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5 Complex Detection from PPI Data 

Using Unsupervised Methods  

With the advent of high-throughput techniques in molecular biology, a significant 

amount of physical interaction data has been collected leading to computational 

approaches to systematically mine complexes from the network of physical 

interactions among proteins, i.e., from Protein-Protein Interaction (PPI) networks. PPI 

networks can be used for discovering complexes consisting of proteins that share a 

common function. This is motivated by the observation that proteins are organized 

into different protein complexes each performing some specific task in a cell
 310,311

. 

Furthermore, proteins belonging to a specific complex are more related to each other 

than to the members of other complexes
 312

 and also proteins interacting with each 

other often participate in the same biological processes. 

Protein complexes perform many crucial tasks within living beings, including 

transcription of DNA, translation of mRNA, cell growth and transporting molecules 

from one place to another. Since proteins perform their tasks by interacting with each 

other, determining these interactions is an important task. The rapidly growing 

biomedical literature provides a significantly large and readily available source of 

interaction data, which can be integrated into the protein networks for better complex 

detection. Moreover, in-depth study of protein complexes helps to understand how 
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they are built and how they work, allowing better comprehension of biological 

systems. It has been well established that the main cause of many diseases are 

proteins
 313,314,315,316

. Therefore, correct classification of a newly discovered protein 

complex is important as it may guide discovery of appropriate drugs. 

In this chapter a review and evaluation of state-of-the-art techniques for 

computational identification of protein complexes using various evaluation metrics is 

presented. These techniques adopt different strategies to detect protein complexes and 

hence obtain different results. A framework for an ensemble method is developed to 

detect protein complexes from PPI networks by incorporating the challenges that have 

been uncovered while reviewing the existing protein complex clustering algorithms. 

The ensemble method is then validated using real life data, with satisfactory results. 

5.1 Introduction 

Over the years many algorithms have been proposed to detect protein complexes in 

protein-protein interaction (PPI) networks. A sample PPI network is shown in Figure 

5.1(a). Proteins are complex organic compounds made up of chains of amino acids 

used by the body for growth, maintenance and repair of body tissues. 

 

(a) 

 

(b) 

Figure 5.1:(a) PPI Network (b) Protein Complex
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Most proteins form complexes (groups of proteins), as shown in Figure 5.1(b), to 

accomplish biological functions (processes) such as transcription of DNA, translation 

of mRNA and cell growth. To understand the dynamics of biological processes within 

an organism, it is necessary to determine the complete map of physical interactions 

among the proteins (interactome). The result is the PPI network where nodes 

represent proteins and edges represent interactions between pairs of proteins. 

Since an erroneous production of a protein complex can cause diseases by affecting 

the biological processes in which it is involved, study of protein complexes helps us 

understand how they are built, allowing us to expand the knowledge of biological 

systems. New protein complexes can be detected based on the observation that 

densely connected regions in the PPI networks often correspond to actual protein 

complexes. 

5.2 Related Work 

A wide range of detection methods have been proposed for the purpose of 

identification and categorization of complexes and graph clustering techniques have 

been found to be useful to handle the computational challenge, since PPI networks are 

large-scale graphical data structures consisting of tens of thousands of pair-wise 

protein-protein interactions. 

5.2.1 Taxonomy of Existing Clustering Methods 

Clustering methods for complex detection in PPI networks can be broadly categorised 

into distance-based and graph-based approaches
 201

. Distance-based clustering 

approaches use the concept of distance between two proteins as described by vectors 

of features
 211,317,318,319

 whereas graph-based clustering techniques mainly consider the 

topology of the network. In this work, we mainly focus on methods that use only 

graph topology for the purpose of detecting complexes. 

Graph-based techniques that are used for protein complex detection in PPI networks 

can be classified into three main types of algorithmic approaches, as shown in Figure 

5.2. 
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Figure 5.2: Classification of Graph-based Complex Detection Techniques 

5.2.1.1 Local Neighborhood Density Search (LD) 

The objective of the methods based on local neighbourhood density search is to find 

dense subgraphs within the input network, i.e., subgraphs where each node is 

connected to many other nodes within the same subgraph,. Some popular methods for 

finding complexes in PPI networks based on the LD approach are MCODE
 215

, 

DPClus
 216

, SWEMODE
 320

, DECAFF
 221

, CFinder
 220

, AP
 321

, ClusterONE
 200

, CMC
 

230
, PCP

 322
 and DME

 323
. 

5.2.1.2 Cost-based Local Search (CL) 

Methods based on cost-based local search extract complexes from the interaction 

network by partitioning the graph into connected subgraphs, by using a cost function 

that guides the search towards the best partition. Typical instances of such an 

approach are RNSC
 210

, Qcut
 324

 and ModuLand
 325

. 

5.2.1.3 Global Flow Information Search (GFI) 

Global Flow Information methods for detecting protein complexes in a PPI network 

are based on an approach that imitates the spread of information in a network. MCL
 

218
 and RRW

 217
 methods are popular methods based on the concept of random walk. 

IFB
 326

 and STM
 327

 methods exploit biological knowledge for passing information 

between proteins in the network in order to cluster proteins.  

5.2.2 Review of Existing Work 

Every new published method compares its performance with a few selected earlier 

methods. It has been noticed that due to the differences in PPI networks produced, 

benchmark datasets used for evaluation criteria, threshold settings and parameters 

used, the results of such comparisons and surveys
 226,227,228,229

 on complex detection 

vary and are difficult to reconcile.  

Graph-based Complex Detection Techniques 

Local Neighborhood 

Density Search 

Cost-based Local 

Search 

Global Flow 

Information Search 
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Brohee and van Helden
 226

 performed a comprehensive assessment and empirical 

comparison among MCODE
 215

, MCL
 218

, RNSC
 210

 and Super-Paramagnetic 

Clustering (SPC)
 211

, which was one of the first comprehensive assessments. These 

algorithms were tested on PPI datasets from high-throughput experiments, and the 

resultant complexes were evaluated against benchmark complexes from MIPS
 328

. The 

authors concluded that MCL and RNSC outperformed MCODE and SPC in terms of 

precision and recall. MCL was robust in presence of noise, confirming its superiority 

over the other three algorithms. 

Vlasblom and Wodak
 227

 compared MCL with Affinity Propagation (AP)
 321

 on 

unweighted as well as weighted PPI networks. They concluded that MCL performed 

considerably better than AP in terms of accuracy and separation of predicted clusters 

and was able to discover benchmark complexes even at high noise levels. 

A detailed comparison of several algorithms: MCODE
 215

, RNSC
 210

, MCL
 218

, 

DPClus
 216

, CFinder
 220

, DECAFF
 221

, CORE
 329

, and COACH
 222

, was performed by 

Li et al.
 228

 on PPI datasets from DIP
 330

 and Krogan et al.
 331

. Based on the Bader 

overlap score
 215

, the precision, recall and F-measure values were calculated with the 

conclusion that MCODE was able to achieve the highest precision, but it produced 

very few clusters resulting in very low recall. 

After studying the analyses and surveys, it has been observed that evaluation of 

complexes predicted by a method is generally performed using the following 

approaches. 

a) Comparing the predicted complexes against one or more “gold standard” sets 

of complexes by using performance measures such as precision and recall 
230

. 

Problems arise due to the reliability of the method if it produces too many 

predictions (false positives), resulting in high recall but low precision. Since 

precision and recall have an inverse relationship to each other, a harmonic 

mean of precision and recall called F-measure is used to obtain a more 

unbiased performance metric. 

b) If a gold standard set is not available, measures such as cluster cohesiveness 

and separability are used
 215,210

. The topological characteristics of a cluster 
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such as its size or density is measured by its cohesiveness, while separability 

measures how separated is the cluster from others
 215

. A combination of 

cohesiveness and separability produces a likelihood of individual clusters 

representing real complexes although separability does not favour overlapping 

clusters. 

c) Evaluation of the predicted complexes can also be performed by computing a 

functional or co-localization score, after incorporating appropriate annotation 

data
 230,210

. This measures how functionally coherent the proteins are within a 

predicted complex by comparing the GO terms associated with the proteins, 

and whether they are co-localized within the cell. This evaluation is 

particularly useful for biological relevance of the predictions. 

5.3 Motivation for an Empirical Study 

Over the years, the gold standard data used for evaluation have become more 

enriched, new methods have emerged
 230,217,200

 and new evaluation measures have 

been proposed, prompting the need for a new evaluation study of protein complex 

prediction algorithms. A comparison of eight algorithms, namely RNSC
 210

, AP
 321

, 

MCL
 218,332

, MCODE
 215

, CFinder
 220

, CMC
 230

, RRW
 217

 and ClusterONE
 200

 is carried 

out. To evaluate the quality and accuracy of predicted complexes, the measures Frac
 

200
, MMR

 200
 and Acc

 226
 are used and for the biological relevance, Co-localization

 333
 

and GO semantic similarity
 275

 has been used. 

5.4 Terminology 

In this section some basic terminologies for graphs are introduced. 

 PPI data can be represented in the form of a graph G = (V, E), comprising of 

vertices V, which are proteins and edges E, where each edge represents an 

interaction between two distinct proteins.  
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 A walk in graph G is defined as a sequence of vertices where there is an edge 

between two adjacent vertices.  

 The set of all the neighbours of a vertex     is denoted as            

  ( ,  )  . 

 The degree of   is the cardinality of   , written as          

 The density of G
 334

, denoted as       , is defined as        
       

             
.  

 The neighbourhood graph of   is defined as             where         

   and                                 . 

 The neighbourhood graph    is the subgraph which consists of all of v’s 

immediate neighbours (including v) and all the edges among them.  

 A k-core is a subgraph in which all the vertices have degrees no less than k and 

the order of a k-core is k if it is not a (k + 1)-core. 

 Given two graphs            and            , the neighbourhood 

affinity 
215

 measures the similarity between A and B, and is defined as 

         
        

           
 .  (5.1) 

5.5 Selection of Unsupervised Methods 

Conventional graph clustering approaches mine for cliques or densely connected 

subgraphs, which could correspond to protein complexes. Based on graph theory, 

there have been various algorithms that have been proposed in literature. Out of the 

vast plethora of algorithms, a few algorithms for which the software implementations 

are available have been selected, forming a good representative collection of the 

existing techniques, and experiments have been performed on them for comparison 

purposes. The implemented algorithms selected for comparison are MCL
 218,332

, 

MCODE
 215

, RNSC
 210

, CFinder
 220

, RRW
 217

, AP
 321

, CMC
 230

 and ClusterONE
 200

.  
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The algorithms that support the use of edge weights are AP, MCL, RRW and 

ClusterONE. In order to run algorithms not supporting directly weights, namely, 

MCODE, RNSC, CMC and CFinder, the algorithms were pre-binarized using the 

threshold values originally suggested by the authors of the datasets. Also, algorithms 

such as MCODE, CFinder, CMC, RRW and ClusterONE are capable of handling 

overlapping clusters. Table 5.1 presents the clustering algorithms evaluated in this 

review, chronologically ordered, based on the year in which they were developed. 

Table 5.1: Clustering algorithms evaluated 

Algorithm Approach adopted Input Parameter Overlapping Weighted 

MCL 
218,332

 Global flow information 1 no yes 

MCODE 
215

 Local neighbourhood 4 yes no 

RNSC 
210

 Cost-based Local Search 3 no no 

CFinder 
220

 
Local neighbourhood 

(Local cliques) 
1 yes no 

RRW 
217

 
Global flow information 

(Random Walk) 
3 yes yes 

AP 
321

 Local neighbourhood 1 no yes 

CMC 
230

 
Local neighbourhood 

(Local cliques) 
2 yes no 

ClusterONE 
200

 
Local neighbourhood 

(Greedy Approach) 
2 yes yes 

5.6 Overview of the Approaches 

For each algorithm selected, a brief introduction is presented along with the main 

characteristics. 

5.6.1 MCL (Markov Clustering)  

MCL
 218,332

 attempts to find dense regions in the input graph by exploiting the concept 

that there are many links within a cluster and few links between clusters. Following 

this perspective, MCL detects functional modules and protein complexes by 

simulating random walks in PPI networks. It manipulates the weighted or un-

weighted adjacency matrix with two operators called expansion and inflation. The 

expansion operator assigns new probabilities for all pairs of nodes while the inflation 

operator changes the probabilities for all these walks in the graph, increasing the 

probability of intra-cluster walks and demoting inter-cluster walks. This step enhances 
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the contrast between regions of strong and weak flow in the graph.  Another 

parameter required by MCL is called inflation and it tunes the granularity of the 

clustering. Larger inflation values result in smaller clusters, while smaller inflation 

values generate only a few large clusters. 

5.6.2 MCODE (Molecular Complex Detection)  

The MCODE
 215

 algorithm is able to detect overlapping protein complexes but as with 

most algorithms exploiting the notion of cliques, it cannot handle weighted input 

networks. It initially weighs every node based on local neighborhood densities. Then 

starting from the node with the highest degree, a protein complex is grown from each 

node, regulated by a parameter called depth limit, which regulates how far it can 

continue from the seed node to other nodes.  MCODE controls the amount of 

difference allowed between the score of each node in a particular complex using 

another parameter, the vertex weight percentage.  

Two post-processing steps applied at the end of the algorithm to refine the protein 

complexes are haircut, which iteratively removes nodes that are connected by a single 

edge to the rest of protein complex, and fluffing that tries to expand a protein complex 

by adding highly connected nodes outside the cluster. Even though MCODE produces 

overlapping complexes during the fluffing phase, the experiments have shown that the 

algorithm performs better when fluffing is turned off. The number of predicted 

complexes is generally small and the size of many predicted complexes is often too 

large. 

5.6.3 RNSC (Restricted Neighbourhoods Search Clustering) 

RNSC
 210

 detects protein complexes based on both graph-theoretical and gene-

ontological properties but cannot detect overlapped clusters. Since it is unable to deal 

with weighted edges, it calculates the value of the cost function by computing a 

summarized value of two scores, called naïve score and scaled score for each node, to 

detect sub-graphs. It starts with an initial random clustering and then searches for a 

better clustering with the minimum cost by moving a vertex from one cluster to 

another.  Therefore it is a cost-based local search algorithm and is prone to finding 

poor local minima.  
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RNSC discards unpromising clusters based on their size, density and functional 

homogeneity (smallest p-value). It also predicts relatively fewer complexes and its 

results depend on the quality of the initial clustering (random or user-defined). As a 

result, different runs of this algorithm on the same input data can result in different 

clusters. 

5.6.4 CFinder (Clique Finder)  

It is one of the first methods to detect overlapping clusters in PPI networks. Taking as 

input a parameter k, CFinder
 220

 detects all the k-cliques of the input network. A k-

clique is a complete sub-graph of k nodes. It builds a k-clique accessibility graph 

where two k-cliques are connected if they are adjacent, i.e., if they share (k - 1) 

common nodes. A k-clique percolation cluster is then constructed by linking all the 

adjacent k-cliques into a bigger sub-graph.  

Since the original version of the algorithm operated on undirected, unweighted 

networks, an improvement proposed was to substitute the k-clique search with the 

enumeration of the maximal cliques with at least k vertices of the input network. 

Though it took care of weighted networks, it still could not detect overlapping clusters 

and was more time consuming than the original algorithm. 

5.6.5 RRW (Repeated Random Walk)  

The RRW
 217

 clustering algorithm is able to handle weighted and unweighted graphs, 

enabling the detection of overlapping clusters. Given a cluster of nodes, the algorithm 

tries to expand it to include proteins with high proximity to the cluster using an 

affinity function. Random walks with restart are used to find the set of proteins near a 

certain cluster. Starting from a cluster of size one, it iterates this expansion at most k 

times (which is an input parameter) or until a stopping condition related to the number 

of nodes in the cluster is reached, producing a cluster of size < k. The process is 

applied to all the nodes followed by a ranking step that removes clusters with an 

overlap score above a given threshold.  
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The restart probability of the random walk at each step is given to the RRW algorithm 

along with the threshold overlap parameters and the early cut-off. The maximum 

cluster size can be kept at eleven as recommended by the authors. 

5.6.6 AP (Affinity Propagation) 

AP
 321

 is a clustering algorithm that can handle real-valued similarities between the 

input objects but cannot detect overlapping clusters. It is a k-centers clustering 

technique, which uses the input data to learn a set of centers such that the sum of 

squared errors between each input object and its nearest centre is minimum. The 

centres are referred to as exemplars. This method begins with an initial set of 

exemplars, randomly selected. The exemplars are refined iteratively with an aim to 

decrease the sum of squared errors.  

Since the clustering is sensitive to the initial selection of exemplars, Affinity 

Propagation deals with this limitation by considering each data point as a node in a 

network. Each node iteratively sends a message to all the other nodes communicating 

its relative attractiveness to them and receives a response about their relative 

availability. By using this message passing procedure, the nodes try to identify the 

best exemplar with respect to a particular function. The name of this algorithm comes 

from the fact that the magnitude of each message exchanged at a certain time point 

resembles the affinity that a particular data point has for another data point as its 

exemplar. 

5.6.7 CMC (Clustering based on Maximum Cliques)  

The CMC
 230

 algorithm is a clustering algorithm that assesses the probability whether 

two proteins are in the same protein complex by using an iterative scoring algorithm, 

followed by a maximal clique finding process. As with most clique-based algorithms, 

it is not able to handle weighted networks. However it can output overlapping protein 

complexes. 

During the search process the cliques found are merged to build the final set of 

protein complexes. Two cliques are considered sufficiently overlapping using an 

overlap threshold, while a merge threshold determines when two cliques should be 
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merged together. Two cliques are merged when the network between them is denser 

than the merge threshold otherwise the smaller clique is discarded. A low overlap 

threshold implies the detection of only a few big protein complexes, while a high 

value results in a large number of redundant complexes. The degenerate case occurs 

when none of the complexes is able to merge with others. 

5.6.8 ClusterONE (Cluster Overlapping Neighbourhood Expansion) 

ClusterONE
 200

 is a method for detecting overlapping protein complexes from protein-

protein interaction data. It can handle weighted PPI data and overlapping clusters 

simultaneously. This algorithm uses a greedy approach to calculate a score called 

cohesiveness which measures how likely it is for a group of proteins to form a protein 

complex. The procedure starts by selecting the protein with the highest degree as the 

first seed and grows a cohesive group from it using a greedy approach. When the 

growth process finishes the algorithm selects the next seed from the proteins having 

the highest degree, but not already included in any protein complex. The process ends 

when there are no remaining proteins to consider. 

The next step merges the cohesive groups based on their overlap score. For a given a 

set of clusters, an overlap score is computed for each pair of clusters and a graph in 

which each node represents a cluster is constructed. If two nodes overlap more than a 

certain threshold, they are connected and the clusters connected to each other by a 

path of edges are merged, resulting in protein complexes. 

5.7 Evaluation of Protein Complexes 

To evaluate the performance of the prediction of protein complexes, a comparison of 

how well a predicted protein complex matches an actual complex in a set of gold 

standard protein complexes, is made. Unfortunately, one of the main issues that arise 

during comparison is that the match between predicted complexes and a gold standard 

complex is often only partial. Furthermore, a protein in a gold standard complex can 

match proteins contained in more than one predicted complex and vice versa. 
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5.7.1 Evaluation Measures 

Three quality measures are used to independently assess the similarity between a set 

of predicted complexes and a set of reference complexes: (i) the fraction of protein 

complexes
 200

 matched by at least one predicted complex, (ii) a geometric accuracy 

measure
 226

, and (iii) the Maximum Matching Ratio
 200

. 

It may be noted that all these measures assess the quality of a predicted protein 

complex comparing it with protein complexes present in a specific gold standard. 

Hence, it is not possible to establish the quality of a predicted complex if it does not 

match, even partially, at least one gold standard complex. 

5.7.1.1 Frac  

The first measure used is the fraction of pairs (Frac)
 200

 between predicted and 

reference complexes (gold standard) that match with an overlap score   greater than 

0.25, since this threshold indicates that the intersection of two complexes having the 

same size is at least half of the complex size
 200

. The overlap score between a 

predicted complex p and a real complex b is given by  

         
       

 

           
 .  (5.2) 

If          , the complexes are considered to match. 

5.7.1.2 Geometric Accuracy  

The second measure, introduced by Brohee and van Helden
 226

, is geometric accuracy
 

226
, which is the geometric mean of clustering-wise sensitivity (Sn)

 226
, and the 

positive predictive value (PPV)
 226

 of a clustering. Both can be computed from the 

confusion matrix           of the complexes. 

With n reference and m predicted complexes, the element     of the confusion matrix 

refers to the number of proteins that are found both in the reference complex i and the 

predicted complex j. If ni is defined as the number of proteins in reference complex i, 

then  
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 , and  (5.3) 

 

     
       

  
      

     
 
   

 
   

 .  (5.4) 

Clustering-wise sensitivity (Sn) can give inflated values if every protein is placed in 

the same cluster, whereas the positive predictive value can be maximized by putting 

every protein in its own cluster. In other words, if a method predicts a giant complex 

which covers many proteins in a known real complex set, this method will get a very 

high Sn score whereas the PPV value tends to be lower as it does not evaluate 

overlapping clusters properly. For these reasons the two measures are balanced by 

computing their geometric mean, known as the geometric accuracy (Acc), which is 

defined as: 

                .  (5.5) 

5.7.1.3 MMR 

The Maximum Matching Ratio (MMR)
 200

 is used to express how well the predicted 

complexes represent reference complexes, i.e., how well the prediction compares with 

a gold standard. MMR represents the two sets of predicted complexes as a bipartite 

graph where on one side are the predicted complexes and on the other the reference 

ones. Each node of this graph represents a protein complex and each edge connecting 

two nodes has a weight reflecting the overlap between these complexes, where the 

overlap score between two protein complexes is computed by Equation (5.2). MMR
 

200
 is obtained by dividing the total weight of the maximum matching complexes by 

the number of reference complexes. Given n standard complexes and m predicted 

complexes, let j be a member of the predicted complexes. MMR then defined as 

follows: 

     
     

         
   

 
 .  (5.6) 

The PPV scores tend to be lower if predicted complexes overlap significantly with 

each other. Thus clustering algorithms supporting overlapped clusters may return a 



Chapter 5 

144 

lower positive predicted value than a not so efficient algorithm which places every 

protein in a separate cluster. 

Moreover, a predicted complex that may not match any reference complex is 

penalized by the geometric accuracy measure. However, a predicted complex that 

does not match any reference complex is not necessarily an undesired result and may 

be an undiscovered complex. Therefore, trying to optimize the geometric accuracy 

may discourage detection of such new complexes in a PPI network. This is one 

motivation behind the use of MMR as a metric. 

5.7.2 Gold Standard for Protein Complexes 

As mentioned earlier, to assess the performance of a clustering algorithm on PPI 

networks, it is necessary to compare protein complexes it predicts with a set of known 

interactions called gold standards. The Saccharomyces Genome Database (SGD)
 335

 

and the Munich Information Centre for Protein Sequences (MIPS)
 328

 S. cerevisiae 

Protein-Protein Interaction dataset have been considered because they have been used 

in several analyses as gold standard reference due to their quality and 

comprehensiveness. General properties of these datasets are shown in Table 5.2. 

Table 5.2: General properties of the Gold Standard datasets 

General Properties SGD MIPS 

No. of Proteins 1279 1189 

No. of Complexes 323 203 

Overlapping Proteins 296 401 

5.8 Comparison of Selected Algorithms 

It is important to avoid biases when well-known graph clustering algorithms methods 

are applied to a new scenario while evaluating their performance. Substantial care has 

been taken to avoid over-optimization of algorithm parameters to a given dataset or to 

a given quality score following guidelines given by Boulesteix
 336

. 

a) Each of the algorithms have been tested on three publicly available high-

throughput benchmark yeast PPI datasets, namely Gavin
 337

, Krogan Core
 331

 

(referred to as Krogan in the thesis) and Krogan Extended
 331

 (referred in the 
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thesis as Krogan+). Some details of the datasets are given in Table 5.3. 

b) More than one quality score has been used to assess the quality of each set of 

protein complexes detected by the algorithms. The scores are the fraction of 

matched complexes
 200

 with a given overlap score threshold, the geometric 

accuracy
 226

 and the maximum matching ratio
 200

. 

c) Two different gold standards: a set derived from the Gene Ontology annotations 

of the Saccharomyces Genome Database
 335

 and the MIPS compendium of 

protein complexes
 328

 have been used. 

d) For each clustering algorithm tested, the input parameters are tuned in order to 

achieve the best performance for protein complexes detection in Protein-Protein 

Interaction Network. Tuning was performed separately for each measure, for 

each dataset and with respect to each gold standard. As a result, different input 

parameters have been obtained for each case with the purpose to obtain the most 

optimistic score.  

Table 5.3: Initial datasets 

Details Gavin Krogan Krogan + 

Number of proteins 1855 2708 3672 

Number of interactions 7669 7123 14317 

Weighted yes yes yes 

5.8.1 Parameter Settings for Each Algorithm 

The parameters for each algorithm were set after experimenting with a different 

combination of settings unless the authors of the original algorithm had explicitly 

suggested particular settings. The values of the parameters for optimal performance 

for each algorithm are reported in Table 5.4. 

It has been noticed that the optimal parameter values for non-overlapping algorithms 

seem to vary from one dataset to another whereas algorithms that allow overlapping 

clusters seem to show more stable performance if their parameters remain within a 

certain range. 
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Since the MIPS and SGD gold standard datasets are not entirely consistent with 

respect to the membership of some proteins in some complexes, it is decided to test 

these two gold standards separately as in
 200

. 

Table 5.4: Parameters settings for the algorithms being evaluated 

Algorithm Parameter 

Using Gold Standard MIPS Using Gold Standard DIP 

Optimal Value for Optimal Value for 

Gavin Krogan Krogan+ Gavin Krogan Krogan+ 

MCL Inflation 3.2 2.3 2.3 4.7 2.0 2.6 

MCODE 

Depth Limit 3 3 3 3 3 3 

Vertex Weight Percent 10 20 10 10 20 10 

Haircut True True True True True True 

Fluff False False False False False False 

RNSC 

No. of Experiments 3 3 3 3 3 10 

Tabu Length 100 10 50 100 50 50 

Scaled stopping tolerance 5 5 1 15 1 5 

CFinder k-clique template size 4 3 3 4 3 4 

RRW 

Restart Probablity 0.6 0.5 0.5 0.6 0.5 0.5 

Overlap Threshold 0.1 0.2 0.2 0.1 0.2 0.2 

Early cutoff 0.6 0.7 0.7 0.6 0.7 0.7 

AP Preference -0.15 0.35 0.4 -0.6 0.35 0.3 

CMC 
Overlap Threshold 0.7 0.7 0.7 0.7 0.7 0.7 

Merge Threshold 0.5 0.4 0.5 0.5 0.4 0.3 

ClusterONE 
Merging Threshold 0.8 0.8 0.8 0.8 0.8 0.8 

Density Threshold 0.3 0.3 0.3 0.3 0.3 0.3 

5.8.2 Quality Scores for MIPS Gold Standard 

The results obtained by comparing the protein complexes predicted by each clustering 

algorithm with the gold standard dataset obtained from the MIPS catalogue of protein 

complexes are reported in this section.  

Table 5.5 shows for each dataset the true number of complexes, the matched number 

of complexes detected by the algorithms, the fraction of protein complexes matched 

by at least one predicted complex, geometric accuracy and maximum matching ratio 

using the MIPS gold standard dataset. ClusterONE detects the highest number of 

complexes that match at least one real complex, for each of the three quality 

measures, Frac, Acc and MMR, for the three datasets used for comparison. The 

Maximum Matching Ratio was explicitly designed to assess the quality of 

overlapping protein complexes and the results achieved by ClusterONE show a 

significantly better MMR value than the ones obtained by the other approaches. The 

best scores are highlighted in bold for easy comparison. 
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Table 5.5: Results of the protein complex detection algorithms on PPI datasets using the 

MIPS complex dataset 

Algorithm 
Gavin Krogan Krogan+ 

#c #m Frac Acc MMR #c #m Frac Acc MMR #c #m Frac Acc MMR 

MCL 251 82 0.711 0.511 0.338 378 85 0.617 0.450 0.276 489 72 0.448 0.421 0.196 

MCODE 137 67 0.585 0.457 0.289 77 39 0.289 0.332 0.122 67 26 0.155 0.279 0.102 

RNSC 139 73 0.648 0.495 0.323 88 58 0.400 0.394 0.179 96 58 0.362 0.375 0.153 

CFINDER 139 68 0.592 0.500 0.286 118 50 0.358 0.380 0.170 124 38 0.225 0.324 0.112 

RRW 238 79 0.684 0.457 0.353 323 71 0.518 0.370 0.251 233 77 0.481 0.365 0.224 

AP 249 77 0.686 0.454 0.346 225 57 0.411 0.355 0.177 238 55 0.350 0.343 0.169 

CMC 345 78 0.675 0.484 0.342 151 53 0.373 0.378 0.174 428 61 0.382 0.346 0.180 

ClusterONE 198 84 0.738 0.513 0.390 526 95 0.692 0.451 0.329 531 94 0.593 0.435 0.294 

Abbreviations: #c = no. of complexes, #m = no. of matched complexes 

The values of the evaluation metrics for all clustering algorithms are along the x-axis 

and the individual quality scores of the predicted complexes for the MIPS catalogue 

are along the y-axis in Figure 5.3.  

 

Figure 5.3: Graph showing the comparative analysis of the evaluation metrics of the 

clustering algorithms for MIPS 

It is clear from Figure 5.3 that ClusterONE outperforms the other algorithms in all 

datasets by achieving the highest score in each of the three categories used for 

comparison. 

5.8.3 Quality Score for SGD Gold Standard 

Table 5.6 reports the scores for the number of complexes detected, the number of 

matched complexes, Frac, Acc and MMR for the three datasets achieved by the 

algorithms using the SGD gold standard dataset. Again ClusterONE achieves the best 

results in protein complex detection using all three quality measures, for all three 

datasets.  
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Table 5.6: Results of the protein complex detection algorithms on PPI datasets using the SGD 

complex dataset 

Algorithm 
Gavin Krogan Krogan+ 

#c #m Frac Acc MMR #c #m Frac Acc MMR #c #m Frac Acc MMR 

MCL 251 96 0.776 0.710 0.447 375 105 0.662 0.659 0.357 487 92 0.509 0.612 0.258 

MCODE 134 74 0.598 0.627 0.367 76 58 0.364 0.474 0.202 69 39 0.216 0.394 0.102 

RNSC 136 91 0.736 0.715 0.434 88 78 0.486 0.556 0.265 93 78 0.432 0.552 0.241 

CFINDER 132 78 0.630 0.688 0.367 114 69 0.433 0.509 0.248 124 49 0.271 0.484 0.158 

RRW 233 97 0.785 0.687 0.480 324 100 0.627 0.578 0.368 235 101 0.559 0.545 0.317 

AP 248 99 0.800 0.676 0.446 221 81 0.507 0.525 0.306 235 97 0.537 0.529 0.291 

CMC 348 95 0.768 0.661 0.453 156 69 0.433 0.526 0.245 423 78 0.432 0.540 0.257 

ClusterONE 198 102 0.817 0.727 0.486 526 112 0.690 0.683 0.426 531 110 0.615 0.647 0.371 

Abbreviations: #c = no. of complexes, #m = no. of matched complexes 

From Table 5.5 and Table 5.6, it is observed that the number of complexes detected 

by ClusterONE from the Gavin dataset (198 complexes) is closer to the actual number 

of MIPS complexes, i.e., 203, whereas the results from the Krogan and Krogan+ 

datasets seem to contain a large number of extra clusters, i.e., 526 and 531. This may 

be explained by the fact that some of the MIPS categories are not real protein 

complexes but groups of related complexes. The same seems to be the case for the 

rest of the algorithms, except in the case of RNSC and MCODE (Table 5.5) as these 

algorithms tend to detect fewer clusters. 

Figure 5.4 shows the plot of the evaluation metrics of all the clustering algorithms for 

SGD and it is noticed that ClusterONE algorithm outperforms the other approaches 

for all datasets. 

 

Figure 5.4: Graph showing the comparative analysis of the evaluation metrics of the 

clustering algorithms for SGD 
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5.9 Biological Coherence of Predicted Complexes 

As mentioned earlier
 338

, the gold standard protein complex sets are incomplete and as 

a result, a predicted complex that does not match any of the reference complexes may 

belong to a valid but previously un-cataloged complex as well. Therefore, relying on 

the comparison measures outlined in Section 5.7, based on a pre-defined gold standard 

dataset may not give a whole picture. Rather the scores should be supported by 

measures that assess the biological relevance of predicted complexes, based on the 

similarity of their functional annotations or the co-localization of the constituent 

proteins.  

5.9.1 Co-Localization Similarity 

Biological relevance should play an important role in evaluating the quality of 

predicted protein complexes. One way this can be done is by using co-localization 

scores
 339

. Since proteins in the same protein complex have a tendency to share 

common functions, they tend to be located at the same location in a cell. The 

maximum fraction of proteins in a complex found at the same location is known as 

the co-localization score for that complex. The average co-localization score is 

calculated as the weighted average over all complexes and is defined as
 339

  

 
  

          

      
 .  (5.7) 

Here,      is the number of proteins of complex    assigned to the localization group i 

and      is the number of proteins in the complex    with localization assignments. A 

high co-localization score usually indicates a high functional similarity between 

proteins in the same complex. 

The localization dataset published by Huh et al.
 333

 and ProCope
 340

, a popular tool 

used to predict and evaluate protein complexes, are used to calculate co-localization 

scores. Table 5.7 shows the co-localization scores of protein complexes detected by 

the eight algorithms on Gavin and Krogan datasets. The highest co-localization score 

of 0.746 on the Gavin dataset is achieved by ClusterONE, which is higher than the 
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next score of 0.735 obtained by MCL. The co-localization score of ClusterONE on 

the Krogan dataset is 0.723, which is nearly the same as 0.725 obtained by MCL. 

However, the scale tilts in favor of ClusterONE since MCL cannot handle overlaps. 

Hence, we judge that the protein complexes detected by ClusterONE have relatively 

high quality from the biological view point due to high co-localization scores on both 

Gavin and Krogan datasets.  

Table 5.7: Comparison of Co-localization Score 

Algorithm 
Co-localization Score 

Gavin Krogan 

MCL 0.735 0.725 

MCODE 0.722 0.671 

RNSC 0.618 0.584 

CFINDER 0.615 0.59 

RRW 0.644 0.611 

AP 0.721 0.633 

CMC 0.628 0.655 

ClusterONE 0.746 0.723 

Figure 5.5 presents the co-localization score of the algorithms visually. 

 

Figure 5.5: Comparison of Co-localization Score 

5.9.2 GO Semantic Similarity 

Comparing GO terms associated with proteins in a protein complex is another 

indicator of biological relevance. This can be evaluated in terms of functional 

similarity
 341

. The functional similarity between two proteins is measured in terms of 

the semantic similarity of GO terms that are used to annotate these proteins. Out of 

the several variations of semantic similarity that have been proposed
 265,275,286,293

, the 
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semantic similarity score proposed by Schlicker et al.
 275

 has been selected for use. 

The GO semantic similarity score for a protein complex is defined as the average of 

semantic similarity scores of all protein pairs within the protein complex
 275

. The GO 

semantic similarity score for a set of complexes is the geometric mean of all complex 

scores determined separately for the “biological process” and “molecular function” 

taxonomies. A higher GO semantic similarity score is associated with better quality 

for a set of protein complexes. 

To calculate the GO semantic similarity score, ProCope
 340

 has been used. Table 5.8 

shows the results of comparison of GO semantic similarity scores obtained using the 

eight algorithms on the Gavin and Krogan datasets. These scores are plotted in Figure 

5.6 for visual comparison. MCODE scores 0.883 followed by ClusterONE with 0.869 

for the Gavin dataset. Thus the complexes mined by MCODE have the highest 

biological significance, but the number of high-quality complexes identified by 

MCODE is lower compared to that of ClusterONE. In the case of the Krogan dataset, 

ClusterONE scores better than MCODE, leading to better quality protein complexes. 

Table 5.8: Comparison of GO Semantic Similarity Score 

Algorithm 
GO Semantic Score 

Gavin Krogan 

MCL 0.8 0.783 

MCODE 0.883 0.855 

RNSC 0.726 0.735 

CFINDER 0.72 0.67 

RRW 0.761 0.665 

AP 0.752 0.738 

CMC 0.79 0.72 

ClusterONE 0.869 0.873 

The results of the GO semantic similarity comparison scores on Gavin and Krogan 

dataset have been plotted in Figure 5.6 for a visual comparison. 

5.10 Statistical Significance 

In this section we test whether the difference between the top two performing 

algorithms, ClusterONE and MCL, is statistically significant or not. 
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Figure 5.6: Comparison of GO Semantic Similarity Score 

5.10.1 Statistical Evaluation of Predicted Complexes 

The statistical significance of the occurrence of a protein cluster (predicted protein 

complex) with respect to a given functional annotation can be computed by the 

following hyper-geometric distribution in Equation (5.8) in terms of p-values. 

             
 
   
 

  
   
   

  
   
 

 

 
   
   

 

   

   

 (5.8) 

where a predicted complex C contains k proteins in the functional group F and the 

entire PPI network contains    proteins. The functional homogeneity of a predicted 

complex is the smallest p-value over all the possible functional groups.  

A predicted complex with a low p-value indicates that it is enriched by proteins from 

the same function group and it is thus likely to be a true protein complex, so the 

complex has a high statistical significance. As such, low p-value of a predicted 

complex generally indicates that the collective occurrence of these proteins in the 

complex does not occur merely by chance and thus the complex has high statistical 

significance if the p-value < 0.0l.
 337

 

Bihai et. al 
342

 have shown that the proportion of significant complexes over all 

predicted ones can be used to evaluate the overall performance of various algorithms. 
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In addition, P-score
 342

 has also been used as an effective evaluation measure for a 

complex, which is defined in Equation (5.9). 

         
 

 
               

 

   

  (5.9) 

where           and Y is set to 0.01 mentioned above.  

5.10.2 Statistical significance of ClusterONE and MCL 

To substantiate the statistical significance of the complexes predicted by the two best 

algorithms ClusterONE and MCL, we calculated the P-scores of the top 40 ranked 

predicted protein complexes based on their low p-value that match the true complexes 

of the benchmark datasets MIPS and SGD. In our experiments, the p-values of 

complexes are calculated with the SGD’s GO::TermFinder
 343

. 

The Table 5.9 reports for each dataset the comparative measures achieved by the two 

algorithms on the gold standard MIPS dataset. ClusterONE achieves the largest value 

of proportion of matched complexes which is approximately 9% to 12% greater than 

MCL for the three datasets on which the algorithms have been tested. Moreover, the 

F-measure of ClusterONE is 20% to 50% more than that of MCL. The average P-

score of ClusterONE is seen to be higher than those obtained by MCL, mainly 

because ClusterONE can detect overlapping clusters properly. A protein pair with a 

large number of shared neighbours (overlapping) will have a p-value very close to 

zero leading to a higher P-score, since the p-values are expressed as –log(p-values). 

Table 5.9: Statistical significance of predicted complexes by ClusterONE and MCL for MIPS 

Dataset 

Dataset Algorithm 

No of 

Matched 

Com-

plexes 

No of 

Significant 

Complexes 

Proportion 

of matched 

complexes 

(%) 

Precision Recall 
F-

measure 

Average 

P-Score 

Gavin 
ClusterONE 84 61 72.620 0.087 0.462 0.146 3.24 

MCL 82 52 63.415 0.083 0.115 0.096 2.59 

Krogan ClusterONE 95 73 76.842 0.089 0.433 0.148 3.49 

MCL 85 58 68.236 0.077 0.3 0.123 2.97 

Krogan+ ClusterONE 94 70 74.469 0.084 0.424 0.140 3.36 

MCL 72 47 65.278 0.067 0.273 0.108 2.78 
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The comparative measures achieved by ClusterONE and MCL algorithms on the gold 

standard SGD dataset are reported in Table 5.10. As was the case with the MIPS 

dataset, it is noticed that in the case of SGD dataset too ClusterONE follows the same 

trend and outperforms MCL, showing greater statistical and biological significance of 

the predicted protein complexes. The average P-score of ClusterONE shows an 

increase of 19%, 15% and 16% over MCL for the Gavin, Krogan and Krogan+ 

dataset respectively. 

Table 5.10: Statistical significance of predicted complexes by ClusterONE and MCL for 

SGD Dataset 

Dataset Algorithm 

No of 

Matched 

Com- 

plexes 

No of 

Significant 

Complexes 

Proportion 

of matched 

complexes 

(%) 

Precision Recall 
F-

measure 

Average 

P-Score 

Gavin 
ClusterONE 102 83 81.373 0.109 0.406 0.172 3.63 

MCL 96 69 71.875 0.194 0.156 0.173 3.04 

Krogan 
ClusterONE 112 95 84.821 0.112 0.5 0.183 3.85 

MCL 105 81 77.143 0.092 0.313 0.142 3.36 

Krogan

+ 

ClusterONE 110 92 83.636 0.102 0.447 0.166 3.77 

MCL 92 70 76.087 0.089 0.316 0.139 3.24 

5.11 Motivation for an Ensemble Framework 

An ensemble has the capacity to achieve consistently well performing results for any 

dataset by deriving the individual benefits of participating algorithms in terms of 

noise handling, cluster overlap detection and ability to detect complexes with 

minimum prior knowledge. 

Traditional clustering approaches for protein complex identification are hampered by 

the following limitations, (i) A PPI network contains a lot of noise and are 

incomplete, leading to high false-positive rate in identifying interactions; (ii) Classical 

partitioning schemes dependent on specific initial conditions, seed selection, 

parameter setting and tend to get different, unstable and unsatisfactory cluster 

partitions from run to run; (iii) The clusters produced by these methods may lack 

biological meaning since they are based on a single information source; and (iv) Some 

proteins are believed to be multifunctional, and effective strategies for the soft 

clustering of these essential proteins are needed. The challenge, therefore, is how to 
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effectively integrate multiple biological data sources since a single source may not be 

adequate. 

To tackle these limitations an ensemble method is proposed since ensembles have 

been able to improve robustness, stability and prediction accuracy of clusterings by 

combining the output of several algorithms
 344

. An ensemble of clustering algorithms 

may be able to identify larger, denser clusters with improved biological significance. 

Since the noise in the interaction datasets hampers the detection of accurate protein 

complexes, one way to compensate for the lack of interaction coverage would be to 

combine multiple datasets for the purpose of identification of meaningful complexes. 

Additionally, ensemble-based methods may be preferable for protein complex 

detection considering that traditional clustering methods search for complexes in 

“dense” regions and miss complexes of low densities, that is, small complexes of two 

or three proteins. Moreover, cluster ensembles may also be able to address the 

problem of local optima and obtain a more globally optimum solution, i.e., a stable 

clustering solution. 

5.12 Protein Complex Detection Ensemble (PCDEN) 

A conceptual framework for the proposed Protein Complex Detection ENsemble 

(PCDEN) is shown in Figure 5.7. 

The PPI network data is taken as input by n consistently well-performing clustering 

algorithms BC1, BC2, ..., BCn which generate n individual complexes C1, C2, ..., Cn. In 

this step care must be taken to select the clustering algorithms that are diverse in 

nature. As a result, the errors made in clustering by one algorithm are likely to be 

averaged out by the correct clustering of another, so that the overall clustering 

accuracy is improved and a final unbiased decision can be made. 

Next, we take a complex set C1 generated by the base clustering algorithms BC1 and 

identify the node with the highest degree. Similarly, we take the other set of 

complexes C2, C3, ..., Cn generated by the base clustering algorithms BC2, BC3, ..., 

BCn and identify the corresponding complexes based on the node identified. Now we 
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identify a common set of nodes (proteins), say Pi, from the corresponding complex 

sets with the condition that each member element of Pi is present in atleast two 

complexes. We consider two cases now. 

Figure 5.7: Conceptual framework for the proposed protein complex detection ensemble 

Case 1: For the common set of nodes Pi, we complete the edges among the nodes of 

Pi subject to the condition that if ni and nj are two nodes present in the common set of 

nodes Pi, then they will be connected by an edge if and only if (ni, nj) are already 

connected by an edge atleast in two complexes. This will continue for every node and 

will give rise to a common complex, Pi
Com

, consisting of nodes that are present in all 

corresponding complexes and inter-connected by an edge. Hence a complex is 

generated which is arrived at by consensus among the corresponding complexes.  
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Case 2: For the common set of nodes Pi, complete the edges to obtain a complex Pi
GO

 

based on GO similarity.  

Next, we superimpose both the complexes obtained from the common set of nodes Pi, 

i.e., Pi
Com

 and Pi
GO 

to obtain the final complex Pi
Fin

. The superimposition is done 

using the logic given in Table 5.11. 

Table 5.11: Existence of an edge in the final complex 

Edge in Pi
Com

 Edge in Pi
GO

 Edge in Pi
Fin

 

Present Present Present 

Present Not Present Present 

Not Present Present Present 

Not Present Not Present Not Present 

In other words, if the edge is present for a pair of nodes ni and nj in both Pi
Com

 and 

Pi
GO 

, then the edge is retained in the final predicted complex Pi
Fin

. If an edge is 

present for a pair of nodes ni and nj in Pi
Com

 and absent in Pi
GO

 or vice-versa, then also 

that edge is retained even though it may be a case of false alarm. The reason to retain 

this edge is that in the case of Pi
Com

, the edge is a result of consensus (where un-

supervised approach has been applied) and in the case of Pi
GO

, the edge is obtained 

through GO similarity (a case of supervised approach). So in both the cases, the 

probability of the existence of the edge is justified. The final predicted complex Pi
Fin

 

is now stored in a file for the purpose of validation. 

The process of identifying the node of the highest degree from the next set of 

complexes and the process of identifying protein complexes through consensus and 

through the use of GO similarity is repeated for each corresponding complex. The end 

result of this phase is that there will be interacting protein complexes with 

overlapping proteins. 

Finally, the validation phase evaluates protein complexes predicted by comparing 

them to a set of gold standard protein complexes and also establishes the biological 

relevance of the predicted protein complexes using the Co-localization score. 

Though the method adopted for protein complex detection is computationally 

expensive, the primary objective is to find complexes with high precision. For this 
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reason speed of detection is compromised in favour of accuracy and precision. Our 

main focus is to make use of multiple sources and means to detect and validate the 

complexes found since a single information source or criterion has its limitations as 

discussed in Section 5.11.  

5.13 Experimental Evaluation 

Three different clustering methods for protein complex detection, MCODE
 215

, MCL
 

218,332
 and CFinder

 220
 are used as the base clustering algorithms. These methods have 

been selected as they follow different approaches for clustering protein interaction 

data and MCODE and CFinder can detect overlapping complexes as noted in Table 

5.1. Moreover, we have also performed an empirical evaluation of these algorithms 

along with others, i.e., RNSC
 210

, RRW
 217

, AP
 321

, CMC
 230

 and ClusterONE
 200

, and 

have found that the performance of these algorithms fall in the category of good, 

average and not so good. Hence these algorithms satisfy the diversity criteria of our 

ensemble. ClusterONE has been found to be the best performing complex finding 

algorithms and hence the comparison of our ensemble should be with the best 

performing baseline method. 

The PPI data set for the experiments are the ones used for the empirical evaluation 

and summarized in Table 5.3. The GO-slim file was downloaded from 

http://www.geneontology.org/ and the Biological Process (BP) hierarchy was selected 

to calculate the GO-driven similarity of proteins. The GO semantic similarity is 

calculated based on the information content of GO terms and the semantic similarity 

proposed by Schlicker et al.
 275

. The evaluation of the results was done by the SGD 

and MIPS gold standard datasets, shown in Table 5.2. 

5.13.1 Results 

The results of the comparison of existing approaches with the proposed ensemble 

PCDEN are reported next. 

http://www.geneontology.org/
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5.13.1.1 Comparison of PCDEN with Baseline Clustering Algorithms 

We compare the performance of the proposed ensemble PCDEN with the approaches 

described in Section 5.6, namely, MCL
 218,332

, MCODE
 215

, RNSC
 210

, CFinder
 220

, 

RRW
 217

, AP
 321

, CMC
 230

 and ClusterONE
 200

 with optimal parameters settings as 

reported in Table 5.4. The algorithms and the proposed ensemble PCDEN are tested 

on the yeast PPI datasets, namely Gavin
 337

, Krogan Core
 331

 and Krogan Extended
 331

, 

the details of these datasets are given in Table 5.3.  

The number of complexes and the matched number of complexes for each dataset as 

detected by the algorithms are reported in Table 5.12. This table also reports the 

fraction of protein complexes matched by at least one predicted complex, geometric 

accuracy and maximum matching ratio using the MIPS gold standard. 

Although the number of protein complexes identified by PCDEN is lower than several 

others, 88 of the 152 predicted complexes matched very well with benchmark 

complexes. It has also been observed that PCDEN obtains the best scores for the 

quality measures Frac and Acc across all the three datasets used for comparison. The 

maximum matching ratio MMR score of 0.390 for the Gavin dataset obtained by 

PCDEN is also the highest indicating better quality of overlapped protein complexes 

detected. The best scores are highlighted in bold for easy comparison.  

Table 5.12: Comparison of the protein complex detection algorithms and proposed ensemble 

PCDEN on PPI datasets using the MIPS complex dataset 

Algorithm 
Gavin Krogan Krogan+ 

#c #m Frac Acc MMR #c #m Frac Acc MMR #c #m Frac Acc MMR 

MCL 251 82 0.711 0.511 0.338 378 85 0.617 0.450 0.276 489 72 0.448 0.421 0.196 

MCODE 137 67 0.585 0.457 0.289 77 39 0.289 0.332 0.122 67 26 0.155 0.279 0.102 

RNSC 139 73 0.648 0.495 0.323 88 58 0.400 0.394 0.179 96 58 0.362 0.375 0.153 

CFINDER 139 68 0.592 0.500 0.286 118 50 0.358 0.380 0.170 124 38 0.225 0.324 0.112 

RRW 238 79 0.684 0.457 0.353 323 71 0.518 0.370 0.251 233 77 0.481 0.365 0.224 

AP 249 77 0.686 0.454 0.346 225 57 0.411 0.355 0.177 238 55 0.350 0.343 0.169 

CMC 345 78 0.675 0.484 0.342 151 53 0.373 0.378 0.174 428 61 0.382 0.346 0.180 

ClusterONE 198 84 0.738 0.513 0.390 526 95 0.692 0.451 0.329 531 94 0.593 0.435 0.294 

PCDEN 152 88 0.753 0.523 0.397 202 95 0.706 0.460 0.336 227 95 0.605 0.443 0.300 

Abbreviations: #c = no. of complexes, #m = no. of matched complexes 

The comparison results are presented in Figure 5.8 and it is clear that the PCDEN 

ensemble outperforms the other approaches in all datasets by achieving the highest 

score in each of the three categories used for comparison. The results obtained by 

PCDEN are better than those of the single clustering approaches, proving that the 
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integration of multiple sources has great power to predict protein complexes in PPI 

networks. 

 

Figure 5.8: Comparing the evaluation metrics of the clustering algorithms and PCDEN for 

the MIPS dataset 

Similarly, Table 5.13 shows the scores for the number of complexes detected, number 

of matched complexes, Frac, Acc and MMR for the three datasets achieved by the 

algorithms and PCDEN using the SGD gold standard.  

Table 5.13: Comparison of the protein complex detection algorithms and proposed ensemble 

on PPI datasets using the SGD complex dataset 

Algorithm 
Gavin Krogan Krogan+ 

#c #m Frac Acc MMR #c #m Frac Acc MMR #c #m Frac Acc MMR 

MCL 251 96 0.776 0.710 0.447 375 105 0.662 0.659 0.357 487 92 0.509 0.612 0.258 

MCODE 134 74 0.598 0.627 0.367 76 58 0.364 0.474 0.202 69 39 0.216 0.394 0.102 

RNSC 136 91 0.736 0.715 0.434 88 78 0.486 0.556 0.265 93 78 0.432 0.552 0.241 

CFINDER 132 78 0.630 0.688 0.367 114 69 0.433 0.509 0.248 124 49 0.271 0.484 0.158 

RRW 233 97 0.785 0.687 0.480 324 100 0.627 0.578 0.368 235 101 0.559 0.545 0.317 

AP 248 99 0.800 0.676 0.446 221 81 0.507 0.525 0.306 235 97 0.537 0.529 0.291 

CMC 348 95 0.768 0.661 0.453 156 69 0.433 0.526 0.245 423 78 0.432 0.540 0.257 

ClusterONE 198 102 0.817 0.727 0.486 526 112 0.690 0.683 0.426 531 110 0.615 0.647 0.371 

PCDEN 152 105 0.833 0.742 0.495 202 115 0.704 0.697 0.435 227 115 0.627 0.660 0.379 

Abbreviations: #c = no. of complexes, #m = no. of matched complexes 

It is observed that PCDEN achieves the best results in protein complex detection with 

respect to the three quality measures, for all the three datasets and also identifies the 

maximum number of matched complexes.  

Figure 5.9 shows the comparison of the clustering algorithms and PCDEN for SGD 

dataset and it is noticed that PCDEN outperforms the other approaches in all datasets. 
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Figure 5.9: Comparing the evaluation metrics of the clustering algorithms and PCDEN for 

SGD dataset 

The co-localization scores of protein complexes of the eight algorithms and PCDEN 

on the Gavin and Krogan datasets is shown in Table 5.14.  

Table 5.14: Comparison of Co-localization Score 

Algorithm 
Co-localization Score 

Gavin Krogan 

MCL 0.735 0.725 

MCODE 0.722 0.671 

RNSC 0.618 0.584 

CFINDER 0.615 0.59 

RRW 0.644 0.611 

AP 0.721 0.633 

CMC 0.628 0.655 

ClusterONE 0.746 0.723 

PCDEN 0.764 0.736 

As expected, the highest co-localization score of 0.764 on the Gavin dataset is 

achieved by PCDEN, followed by ClusterONE with a score of 7.46. Also, the co-

localization score on the Krogan dataset of PCDEN is 0.736 which is higher than 

0.725, the score of obtained by MCL and 0.723 achieved by ClusterONE is, which is 

nearly the same as that of. Hence the protein complexes detected by PCDEN 

ensemble have relatively high quality from the biological view due to the high co-

localization score on both the Gavin and Krogan dataset. 

The results of comparisons of Co-localization score of PCDEN and the baseline 

algorithms on the Gavin and Krogan dataset are illustrated in Figure 5.10. 
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Figure 5.10: Comparison of Co-localization Score 

5.13.1.2 Comparison of PCDEN with Ensemble Approaches 

In addition to comparison with individual clustering methods, we compare our 

proposed ensemble PCDEN with ensemble approaches proposed in recent years, 

namely Ensemble Non-negative Matrix Factorization (NMF)
 345

, Ensemble Clustering 

Bayesian Nonnegative Matrix Factorization (EC-BNMF)
 346

, Bipartite Graph 

Ensemble (BGENS)
 347

 and Full Graph Ensemble (FGENS)
 347

.  

The ensemble framework for detecting protein complexes NMF
 345

 proposed by 

Greene et al
 345

 first generates a collection of non-negative matrix factorizations with 

different number of dimensions. Then a hierarchical meta-clustering algorithm is 

employed to aggregate these factorizations and produce a disjoint hierarchy of meta-

clusters. Finally, the results are transformed into a soft hierarchical clustering of the 

original dataset. 

The next ensemble approach EC-BNMF
 346

 consists of two phases. In the generation 

phase, useful information in the form of “features” is extracted from several base 

clustering results. Each base clustering result is regarded as a “feature” of the original 

PPI network that indicates two proteins are connected if they have occurred in the 

same cluster at least once. In the complex detection phase, a Bayesian NMF-based 

ensemble clustering is employed which utilizes the group information provided by the 

edges between interacting proteins to detect protein complexes from the PPI network.  
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BGENS
 347

 is a bipartite graph that is constructed based on the affiliation of proteins 

and clusters. The original PPI data is initially clustered into a set of C partitions using 

the base clustering algorithms. Each clustering partition consists of a set of clusters 

from a certain clustering method. BGENS constructs a bipartite graph between protein 

nodes in the dataset and the cluster nodes obtained from the base clustering 

algorithms. 

The cluster ensemble, FGENS
 347

, is constructed from the bipartite graph BGENS, by 

omitting the interactions between the proteins and also the relationships between the 

clusters. The authors consider the original protein interactions as the basis of cluster-

belonging preference for those proteins that appear in different clusters. The proteins 

are partitioned into different final clusters by taking into consideration their original 

relationships with other proteins. The method proposed in BGENS is followed to 

partition the cluster nodes generated by the base clustering algorithms and a graph of 

proteins and clusters is constructed. The graph is now partitioned using the spectral 

clustering method, which partitions the graph into K parts with the objective of 

minimizing the cut. 

Analysis of Ensemble Results 

To evaluate the performance of the proposed cluster ensemble method PCDEN, the 

validity measures, Precision, Recall and F-measure are used as discussed in Section 

2.8.1.5. The results of the ensemble PCDEN are compared with the results of the 

ensemble approaches discussed earlier. Based on the comparison, the proposed 

ensemble method outperforms other approaches by getting higher F-measure and 

Recall rates for the MIPS gold standard, as shown in Table 5.15. The F-measure and 

Recall rates for SGD gold standard are 0.635584 and 0.586210 for PCDEN, which is 

almost at par with FGENS, which has scored 0.636667 for F-measure and 0.588107 

for Recall rate. However, PCDEN finds more matched modules from the PPI network 

than others and this demonstrates its effectiveness. 

NMF and BC-NMF methods use only the PPI network topology whereas PCDEN 

integrates information from GO similarity sources and so achieves higher scores than 

these methods. It also shows better results than BGENS and FGENS for the MIPS 
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gold standard. Its F-measure and Recall rates for SGD gold standard are almost at par 

with FGENS but are better than BGENS, the reason being that FGENS combines 

gene expression data and GO similarity information, which is also the case with 

PCDEN. This indicates that the integration of multiple information sources greatly 

benefits the protein complex detection.  

Table 5.15: Comparison of the ensemble approaches with the proposed ensemble PCDEN 

Ensemble 

Technique 

MIPS SGD 

Precision Recall F-measure Precision Recall F-measure 

BGENS 0.597300 0.506186 0.547982 0.627466 0.531751 0.575658 

FGENS 0.643034 0.544943 0.589939 0.655767 0.588107 0.636667 

NMF 0.512575 0.432938 0.469402 0.538997 0.455255 0.493598 

EC-BNMF 0.553980 0.467910 0.507320 0.603345 0.509605 0.552527 

PCDEN 0.654574 0.552875 0.599442 0.674211 0.586210 0.635584 

A graphical comparison of the clustering approaches using Precision, Recall and F-

measure is given in Figure 5.11. 

 

Figure 5.11: Comparison of the ensemble approaches with the proposed ensemble PCDEN 

The performance of PCDEN is better than the other cluster ensemble methods, i.e., 

NMF and BC-NMF, but is at par for one result with FGENS. This indicates the 

effectiveness of a graph based cluster ensemble method such as FGENS and PCDEN 

in detecting protein complexes, especially so, when additional information about the 

proteins is integrated into the network. 
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5.14 Discussion 

Protein complexes are important for understanding principles of cellular organization 

and function. A better comprehension of their roles allows us to realize how a protein 

complex disorder can affect the biological processes in which it is involved. Proteins 

are related to diseases and diseases are usually caused by an erroneous production of 

some protein complex. Therefore, much work has focussed on the prediction of 

protein complexes from the PPI networks. However, the PPI datasets from high-

throughput techniques are fraught with noise. In response, some research groups 

propose a number of data integration and affinity scoring schemes and construct 

weighted networks. In this chapter, eight algorithms have been compared and the 

results validated against two gold standard datasets independently and the findings are 

reported. The biological relevance of the protein complexes detected is measured 

using a co-localization score and GO semantic similarity. It has been observed that the 

complexes obtained by ClusterONE displayed comparable accuracies when matched 

against known gold standard complexes. MCL was the closest in performance to 

ClusterONE, with the exception that MCL produced only non-overlapping clusters - a 

distinct advantage of ClusterONE.  

It has also been observed that traditional clustering approaches for protein complex 

identification are hampered by a number of factors, such as PPI networks being noisy 

and incomplete gives rise to high false-positive rate of interactions. The partitioning 

schemes themselves are dependent on specific initial conditions and parameter 

settings; the end result is unstable and unsatisfactory cluster partitions which lack 

biological meaning. Keeping these challenges in mind, a framework has been 

developed for an ensemble method and established with satisfactory results, for the 

purpose of identifying protein complexes from interaction datasets. 

An ensemble approach is generally able to improve the robustness and stability of the 

clusterings by combining the output of several algorithms, thus improving the overall 

prediction accuracy. Such a method can identify larger, denser clusters with improved 

biological significance. Ensemble-based methods are preferable for protein complex 

detection also considering that traditional clustering methods search for complexes in 
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“dense” regions and miss complexes of low densities, that is, small complexes of two 

or three proteins. Moreover, cluster ensembles can also address the problem of local 

optima and obtain a globally optimum solution, i.e., a stable clustering solution.  

The proposed ensemble called Protein Complex Detection Ensemble (PCDEN) is 

compared with eight algorithms and the results are validated independently using two 

gold standard datasets. The biological relevance of the protein complexes detected is 

measured using a co-localization score and GO semantic similarity. PCDEN is also 

compared with four ensemble approaches. The PCDEN ensemble outperforms the 

other clustering approaches in all datasets by achieving the highest score in each of 

the categories used for comparison. It can be concluded that the complexes obtained 

by PCDEN achieve accuracies comparable to gold standard complexes. The results 

prove that the integration of multiple sources increases the precision in detecting 

protein complexes in PPI networks. 


