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4 Cluster Analysis of Cancer Data 

Using Similarity Measures 

A number of supervised and unsupervised algorithms are available in statistics and 

machine learning literature for clustering microarray data but the algorithms are 

restricted in their ability to evaluate the results of a clustering algorithm in the light of 

biologically meaningful clusters. If two gene sequences are similar, then it is expected 

that their genetic expressions are similar and that they are similarly annotated in the 

Gene Ontology (GO) databases. Hence a comparison of the expression level similarity 

of two gene sequences against their corresponding similarity of annotation in the GO 

can establish this fact. Semantic similarity has now become a valuable tool for 

validating the results drawn from biomedical studies such as gene clustering and gene 

expression data analysis. The work in this chapter borrows from the previous work on 

meta-ensembles using cancer datasets where the output of several clustering 

algorithms are subsequently fed to a consensus building process in order to generate a 

stable set of cluster results. Next, these cluster results are further refined through a 

sequence of biological validation process for each gene pair of a given cluster using 

semantic similarity and sequence similarity. The approach has been tested on several 

benchmark cancer datasets in an attempt to provide a more accurate biological 

analysis of the clusters and the results have been found to be satisfactory. 
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4.1 Introduction 

Bioinformatics resources hold a lot of information generally in the form of sequences. 

The annotation of the sequences is done to express its understanding, usually in the 

form of a natural language that is understandable by humans but may not be 

accessible computationally. Therefore, ontologies are used to express this natural 

language annotation in a form that is computationally accessible as well as 

understandable by humans. Gene Ontology (GO)
 259

 is one of the most important 

ontologies within the bioinformatics community that provides annotation for GO 

terms.  

Clustering gene expression data is a powerful tool in bioinformatics to reveal 

biologically relevant information. It has been used for the purpose of grouping genes 

or proteins having similar expression patterns, leading to the possibility of sharing 

common biological pathways
 260,261,262,263,264

. Out of the many clustering methods, 

deciding which clustering method to use and also to determine the number of clusters 

that are most appropriate for the data can be a daunting task. Taking a single 

algorithm with one parameter setting and expecting the results to indicate the proper 

structure of the data will seldom provide the correct analysis. It is also the observation 

that a supervised or an unsupervised approach alone generally cannot provide 

accurate analysis of gene expression microarray data whereas the hybrid approach 

tries to combine the benefits of both supervised and unsupervised learning to improve 

accuracy. Ensemble methods, which combine the output of several algorithms, are 

able to improve the robustness and stability of the analysis, but the need of the hour is 

the correct interpretation of data.  

Ideally, the resulting clusters should not only have good statistical properties 

(compact, well-separated, connected and stable), but also should give results that are 

biologically relevant. Hence, it is advisable to have runs of multiple approaches of 

clustering algorithms and only then a comparison of the partitions can result in 

reliable conclusions drawn from the cluster analysis. 
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The application of semantic similarity concepts to the Gene Ontology
 265,266,267

 has 

fuelled prospects that a well defined annotation of GO terms will bear a close 

relationship to the functional similarity of the terms that are represented. In other 

words, it is reasonable to state that gene sequences with similar expression patterns 

are likely to be similarly annotated within the ontology
 268

. 

4.2 Related Work 

For this task, eight clustering algorithms have been considered, which are 

representative of the partitioning, hierarchical and model-based approaches and their 

main features are summarized below. 

4.2.1 Partitioning Approach 

The algorithms considered under partitioning approach are 

K-means
 269

: It is a simple and fast centroid-based clustering algorithm where the data is 

initially partitioned into k pre-defined number of clusters. K-means provides baseline 

results that are used to compare with when new clustering algorithms are developed. 

To detect the optimal number of clusters, the algorithm is run repeatedly with 

different values of k. This algorithm is not suitable to detect clusters of arbitrary shapes. 

PAM (Partitioning Around Mediods)
 23

: PAM is a k-medoid method where the 

medoid is a representative object for each cluster and is selected by using dissimilarity 

values and an iterative optimization approach. In this algorithm, every non-selected 

object is grouped with its nearest medoid. The average dissimilarity between an object 

and the medoid of its cluster determines the quality of the partition. 

CLARA (Clustering LARge Applications)
 23

: CLARA is also a k-medoid method 

following the same principle as PAM. This algorithm finds the medoid from a sample 

of the dataset instead of the entire dataset and then applies PAM to this sample. The 

remaining objects are then classified using partitioning principles. 
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4.2.2 Hierarchical Approach 

This approach generates a hierarchical series of nested clusters which are represented 

by a tree-structure called a dendrogram. The desired number of clusters can be 

obtained by cutting the dendrogram at an appropriate level. The algorithms under this 

approach used are 

Hierarchical
 23

: The hierarchical algorithm selected for this experiment is AGNES 

(AGglomerative NESting) which is an agglomerative clustering algorithm. The 

algorithms proceeds by placing each object initially in its own cluster and then the 

clusters are successively joined together in order of their proximity. The proximity of 

any two clusters is determined by a dissimilarity matrix and it can be based on a 

variety of agglomeration methods such as single linkage, complete linkage and 

average linkage. 

DIANA (DIvisive ANAlysis)
 23

: DIANA is a divisive hierarchical algorithm where 

the observations are initially placed in a single cluster. The clusters are then partitioned 

successively until each cluster contains a single observation. The highest average 

dissimilarity among all the observations acts as a point of division. 

SOTA (Self-Organizing Tree Algorithm)
 270

: SOTA is an unsupervised network with a 

divisive hierarchical binary tree structure. It uses a fast algorithm and is suitable for 

clustering large number of objects. The algorithm was originally proposed for 

phylogenetic reconstruction and later it has been successfully applied to cluster 

microarray gene expression data
 271

. 

4.2.3 Model-Based Approach 

The following two algorithms under the model-based approach are considered. 

SOM (Self-Organizing Map)
 31

: SOM is a popular among computational biologists 

since it is non-susceptible to noisy data. It is based on neural networks and is capable 

of generating intuitive cluster patterns of high-dimensional datasets. The algorithm 

takes as its inputs the initial number of clusters and the grid structure of the neuron 

map. 
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Model-based Clustering
 272

: This is an approach used when an object may exhibit 

membership in more than one cluster. It attempts to find the optimum alignment 

between the given data and a statistical model consisting of a finite mixture of 

Gaussian distributions. The group membership of an object is estimated using the 

maximum likelihood algorithm. 

4.3 Validation 

Validation is an essential step to be carried out for the purpose of evaluation of the 

clustering results.  

4.3.1 External Validation 

External validation incorporates prior knowledge of solutions to the problem being 

addressed to evaluate the effectiveness of a model. Semantic similarity, which is a 

comparison of biological entities in terms of similarity in the meaning of their 

annotations, and sequence similarity are described next. 

4.3.1.1 Semantic Similarity 

The grouping of genes or proteins depending on their differential expression profiles 

is the most common method used to interpret microarray data. This method is derived 

from the understanding that genes expressed in an organized manner are likely to be 

involved in the same biological processes or may have a similar function
 262

. In other 

words, if two gene sequences are similar, it is expected that their genetic expressions 

are similar, and that they are similarly annotated in the GO
 268

. Therefore, it is 

reasonable to assume that gene sequences with similar expression patterns might have 

similarly annotated profiles, i.e., that the expression correlation might relate to the 

semantic similarity
 267,268,273

. 

Evidences have also shown that the GO can reflect the functional similarity of gene 

sequences by the closeness of the terms that they represent
 267,274,275,273

. In order to 

establish how two GO terms relate to one another, the concept of semantic similarity 

as implemented in GO (involving several approaches) can be exploited. Semantic 
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similarity is used as a measure in natural language processing and has been extended 

to measure the degree of similarity between the terms in the GO structure
 274

. This 

measure can also be directly converted to a measurement of the similarity between 

two nucleotides/proteins. 

Comparison of GO Terms  

Two main types of approaches for comparing terms in a graph-structured ontology 

such as GO have been proposed: edge-based, which use the edges and their types as 

the data source; and node-based, in which the nodes and their properties are the main 

data sources. A third approach adopts the hybrid approach involving edge-based and 

node-based approaches for calculating the semantic similarity. The approaches and 

the measures proposed are discussed next. 

Edge-Based: This approach counts the number of edges in the graph path between 

two terms
 276

. The distance between two terms is taken to be either the shortest path or 

the average of all paths and then converted into a similarity measure. The similarity 

measure is based on the common path technique that calculates the length of the path 

from the lowest common ancestor of the two terms to the root node
 277

.  

Pekar and Staab
 278

 proposed a measure which is based on the length of the longest 

path between two terms’ lowest common ancestor and the maximum common 

ancestor depth (root), and on the length of the longest path between each of the terms 

and that common ancestor. This measure was first applied to GO by Yu et al.
 279

. 

Cheng et al.
 280

 proposed a weighted maximum common ancestor depth measure to 

reflect depth of the terms. A non-weighted maximum common ancestor depth 

measure was proposed by Wu et al.
 281

 and then an adjustment of this measure was 

proposed by Wu et al.
 282

 who introduced a term specificity involving the distance to 

the nearest leaf node and the distance to the lowest common ancestor. 

Node-based: The node-based approach uses the Information Content (IC) of a GO 

term to compare the properties of the terms involved, along with their ancestors and 

descendants. The IC is determined by the terms’ frequency of occurrence in 

annotations, i.e. a rarely used term will contain a greater amount of information
 283

. 
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Another approach adopted in node-based is the Most Informative Common Ancestor 

(MICA) approach that considers only the common ancestor with the highest IC
 284

. 

The Disjoint Common Ancestors (DCA) approach considers all disjoint common 

ancestors, i.e. the common ancestors that do not subsume any other common 

ancestors
 285

.  

Lord et al.
 265

 introduced several node-based related semantic similarity metrics for 

use with GO, originally developed for WordNet, that are based on the MICA of two 

GO terms, whereas a measure proposed by Resnik
 284

 measures similarity between 

two terms as the IC of their MICA. Lin
 286

 presented an information-theoretic 

definition of similarity based on a probabilistic model. Jiang and Conrath
 287

 proposed 

a measure involving a mixed approach of edge-based method and information content 

calculation of node-based method along with other factors such as local density, node 

depth and link type, whereas Schlicker’s semantic similarity
 275

 is a combination of 

Resnik’s and Lin’s similarity measure. 

Hybrid: Wang et al.
 288

 developed a hybrid measure in which the semantic similarity 

between two GO terms A and B is calculated by summing the semantic values of all 

common ancestors to each of the terms and then dividing by the total semantic 

contribution of each term’s ancestors to that term. Othman et al.
 289

 proposed a hybrid 

distance measure in which each edge is weighted by node depth, node link density 

and the difference in IC between the nodes linked by that edge. 

Software Used For Deriving Semantic Similarity Measures 

There have been quite a few software tools available for calculating the semantic 

similarity of terms in ontology such as GOSemSim
 290

, seGOsa
 291

, DOSim
 292

 and 

many others. Even though DOSim provides support for different semantic measures, 

the measuring of the similarity between human genes is done in terms of diseases. 

Hence for the purpose it is preferred to use GOSemSim developed by Yu et al., for 

calculating semantic similarity between GO terms. This tool was developed as a 

package for the statistical computing environment   within the Bioconductor project. 

GOSemSim depends on a number of packages provided by Bioconductor, such as 

package GO.db to obtain GO terms and relationships and package org.Hs.eg.db to 
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obtain annotations of gene sequences for human. The main advantage of these 

Bioconductor implementations is the possibility of integration between the semantic 

similarity and other packages. Moreover, GOSemSim also provides support for Lin
 

286
, Jiang and Conrath

 287
 and Wang

 288
, the semantic similarity measures selected by 

us for the experiments. 

Some of the semantic similarity measures that have been developed for use with GO 

are shown in Table 4.1 along with their formula and the software in which they are 

available. 

Table 4.1: Summary of few Semantic Similarity Measures 

Measure Formula 
Software Package 

GOSemSim seGOsa DOSim 

Resnik 284                                       

Lin 286                
                  

                    
    

Jiang and 

Conrath 287 

               

   
                
                                  

   

Schlicker et 

al. 275 

                   

  
                  

                    
     

              

 ×  

Wang et al. 288 

            

  
                   

       
           

   
 

 ×  

Here: 

      and    are GO terms 

      represents probability of term   
     is the minimum subsumer 

       is the semantic value of GO term t related to term A 

       is the semantic value of GO term t related to term B 

Critique for Selecting Lin, Jiang and Conrath, and Wang Semantic Measures 

 Edge-based methods are based on the assumption that all edges represent uniform 

distances
 293

 and all nodes in the taxonomy are evenly distributed having similar 

densities. These assumptions are found not to be true in real taxonomies
 265

 since 

some GO branches may be very deep, some terms may have many children terms 

and some edges may cover a large conceptual distance as compared to others.  
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 Node-based methods apply concepts borrowed from information science
 267

. The 

information content of a GO term is determined by its frequency of occurrence in 

the annotations. The lower the probability, the more information a node contains 

and in a hierarchical taxonomy such as the GO, probabilities increase as one goes 

higher within the taxonomy. It has been shown by
 284

 that node-based measures 

provide better results than their edge-based counterparts as they are not affected 

by factors such as irregular link density, varying conceptual distance and uneven 

distribution of nodes. Hence node-based methods are given preference over edge-

based methods while calculating semantic similarities.  

 A drawback of the Resnik measure is that it does not differentiate between two 

terms if their subsumer is the same and it loses a part of the information 

contained in the structure of the taxonomy by only concentrating on the 

information content of a term
 268

. By contrast, Lin measure and Jiang and Conrath 

measure take the information content of the two terms as well as the minimum 

subsumer into consideration.  

 Moreover, Wang et al. evaluated measures proposed by Resnick, Lin and Jiang 

and Conrath, and tested these measures against gene co-expression data using 

linear correlation
 288

. They pointed out that the distance of a term from the closest 

common ancestor may not accurately represent the semantic difference between 

two GO terms, since two terms nearer to the root of the ontology and sharing the 

same parent should have larger semantic difference than those far away from the 

root and having the same parent. 

 For the purpose of calculating the semantic similarity measures of the gene-pairs, 

the semantic measures proposed by Lin, Jiang and Conrath, and Wang have been 

selected for conducting the experiments. 

 The semantic measures selected are available as Bioconductor components, 

distributed as R packages, which facilitate the analysis of genomic data by 

associating it with biological metadata provided by GenBank, Entrez genes and 

PubMed databases. 
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4.3.1.2 Sequence Similarity 

A sequence similarity search compares a query sequence to a larger database of 

sequences to find alignments between the query and database that reflect similarities 

between the two. A sequence alignment provides a measure of relatedness between 

nucleotide or amino acid sequences. Since all known species, whether yeast, mice, or 

humans appear to be related to each other, a sequence similarity search may uncover 

an unknown gene of one species having the same functionality as a gene belonging to 

a different species. A high sequence similarity score usually implies significant 

functional or structural similarity between the DNA, RNA or amino acid sequences. 

Sequence similarity analysis involves several factors such as how to score individual 

matches across sequences, whether to perform global or local searches, type of 

algorithm to use and evaluation of the results to determine the statistical significance 

of an alignment score, i.e., is this alignment better than could be expected between 

any two random sequences.  

Scoring Model: Sequence alignment is the procedure of comparing two (pair-wise 

alignment) or more (multiple-alignment) sequences by searching for a series of 

individual characters or character patterns that are present in the same order in both 

the sequences. Portions of a sequence may be related even though mutations or 

changes may have occurred between the sequences in one of two ways. The first type 

of change is called a substitution, where a base of one type is substituted by another 

type and is evaluated using substitution matrices. The second type of change is based 

on gap, where an insertion or deletion of a base is made to the original sequence to 

improve the alignment between sequences but the gap should be kept to a minimum 

number. Gap penalty scores are negative and depend upon on the length of the gap. 

Alignment algorithms: Alignment algorithms are used to determine the optimal 

alignment of a pair of sequences based on a particular scoring mechanism. Sequence 

alignment determines the correspondences between substrings in the sequences such 

that the similarity score is maximized. Fundamentally, two different alignment 

problems exist. Global Alignment finds the best alignment from start to end of both 

sequences (with provision for gaps). Local Alignment is used to find sub-sequences of 
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a sequence that have the best alignment. The Needleman-Wunsch algorithm
 294

 is a 

dynamic algorithm that can be used to analyze global alignments. The Smith-

Waterman algorithm
 295

 modifies the Needleman-Wunsch algorithm to allow it to 

search for local alignment sub-sequences within a larger sequence and have been 

often found to work better for sequence similarity searches. Although these dynamic 

algorithms are guaranteed to find optimal alignment matches, they are 

computationally expensive, especially for large datasets. Heuristic algorithms such as 

BLAST
 296

 have been developed to reduce the computational burden on evaluations. It 

will find most of the results and in less time but will miss a small fraction of the 

results generally found by an optimal approach. 

4.3.2 Internal Validation 

For internal validation, selection of validity indices should be done based on the 

suitability for the particular data conformations at hand
 297

. A brief summary of the 

validity measures is presented in Table 4.2. 

Table 4.2: Summary of Measures used for Internal Validation 

Measure Features Formula 

Connectivity 

193 

 connectivity indicates the 

degree of connectedness of 

the clusters 

 it has a value between zero 

and ∞ and should be 

minimized 

                   

 

   

 

   

 

where: 

 partition C = {C1,...,CK} of N observations 

into K disjoint clusters 

        is the j
th

 nearest neighbor of 

observation i, 

 L is the number of neighbors that contribute 

to the connectivity measure 

Dunn index 197 

 it is the ratio of the smallest 

distance between 

observations, not in the same 

cluster, to the largest intra-

cluster distance 

 The Dunn index has a value 

between zero and ∞ and 

should be maximized 

        

 
                

              
          

        
        

 

where: 

          is the maximum distance 

between observations in cluster   . 

Silhouette 

width 195 

 it is the average of each 

observation’s silhouette 

value that measures the 

degree of confidence in the 

clustering of an observation. 

 range of values vary from 1 

to -1 

   
      

           
 

where: 

    is the average distance between i and all 

other observations in the same cluster 

    is the average distance between i and the 

observations in the “nearest neighboring 

cluster” 
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One of the measures used is connectivity that indicates the extent to which 

observations are placed in the same cluster as their nearest neighbors in the data space
 

193
. The Dunn index

 197
 and silhouette width

 195
 measures are used for the purpose of 

determining the how compact is a cluster and also how much separation exists 

between the clusters, which is obtained by measuring the distance between the cluster 

centroids. The cluster homogeneity, indicating compactness, is arrived at by 

inspecting the intra-cluster variance. The details of each measure are discussed in 

Section 2.7.  

Table 4.3: Summary of Stability Measures 

Measure Features Formula 

APN:  
Average 

proportion 

of non-

overlap 298 

 measures the average proportion 

of observations not placed in the 

same cluster under both the 

cases 

 has a value between 0 and 1 with 

values close to zero indicating 

highly consistent clustering 

results 

       
 

  
     

            

       
 

 

   

 

   

 

      represent the cluster containing observation 

i using the original clustering 

 and      represent the cluster containing 

observation i where the clustering is based on 

the dataset with column l removed 

AD: 

Average 

Distance 298 

 measures the average distance 

between observations placed in 

the same cluster under both 

cases  

 has a value between zero and ∞, 

and smaller values are preferred 

     

 
 

  
  

 

              
           

             

 

 

   

 

   

 

      represent the cluster containing observation 

i using the original clustering 

 and      represent the cluster containing 

observation i where the clustering is based on 

the dataset with column l removed 

      is Euclidean 

ADM: 

Average 

distance 

between 

means 298 

 measures the average distance 

between cluster centers for 

observations placed in the same 

cluster under both cases 

 has a value between zero and ∞, 

and smaller values are preferred 

       
 

  
      

 

   

 

   

                

        is the mean of the observations in the 

cluster which contain observation i using the 

original clustering 

        is the mean of the observations in the 

cluster which contain observation i where 

clustering is based on the dataset with column l 

removed 

      is Euclidean 

FOM: 

Figure of 

merit 185 

 measures the average intra-

cluster variance of the 

observations in the deleted 

column where the clustering is 

based on the remaining columns 

 has a value between zero and ∞, 

and smaller values are preferred 

          
 

 
                   

       

 

   

  

      is the value of the i
th

 observation in the l
th

 

column 

        
 is the average of cluster       

      is Euclidean 
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4.3.3 Stability Measures 

The stability measures are a special version of internal measures which include the 

average proportion of non-overlap (APN)
 298

, the average distance (AD)
 298

, the 

average distance between means (ADM)
 298

, and the figure of merit (FOM)
 185

. They 

evaluate the stability of the clustering result of the entire dataset by comparing it with 

the clusters obtained by removing one column at a time
 298,185

. These measures are 

ideally suited for highly correlated data. The stability measures are summarized in the 

Table 4.3 given below. 

4.3.4 Biological Measures 

Biological validation evaluates the ability of a clustering algorithm to produce 

biologically meaningful clusters from microarray data. Two measures available for 

these purposes are the biological homogeneity index (BHI)
 299

 and biological stability 

index (BSI)
 299

, the summary of which is given in Table 4.4. The BHI measures the 

average proportion of gene pairs that are clustered together having matching 

biological functional classes. The BSI measure inspects the consistency of clustering 

for genes with similar biological functionality. By removing one sample at a time, the 

cluster membership for genes with similar functional annotation is compared with the 

cluster membership using all the samples. 

Table 4.4: Summary of Biological Measures 

Measure Features Formula 

BHI: Biological 

Homogeneity 

Index 299 

 measures the average 

proportion of gene pairs 

that are clustered 

together having 

matching biological 

functional classes  

 has a value between 0 and 

1 with values close to 1 

are preferred 

    
 

 
 

 

        
  

      

 

   

            

 x, y are genes that belong to the same statistical 

cluster D 

 C(x) is a functional class containing gene x 

 C(y) is a functional class containing gene y 

 k is the number of statistical clusters 

 nj = n(Dj ∩ C) is the number of annotated genes 

in cluster Dj 

BSI: Biological 

Stability Index 299 

 inspects the consistency 

of clustering for genes 

with similar biological 

functionality  

 has a value between zero 

and 1, with larger values 

corresponding to more 

stable clusters 

   

 
 

 
 

 

               
  

            

       
      

 

   

 

   

 

 F is the total number of functional classes 

      is the statistical cluster containing 

observation x based on all the data 

      is the statistical cluster containing 

observation y when column j is removed 
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4.4 Motivation 

To improve the accuracy of cancer data classification, the method can contribute 

significantly. The existing clustering based unsupervised methods usually suffer from 

significantly high false alarms. Also, the groups of genes identified by most of the 

methods are often found to be biologically irrelevant, one of the reasons being the 

choice of a suitable proximity measure.  

Our method borrows from the previous work on ensemble of classifiers
 300

. The 

approach makes use of several base clustering algorithms to generate individual 

cluster results followed by building an appropriate consensus based on their 

individual responses. If a pair of genes is identified by a majority of the algorithms as 

belonging to same cluster based on their expression similarity, and if they are also 

found to be similar semantically, then they are considered as belonging to the same 

cluster. These cluster results are then further refined through a sequence of biological 

validation process for each gene pair of a given cluster. 

Analysis of the clusters of genes on the basis of the expression profiles is not without 

its share of problems arising from noise, missing values and also inaccurate 

estimation of the data and should not be dependent only on the expression data but 

rather, should incorporate some prior knowledge of the data. Lord
 274

 found that the 

semantic similarity calculated from annotations correlates well with the sequence 

similarity and hence, the role of semantic similarity and sequence similarity becomes 

very important in cancer data classification.  

After generating the clusters, external validation in the form of semantic and sequence 

similarities is performed on several benchmark datasets using GOSemSim
 290

 package 

of the Bioconductor project
 301

, Clustal W
 302

 and statistical computing environment R 

software package. The cluster results are validated from compactness point of view, 

followed by two biological validation measures, biological homogeneity index (BHI)
 

299
 and biological stability index (BSI)

 299
, to evaluate the capability of a clustering 

algorithm in generating biologically meaningful clusters.  
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4.5 Methodology 

The primary purpose of the work in this chapter is to improve upon the analysis of the 

results that were obtained from a previous work done on cancer datasets involving 

supervised ensemble methods
 300

. Analysis of cancer datasets
 3

 demands high accuracy 

and hence it is essential to validate the results of clustering with the help of external 

and internal validation.  

The similarity of two genes is obtained by computing the correlation between their 

expression data and the external validation is performed with the help of semantic and 

sequence similarity measures. Significant quantitative relationship between GO-based 

gene similarity and expression correlation of pairs of genes were detected. It is further 

observed that the semantic similarity calculated from GO correlates well with 

sequence similarity
 265

. The internal validity measures assess the quality of a given 

clustering, based solely on the data themselves and is carried out by visual inspection 

of stability and consistency of the results. To carry out internal validation, the internal 

measures such as connectivity
 193

, Dunn index
 197

 and silhouette width
 195

 and stability 

measure (a special case of internal measures) are used. Finally, biological measures 

which are incorporated as biological homogeneity index (BHI)
 299

 and biological 

stability index (BSI)
 299

 are employed to evaluate the stability and consistency of a 

clustering algorithm’s ability to produce biologically meaningful clusters. 

A conceptual framework used to establish a biological validity of clusters in terms of 

external and internal validity measures is shown in Figure 4.1. Individual cluster 

results are generated by several clustering algorithms, which are subsequently fed to a 

consensus building process in order to generate a stable set of cluster results. The 

consensus building process determines a unanimous decision based on the responses 

(cluster results) generated by a set of base clustering algorithms, identified after an 

exhaustive experimentation with a large number of benchmark datasets. The 

individual responses (i.e., cluster results) are then combined using a weighted 

majority voting mechanism, where the weight of a classifier is decided based upon its 

previous performance. After the consensus has been built, a gene pair (gi, gj) is picked 

up from the modified cluster results C′i. Though a pair of genes in a cluster obtained 
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from the clustering algorithms may be correlated based on expression similarity, they 

may not be so semantically. The semantic similarity for each gene pair (gi, gj) is 

computed using the GOSemSim
 290

 package and as a filtering process, only those 

genes that show a correspondence to other genes semantically are retained.  

Figure 4.1: Biological validity of clusters in terms of External and Internal validity measures 

Thereafter, the cluster results are then further refined through a sequence of biological 

validation process for each gene pair of a given cluster. Moreover, the final result is 

dependent on both expression similarity (used during clustering) and semantic 

similarity. A gene pair (gi, gj) having a high gene similarity and high semantic 

similarity is an indication that the gene sequences might have similarly annotated 

profiles which can be confirmed if the pair wise sequence score is also high. 

Correlation values for each gene pair 

correspond to the subsequent scores due 

to Biological analysis or internal validity 

gi 

gj 

Correlation 

Analysis 

(gi, gj) 

Biological 

Analysis of 

Clusters Ci  

(gi, gj) 

Correlation between 

 semantic similarity and gene 

expression 

 semantic and sequence Similarity 

 

Acceptable Internal Validity measures 

Low APN and ADM and high AD values 

High BHI values and moderate to high BSI 

values 

 

Biologically valid clusters 

 

Compute semantic similarity and select only 

those genes that correspond to each other 

semantically 

gi gj 

Gene Expression Data 

C1 C2 C3 Cn Clustering Algorithms Cn-

1 

Consensus Building 

gi, gj ϵ C' 
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4.6 Dataset Description 

The experiments were performed on the cancer datasets. The first dataset on which 

the computations were performed is the gene expression data of the breast cancer 

microarray study from van’t Veer et al.
 304

 known as VEER1. The second and third 

datasets are the Lymphoma and the embryonal tumour of the Central Nervous System 

(CNS) dataset, both from Kent Ridge Biological Dataset Repository
 258

. The datasets 

are summarised in Table 4.5. 

Table 4.5: Cancer datasets used for the experiments 

Dataset No. of Genes No. of Samples Source 

Breast Cancer 4948 78 VEER1 from van’t Veer et al. 304  

Lymphoma 4026 96 Kent Ridge Biological Dataset Repository 258 

CNS 7129 60 Kent Ridge Biological Dataset Repository 258 

Quantile normalization is used to remove systematic variation followed by minimum 

p-value criterion to select genes above a certain threshold value. 

4.7 Results 

The experiments were carried out on three datasets, namely on (a) Breast Cancer 

dataset, (b) Lymphoma dataset and (c) Embryonal Tumours of the Central Nervous 

System (CNS) dataset. Only the results of the experiments involving semantic 

similarity, sequence similarity, internal measures, stability measures and biological 

measures for the breast cancer dataset is shown in this chapter. The results of all the 

three datasets used in the experiment are given in the Appendix of this thesis. 

4.7.1 Results of External Validation 

Next, the results of the external validation are discussed. 

4.7.1.1 The Pair-Wise Gene Expression Similarity Matrix 

As has been pointed out
 268

, if two gene sequences are similar, then their genetic 

expressions are similar and they should be similarly annotated in the GO. To confirm 
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this observation, the pair-wise gene expression similarity needs to be calculated which 

is done using Pearson Correlation
 305

 for Breast Cancer dataset, Lymphoma dataset 

and Embryonal Tumours of the Central Nervous System (CNS) dataset. These 

expression values will be used subsequently for comparison with the semantic 

similarity values for the corresponding pair of genes in Section 4.7.1.3. 

4.7.1.2 The Pair-Wise Semantic Similarity Matrix 

It has been shown by Lord
 274

 that sequence similarity is more tightly correlated with 

molecular function aspect of GO, followed by cellular component and then biological 

process. Since the semantic similarity will be compared with sequence similarity, the 

pair-wise semantic similarity matrix for the Lin, Jiang and Conrath and Wang 

measures are calculated for the Breast Cancer dataset using the molecular function 

aspect of GO. The observation has been that the semantic similarity values appear to 

be correlated for each gene-pair, the reason being that gene sequences with similar 

genomic expression may also be functionally related
 306,307,308

. In all the cases, the 

average method for calculation of semantic similarity
 273

 was incorporated. 

4.7.1.3 Comparison of Pair-Wise Gene Expression Similarity And Semantic 

Similarity 

A well defined ontology indicates the functional similarity of the terms being 

represented. In this section the gene expressions of two genes are compared with their 

corresponding similarity of their annotation in the GO since it is expected that 

functions that are close in the ontology are expected to be related
 268

. Hence it can be 

assumed the expression correlation may relate to the semantic similarity
 267,268,273

. 

This assumption appears to hold true when the similarity and semantic values are 

compared for the breast cancer dataset from the graphs for the plot of the values for 

the genes (Entrez ID 6232, 5547, 6917 and 8349, to name a few). It is noticed that the 

gene correlation and the semantic similarities Lin, Jiang and Conrath and Wang 

exhibit a similar graphical trend as shown in Figure 4.2 and the underlying 

relationship between gene correlation and semantic similarity becomes apparent. 
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(a) (b) 

  

(c) (d) 

Figure 4.2: Comparison of Gene Expression Similarity and Semantic Similarity for Lin, 

Jiang and Conrath and Wang measures for the Breast Cancer dataset 

4.7.1.4 Pair-Wise Sequence Similarity Matrix 

The extent of similarity between the nucleotide/protein sequences of two genes gives 

the sequence similarity between them. The sequence similarity can be obtained by 

using an online tool called ClustalW
 302,309

 that is used to compute the multiple 

sequence alignment of genes using their nucleotide or protein sequences. The 

nucleotide sequences of the genes are given as input to ClustalW in FASTA file 

format. Keeping other parameters like the gap penalty, weight matrix, clustering, etc. 

to the default values, the progressive multiple sequence alignment of genes is 

computed pair-wise. 

4.7.1.5 Comparison of Pair-Wise Gene Expression Similarity, Semantic 

Similarity and Sequence Similarity 

To validate that the semantic similarity measures used for the calculation were 

producing appropriate results, they were compared to sequence similarity, since it is 

expected that highly similar sequences should be highly semantically similar. This 

expectation stems from the fact that sequence similarity is supposed to be strongly 

correlated with semantic similarity based on the molecular function aspect of GO
 274

. 

From a biological point of view, the correlation should exist since the sequence of a 

nucleotide or protein determines its molecular function but does not necessarily relate 

to the biological process that it is involved in. Figure 4.3 presents the pair-wise 

summary of some of the genes indicating gene expression similarity, semantic 

similarity for Lin, Jiang and Conrath and Wang measures and sequence similarity 
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scores obtained from ClustalW and R Package for the breast cancer dataset. The 

scores calculated by R Package for paired sequence alignment match those obtained 

from ClustalW. From the graph it can be clearly observed that the pair-wise score for 

a gene pair shows similar level of scores for semantic and sequence measures 

indicating correlation between the measures as expected. This common trend is 

extended to gene expression similarity, semantic similarity and sequence similarity, 

indicating correlation among them. 

  

(a) (b) 

  

(c) (d) 

Figure 4.3: Comparison of Gene Expression Similarity, Semantic Similarity and Sequence 

Similarity for Lin, Jiang and Conrath and Wang measures for the Breast Cancer dataset 

4.7.2 Results of Internal Validation 

The internal validity measures obtained for connectivity, Dunn index and silhouette 

width for the Breast Cancer dataset, using the eight clustering algorithms mentioned 

earlier, are shown in Table 4.6. 

It is expected that the connectivity should be minimized, while both the Dunn index 

and the silhouette width should be maximized and this is depicted in the optimal 

scores in Table 4.6. It is also noticed from the above readings that hierarchical 

clustering with two clusters performs the best in the case of connectivity and 

silhouette width and with four clusters in case of Dunn index. 
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Table 4.6: Scores of Internal Validation Measures for the Breast Cancer dataset 

Clustering 

Algorithm 

Validation 

Measures 

Number of Clusters 

2 3 4 5 6 

hierarchical Connectivity 2.929 5.8579 8.7869 11.7159 14.6448 

 

Dunn 0.7 0.6464 0.779 0.6109 0.6561 

 

Silhouette 0.3772 0.3482 0.33 0.2283 0.2021 

kmeans Connectivity 5.8579 16.2127 16.546 30.0127 39.7175 

 

Dunn 0.6464 0.4386 0.4902 0.3318 0.3538 

 

Silhouette 0.374 0.2763 0.253 0.1119 0.1019 

diana Connectivity 5.8579 5.8579 8.7869 19.7528 19.9194 

 

Dunn 0.6464 0.6464 0.779 0.5083 0.5083 

 

Silhouette 0.374 0.3482 0.33 0.1891 0.1882 

som Connectivity 2.929 17.225 42.019 48.2409 59.0298 

 

Dunn 0.7 0.3534 0.3388 0.2798 0.3083 

 

Silhouette 0.3772 0.1222 0.0854 0.0121 -0.0197 

pam Connectivity 28.4897 30.6187 33.381 35.3571 37.2361 

 

Dunn 0.2716 0.2905 0.2995 0.36 0.3837 

 

Silhouette 0.0902 0.0781 0.0852 0.0706 0.0559 

sota Connectivity 26.4512 35.2464 37.7075 38.2075 41.1448 

 

Dunn 0.3005 0.2998 0.3341 0.3341 0.3341 

 

Silhouette 0.0919 0.0873 0.0828 -0.0106 -0.0429 

clara Connectivity 28.4897 30.6187 33.381 35.3571 37.2361 

 

Dunn 0.2716 0.2905 0.2995 0.36 0.3837 

 

Silhouette 0.0902 0.0781 0.0852 0.0706 0.0559 

model Connectivity 34.3698 16.2127 16.546 25.0968 25.7079 

 

Dunn 0.3518 0.4386 0.4902 0.4902 0.5422 

 

Silhouette 0.1651 0.2763 0.253 0.1901 0.1787 

       Optimal Scores: 

     

 
Score Method Clusters 

   Connectivity        2.929 hierarchical 2 

   Dunn 0.779 hierarchical 4 

   Silhouette 0.3772 hierarchical 2 

   

The plots of the connectivity, Dunn index, and silhouette width are given in Figure 

4.4 and it appears that hierarchical clustering outperforms the other clustering 

algorithms under each validation measure, for nearly every number of clusters 

evaluated, whereas model-based clustering does not perform well on any of the 

measures. Regardless of the clustering algorithm, the optimal number of clusters 

seems to be two when utilizing the connectivity and silhouette width. For the Dunn 

index the best choice for the number of clusters appears to be four. 
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Figure 4.4: The plots of the connectivity, Dunn index, and silhouette width for the Breast 

Cancer dataset 

4.7.3 Results of Stability Measures  

The results of APN, AD, ADM and FOM for the Breast Cancer dataset are given in 

Table 4.7. 

For the APN and ADM measures, values close to zero are preferred. The optimal 

scores in Table 4.7 shows that hierarchical clustering with four clusters gives the best 

score, as was also in the case of internal validation. However, for the other two 

measures model based clustering with six clusters has the best score.  
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Table 4.7: Scores of Stability Measures for the Breast Cancer dataset 

Clustering 

Algorithm 

Validation 

Measures 

Number of Clusters 

2 3 4 5 6 

hierarchical APN 0.0022 0.0095 0 0.0007 0.0029 

 

AD 2.9282 2.7599 2.5345 2.3969 2.2656 

 

ADM 0.0142 0.0721 0 0.0039 0.0131 

 

FOM 0.2535 0.2455 0.2276 0.2245 0.2188 

kmeans APN 0.0062 0.0189 0.0196 0.0188 0.0614 

 

AD 2.8815 2.7049 2.5194 2.3658 2.2546 

 

ADM 0.0195 0.1349 0.0772 0.0606 0.2108 

 

FOM 0.2453 0.2406 0.2297 0.2229 0.2206 

diana APN 0.014 0.0102 0.002 0.0155 0.0074 

 

AD 2.9087 2.7618 2.5364 2.3801 2.2426 

 

ADM 0.0821 0.0772 0.0066 0.0882 0.0459 

 

FOM 0.2468 0.2464 0.2286 0.2235 0.2182 

som APN 0.1159 0.1977 0.2954 0.3578 0.3588 

 

AD 3.0412 3.0197 2.7384 2.6827 2.5544 

 

ADM 0.4747 0.7853 0.764 0.9293 0.9193 

 

FOM 0.248 0.2458 0.2392 0.231 0.2326 

pam APN 0.02 0.0161 0.0204 0.0526 0.1105 

 

AD 2.9623 2.75 2.5661 2.3923 2.3213 

 

ADM 0.1316 0.0512 0.0639 0.1034 0.2211 

 

FOM 0.2572 0.2432 0.2323 0.2228 0.2243 

sota APN 0.1951 0.2074 0.2061 0.1932 0.193 

 

AD 3.0026 2.9005 2.8139 2.667 2.5647 

 

ADM 0.4622 0.5552 0.6112 0.6088 0.6153 

 

FOM 0.257 0.2532 0.2473 0.2388 0.2329 

clara APN 0.02 0.0192 0.0204 0.035 0.072 

 

AD 2.9623 2.7511 2.5661 2.3873 2.297 

 

ADM 0.1316 0.057 0.0639 0.0753 0.1456 

 

FOM 0.2572 0.2435 0.2323 0.2222 0.2227 

model APN 0.0217 0.0085 0.0226 0.0744 0.0776 

 

AD 2.9038 2.6755 2.5151 2.395 2.2251 

 

ADM 0.0925 0.0363 0.0606 0.2165 0.1665 

 

FOM 0.2515 0.2364 0.2301 0.2224 0.2114 

       Optimal Scores: 

     

 

Score Method Clusters 

   APN 0 hierarchical 4 

   AD 2.2251 model 6 

   ADM 0 hierarchical 4 

   FOM 0.2114 model 6 
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Figure 4.5: The plots of the APN, AD and ADM of stability measures for the Breast Cancer 

dataset 

It is illustrative to graphically visualize each of the validation measures. The plots of 

the APN, AD, and ADM are given in Figure 4.5. The APN measure shows an 

interesting trend, in that it initially stabilizes from two to four clusters for all the 

clustering methods except for SOM and SOTA, but marginally increases afterwards. 

Though hierarchical clustering with four clusters has the best score, Diana with six 

clusters is a close second. The AD and FOM measures tend to decrease as the number 

of clusters increases. Here model based clustering with six clusters has the best 

overall score, though the other algorithms have similar scores. The plot of the FOM 

measure is very similar to the AD measure, so it has been omitted from the figure. For 

the ADM measure hierarchical with four clusters again has the best score. 

4.7.4 Results of Biological Validation 

The BHI and the BSI values were computed for each clustering algorithm in the range 

of cluster numbers from two to six. Table 4.8 shows the scores for the Breast Cancer 
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dataset and it is seen that DIANA has the highest BHI score for six clusters and the 

highest BSI score is achieved by hierarchical algorithm for two clusters, which 

indicates that consistency of clustering for genes with similar biological functionality 

is given by hierarchical algorithm.  

Table 4.8: Optimal Scores of BHI and BSI for the Breast Cancer dataset 

Algorithm Measure 
Number of Clusters 

2 3 4 5 6 

hierarchical BHI 0.3172 0.3095 0.3011 0.2966 0.2882 

 

BSI 0.8253 0.6611 0.5725 0.5329 0.5179 

kmeans BHI 0.4047 0.3639 0.3889 0.3529 0.2879 

 

BSI 0.6371 0.4925 0.4579 0.3006 0.2511 

diana BHI 0.4047 0.3095 0.3011 0.3861 0.4241 

 

BSI 0.6574 0.6605 0.5708 0.3361 0.3021 

som BHI 0.3163 0.3156 0.2947 0.2989 0.2361 

 

BSI 0.7014 0.5614 0.3147 0.2431 0.1773 

pam BHI 0.3052 0.3022 0.2979 0.2853 0.2839 

 

BSI 0.5904 0.5511 0.4181 0.3831 0.3612 

sota BHI 0.3041 0.2833 0.2125 0.1708 0.1867 

 

BSI 0.4697 0.4221 0.4131 0.4092 0.3934 

clara BHI 0.3052 0.3022 0.2979 0.2853 0.2839 

 

BSI 0.5904 0.5501 0.4181 0.3895 0.3725 

model BHI 0.3091 0.3639 0.3889  0.2651 0.2651 

 

BSI 0.3612 0.4574 0.4493 0.3891 0.3246 

       Optimal Scores: 

     

 

Score Method Clusters 

   BHI 0.424 diana 6 

   BSI 0.8253 hierarchical 2 

   

Figure 4.6 shows the plots of BHI for the eight clustering algorithms which reveal 

that DIANA happens to produce most homogeneous biological clusters based on this 

dataset and the results are statistically significant when the number of clusters is 

between four and six. 

The plots of BSI are shown in Figure 4.7 and hierarchical algorithm seems to be the 

most stable in its capability of producing clusters using reduced datasets that are 

biologically alike. Considering both indices, it can be concluded that hierarchical 

algorithm is the best choice for this dataset to maximize the biological homogeneity 

and DIANA can be a worthwhile consideration if six clusters are desired. 



Chapter 4 

127 

 

Figure 4.6: BHI plot for Breast Cancer 

dataset 

 

Figure 4.7: BSI plot for Breast Cancer 

dataset 

 

4.8 Discussion 

Existing biological knowledge, such as the GO database, can assist in the cluster 

validation process of cancer datasets since their analysis can be done with a very high 

level of accuracy. The clustering results arrived at are validated with the help of GO 

by using external validity measures such as semantic and sequence similarity 

measures to ascertain whether the clusters obtained are biologically significant. 

Internal validity measures such as Dunn index, silhouette width or the homogeneity 

index are used to evaluate the visual separation of the clusters obtained from a 

clustering algorithm. Since the dataset is highly correlated, additional stability 

measures and biological validation measures are used in the form of biological 

homogeneity index and biological stability index to arrive at a decision whether the 

clustering results produced by a particular clustering method is biologically 

significant. In the present scenario, it is noticed that hierarchical algorithm seems to 

produce the best results.  

It is a foregone conclusion that in bioinformatics, clustering gene expression data can 

reveal biologically relevant information. But it is also all the more important not to 

depend upon one algorithm with one parameter setting and take the results on face 

value. Rather, one should compare multiple clusterings with various parameter 
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settings and then take the results as the conveyed structure of the data. Only the 

comparison of carefully chosen clustering algorithms can result in reliable 

conclusions drawn from cluster analysis. 

The interpretability of the results is highly dependent on the accuracy of the biological 

annotations being incorporated into the clustering validation. The power of cluster 

analysis of gene expression data is that it can greatly reduce the search space and thus 

can lead biologists towards promising presumptions which are worth further 

biological examination. The verification of these presumptions by biological 

experiments is not replaceable. The development of biomedical technology will lead 

to a marked increase in the use of accurate and reliable biological data, which is 

absolutely essential for statistical analysis such as clustering validation.  

In the next chapter, an empirical study of some of the popular protein complex 

prediction algorithms will be performed with an aim to uncover the limitations and 

biasness of the algorithms. An ensemble framework for protein complex detection is 

then proposed where in the initial phase, external information in the form of gene 

expression data and Gene Ontology will be integrated in the PPI network to purify the 

network. The base cluster algorithms will generate clusters of protein complexes from 

the purified PPI data which will become the input to the proposed ensemble for the 

process of protein complex identification. 


