has been successful in increasing the prediction 

accuracy in 3 out of 9 datasets while in 2 datasets it has been at par with the best 

performing classifier. This has been mainly due to the improvement in the quality of 

the training data achieved by our algorithm. Thus in 5 i.e. (3+2) datasets the proposed 

model has shown a good performance while in 4 datasets the performance has 

decreased. Nonetheless, the proposed model has been successful in more than 55% of 

the cases. 

The graph in Figure 3.9 shows the performance of the proposed ensemble. 
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Figure 3.9: Performance Analysis of the Proposed Model 

Next, the three basic ensemble approaches i.e. Bagging, Boosting and Stacking is 

applied to each of the base classifiers and their performance is analyzed. For Stack 

Generalization, the three classifiers are used as the base learners and these three base 

learners are used as Meta learners one by one and their performances are compared. It 

was noticed that Bagging, Boosting and Stacking improved the performance of J48 

and NB, while Stacking with IBK slightly improved the performance of IBK at the 

expense of computation time. This is because Bagging and Boosting mainly improves 

the performances of unstable learners; IBk being a stable learner its performance was 

not affected much.  

While comparing the proposed model with the existing ensembles it was seen from 

Table 3.6 that the proposed model has not been able to outperform the existing 

ensembles in most of the cases. The prediction accuracy is slightly less than the best 

performing ensemble. 

Table 3.6: Performance Analysis of the Proposed Ensemble with Existing Ensembles 

Datasets 
Baggin

g J48 

Baggin

g NB 

Baggin

g IBK 

Boostin

g J48 

Boostin

g NB 

Boostin

g IBK 

Stackin

g J48 

Stackin

g NB 

Stackin

g IBK 

SD_En 

Class 

Leukemia 94.12 88.23 73.53 91.18 88.24 73.53 91.18 91.18 91.18 92.45 

Colon 95.16 66.13 90.32 98.39 87.10 91.94 98.39 93.59 93.59 94.40 

CNS 81.67 81.67 83.33 90.00 75.00 83.33 58.33 10.00 51.67 90.15 

Ovarian 98.02 92.89 98.81 98.81 100.00 98.42 98.81 98.81 98.81 98.89 

Prostate  26.47 26.47 38.24 26.47 26.47 52.94 26.47 26.47 52.94 52.94 

PCO 90.48 66.67 85.71 85.71 42.86 90.48 61.90 14.29 66.67 90.48 

Lung Cancer 91.28 96.64 97.32 81.88 95.30 97.99 97.99 97.99 96.64 81.88 
Breast 

Cancer 
78.95 36.84 68.42 68.42 36.84 68.42 68.42 68.42 68.42 73.49 

Lymphoma 92.71 83.33 88.54 95.83 88.54 91.67 86.46 25.00 94.79 93.22 
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Figure 3.10 gives a visual comparison of the proposed model with the existing 

ensembles. 

 

Figure 3.10: Performance Analysis of the Proposed Model with Existing Ensembles 

Notably, the new model is able to have the highest accuracy in 1 dataset, in 2 datasets 

it is at par with the best existing ensemble and in 3 datasets it has been the second best 

performer. To sum up, it cannot be concluded that the proposed model has been the 

best performer but it has shown an average performance. To improve the prediction 

accuracy further, the Meta-ensemble is thus proposed. 

3.13 Meta-Ensemble 

From the results of the previous section it is clear that combining the outputs of 

different classifiers improves classification accuracy than the best single classifier in 

the combination, but it doesn’t perform as well as boosting. The advantage of 

boosting acts directly to reduce the error cases, whereas combining works indirectly. 

As the proposed model works well to get the best output from the combination, so this 

method is used to combine the results of the ensemble with the results of boosting, 

stacking and bagging and form a Meta-Ensemble, the architecture is shown in Figure 

3.11. 
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Figure 3.11: Architecture of the Meta-ensemble 

The new Meta-Ensemble is a four-layer model where each layer has a definite 

functionality and the output of the lower layers is used by the higher layers. More 

summarized results are presented while traversing towards the higher layers. 

In layer-1, any n classifier models are generated. Here n could be any integer, for this 

case n is set to 3.  Layer-1 could be further improved by training a larger number of 

classifier models and selecting a small set of good performing classifier models out of 

them. That would definitely increase the overall accuracy of the proposed model.   

Layer-2 is the ensemble layer where the individual outputs of the consistent base 

classifiers are combined as described in Section 3.12.2. The output of the ensemble is 

stored in a file which is then fed in layer-4. 

Layer-3 creates a pool of classifier ensembles. Popular methods such as Bagging, 

Boosting and Stack generalization (Stacking) are implemented with the classifier 

models which are selected in layer-1 and their performances recorded. Stacking is 

implemented with the three classifiers as base learners and taking one of them at a 

time as a meta-learner. Two best performing ensembles are selected for layer-4 along 

with the proposed ensemble model. 
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Layer-4 finally combines the output of layer-2 and layer-4 i.e., the ensemble model 

and the two best performing ensembles from layer-3 to give the final prediction. 

Table 3.7: Performance Analysis of the Meta-ensemble 

Datasets 
Baggi

ng J48 

Baggi

ng NB 

Baggi

ng 

IBK 

Boosti

ng J48 

Boostin

g NB 

Boosti

ng 

IBK 

Stacki

ng J48 

Stacki

ng NB 

Stacki

ng 

IBK 

SD_E

n 

Class 

Meta 

Ensem

ble 

Leukemia 94.12 88.23 73.53 91.18 88.24 73.53 91.18 91.18 91.18 92.45 94.12 

Colon 95.16 66.13 90.32 98.39 87.10 91.94 98.39 93.59 93.59 94.40 99.21 

CNS 81.67 81.67 83.33 90.00 75.00 83.33 58.33 10.00 51.67 90.15 90.19 

Ovarian 98.02 92.89 98.81 98.81 100.00 98.42 98.81 98.81 98.81 98.89 99.95 

Prostate  26.47 26.47 38.24 26.47 26.47 52.94 26.47 26.47 52.94 52.94 52.94 

PCO 90.48 66.67 85.71 85.71 42.86 90.48 61.90 14.29 66.67 90.48 90.48 

Lung Cancer 91.28 96.64 97.32 81.88 95.30 97.99 97.99 97.99 96.64 81.88 97.99 
Breast 

Cancer 
78.95 36.84 68.42 68.42 36.84 68.42 68.42 68.42 68.42 73.49 79.87 

Lymphoma 92.71 83.33 88.54 95.83 88.54 91.67 86.46 25.00 94.79 93.22 96.13 

A comparative analysis of the Meta-Ensemble with the existing ensembles is 

presented in the Table 3.7. For each of the datasets, Boosting, Bagging and Stacking 

performed differently. The outputs of the two best performing methods out of 

boosting, bagging and stacking for each of the classifiers are combined with the result 

given by the proposed model.   

The results in Table 3.7 show that out of the 9 datasets the method works well for 8 of 

them, while performing average in one of the datasets. Out of the 8 datasets it 

performed well, it improved classification accuracy in 4 of them significantly while in 

rest 4 it performed as well as the best classifier in the combination.  

 

Figure 3.12: Performance Analysis of the Meta-ensemble 
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Thereby the results suggest that given a set of classifiers, the proposed model 

combines the prediction of the classifiers to obtain a better prediction result, which in 

most of the cases is better than selecting the best classifier in the combination of 

classifiers. This is visually depicted in Figure 3.12. 

3.14 Statistical Significance of Classifiers 

To show that the improvements made in classification of the microarray cancer data 

by meta-ensemble are statistically significant, a paired t-test is conducted. The paired 

t-test is used since a measure is needed between the before and after comparisons of 

classification accuracy using ensemble classifiers and by using Meta-Ensemble. 

Hence a paired t-test of the Meta-Ensemble with the rest of the ensemble classifiers 

used for classification in the experiment conducted is carried out.  

Table 3.8 shows the results of the paired t-test. It is noticed that the t-test values are 

positive, indicating an improvement in the classification of the cancer data using the 

Meta-Ensemble. Moreover the low p-values suggest that there is strong evidence of a 

mean increase in the classification accuracy between using Meta-Ensemble classifier 

and the bagging, boosting and stacking versions of the classifiers J48, NB and IBK. 

This is an indication that the classification of cancer data using Meta-Ensemble 

provides better results. 

The mean difference (observed difference between the classifiers) is an indicator of 

the mean increase in the classification accuracy. Here it is noticed that the smallest 

mean difference is between Meta-Ensemble and SD-EnClass (3.65) which indicates 

that Meta-Ensemble classification shows an improvement over SD-EnClass. This 

improvement in classification accuracy is even more pronounced when we compare 

with the mean differences obtained with the other classifiers. The next closest mean 

difference is between Meta-Ensemble and Bagging J48 (5.78), followed by Meta-

Ensemble and Boosting IBK (5.79). The worst case scenario is between Meta-

Ensemble and Stacking NB (30.57), since Stacking NB could not achieve good 

prediction results for CNS and Prostate Cancer (PCO) datasets.  
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Table 3.8: Paired t-test results 

Paired Classifier paired t-test df p-value 
95% confidence 

Interval 

Mean 

difference 

Meta-

Ensemble 

Bagging J48 2.0908 8 0.034972 0.692194 5.782 

Bagging NB 3.7951 8 0.002637 9.180846 18.001 

Bagging IBK 4.0007 8 0.001973 4.558686 8.578 

Boosting J48 2.3433 8 0.023534 1.472499 7.132 

Boosting NB 3.0681 8 0.007696 7.026124 17.837 

Boosting IBK 2.5398 8 0.017366 1.552306 5.796 

Stacking J48 2.897 8 0.009992 4.493482 12.548 

Stacking NB 2.626 8 0.151871 8.922482 30.574 

Stacking IBK 2.1698 8 0.030923 1.368973 9.574 

SD-EnClass 2.1211 8 0.033364 0.451814 3.664 

The results of the paired t-test are shown in Error! Reference source not found. and 

Mean difference (observed difference between the classifiers) is plotted in Error! 

Reference source not found. below.  

 

Figure 3.13: Paired t-test comparison of the Classifiers 

We notice that the p-value and mean difference for Stacking NB is comparatively 

much higher than the rest of the ensemble classifiers.  
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Figure 3.14: Classification accuracy of the classifiers as compared to Meta-Ensemble 

This may be due to the fact that Stacking NB could not achieve good prediction 

values (10 and 14.29 respectively), for CNS and Prostate Cancer (PCO) datasets as 

reported in Table 3.7, when compared to its competitors. 

3.15 Discussion 

In this chapter the performances of popular ensemble methods like Bagging, Boosting 

and Stack Generalization are analyzed. It has been found that on an average, Boosting 

and Stack Generalization using unstable learners (decision trees) and probabilistic 

classifiers (Naïve Bayes) works better than applying them to stable learners (nearest 

neighbour classifiers). It has also been learnt that Bagging of classifiers performs 

better than Boosting and Stack generalization for most of the cancer datasets used in 

the experiments.  

An effective way of combining the outputs of the classifiers in the ensemble has been 

proposed, based on the class performance of each of the classifiers in the combination 

and experimental results show that the ensemble performs better than the best single 

classifier in the combination in majority of the cases. The model has been mostly 

tested on the two class datasets for which it performed well; it has also tested on one 

multi-class dataset for which it gave good performance and in future the combination 

rules can be extended so that the ensemble model works even better for multi-class 

problem. 

While combining models across the different algorithm families, an improvement of 

the performance in the classification accuracy was seen as compared to the best single 

model in the combination, but when compared to Bagging, its performance was 

average. So in the next stage the results of the proposed ensemble was combined with 

the results of the best performing ensemble methods for the datasets, using the 

proposed combining method and obtained results which were significantly better than 

using Boosting, Bagging or Stacking alone.  
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In the next chapter, the combination method developed is used for the purpose of 

combining the output of several clustering algorithms with an objective to improve 

the accuracy of the clustering results of cancer datasets. 

 


