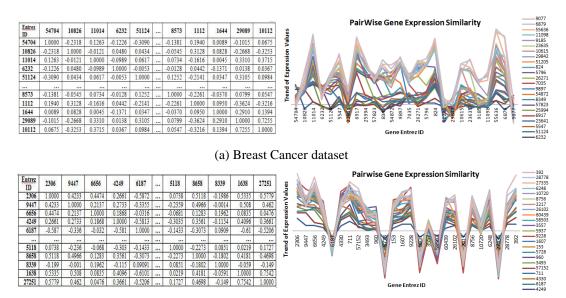
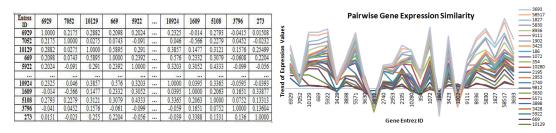
Appendix


Appendix

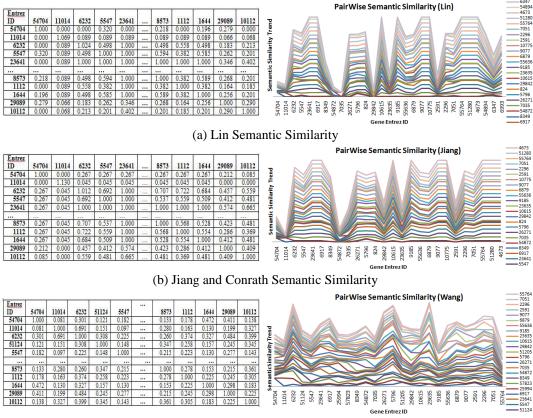
Experimental Results of the Cluster Analysis of Breast Cancer dataset, Lymphoma dataset and Central Nervous System dataset


The results for the experiments involving semantic similarity, sequence similarity, internal validity measures, stability measures and biological measures on the (a) Breast Cancer dataset (b) Lymphoma dataset and (c) Embryonal Tumours of the Central Nervous System (CNS) dataset are given here.

A. The Pair-wise Gene Expression Similarity Matrix

The pair-wise gene expression similarity is calculated using Pearson Correlation for (a) Breast Cancer dataset, (b) Lymphoma dataset and (c) Embryonal Tumours of the Central Nervous System (CNS) dataset. The similarity matrix value for some of the genes is shown in *Figure* A-1 below along with the plots of the values. These expression values will be used subsequently for comparison with the semantic similarity values for the corresponding pair of genes in Section C.

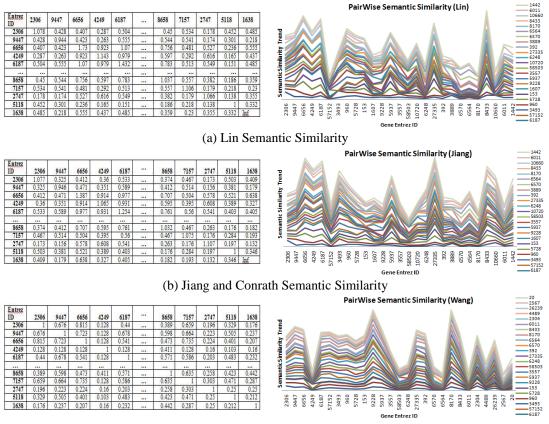
(b) Lymphoma dataset



(c) Embryonal Tumours of the Central Nervous System

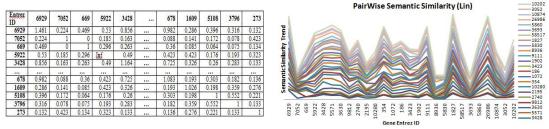
Figure A-1: Pair-Wise Gene Expression Similarity Matrix for (a) Breast Cancer dataset, (b) Lymphoma dataset and (c) Embryonal Tumours of the Central Nervous System (CNS)

B. The Pair-wise Semantic Similarity Matrix


The pair-wise semantic similarity matrix for the Lin, Jiang and Conrath and Wang measures for the Breast Cancer dataset are calculated and the semantic similarity values and plots for some of the genes is shown in *Figure* A-2 below:

(c) Wang Semantic Similarity

Figure A-2: Pair-Wise Semantic Similarity Matrix using (a) Lin, (b) Jiang and Conrath and (c) Wang for Breast Cancer dataset


The pair-wise semantic similarity matrix given in *Figure* A-3 shows the values for Lin, Jiang and Conrath and Wang measures for the Lymphoma dataset along with the plots.

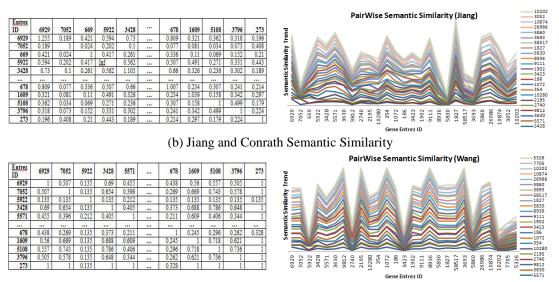
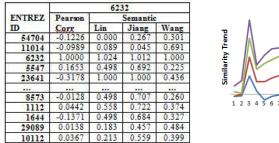

(c) Wang Semantic Similarity

Figure A-3: Pair-Wise Semantic Similarity Matrix using (a) Lin, (b) Jiang and Conrath and (c) Wang for Lymphoma dataset

Figure A-4 below shows the pair-wise semantic similarity values and plots of some of the genes for the Lin, Jiang and Conrath and Wang measures for the Embryonal Tumours of the Central Nervous System dataset.

(a) Lin Semantic Similarity



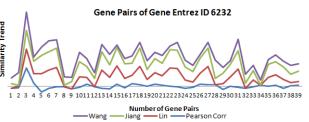
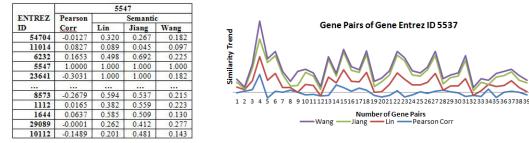
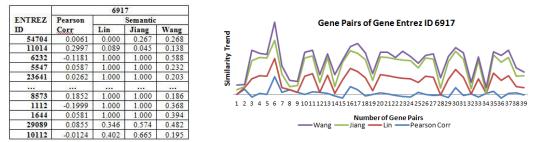
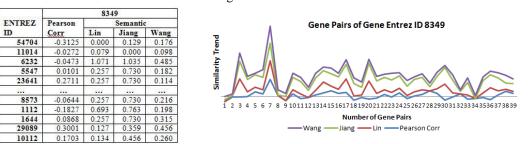

(c) Wang Semantic Similarity

Figure A-4: Pair-Wise Semantic Similarity Matrix using (a) Lin, (b) Jiang and Conrath and (c) Wang for Embryonal Tumours of the Central Nervous System

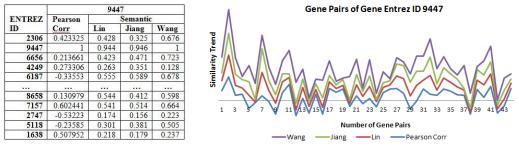

C. Comparison of Pair-wise Gene Expression Similarity and Semantic Similarity

The *Figure* A-5 gives a comparison of expression similarity and semantic similarity of four sample gene pairs of the breast cancer dataset, suggesting that gene products with similar expression patterns may have similarly annotated profiles.




(a) Comparison of Gene Expression Similarity and Semantic Similarity for Lin, Jiang and Conrath and Wang of Gene 6232

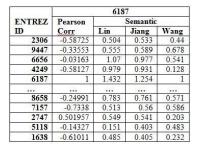
(b) Comparison of Gene Expression Similarity and Semantic Similarity for Lin, Jiang and Conrath and Wang of Gene 5547

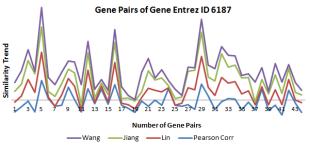

(c) Comparison of Gene Expression Similarity and Semantic Similarity for Lin, Jiang and Conrath and Wang of Gene 6917

(d) Comparison of Gene Expression Similarity and Semantic Similarity for Lin, Jiang and Conrath and Wang of Gene 8349

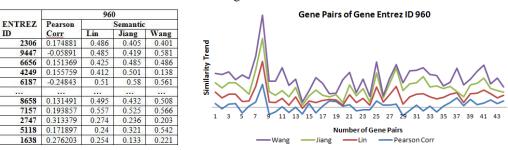
Figure A-5: Comparison of Gene Expression Similarity and Semantic Similarity for Lin, Jiang and Conrath and Wang of sample gene pairs of Breast Cancer dataset

Figure A-6 and *Figure* A-7 show the comparison of expression similarity and semantic similarity of four sample gene pairs of lymphoma dataset and embryonal tumours of central nervous system dataset. The assumption that gene products with similar expression patterns may have similarly annotated profiles also seems to hold true for this dataset. The graph obtained from the plot of the values for the genes exhibit a similar trend.

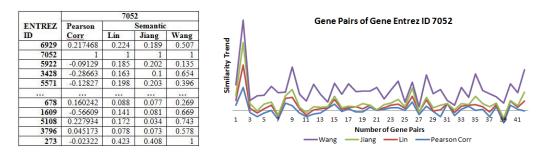

(a) Comparison of Gene Expression Similarity and Semantic Similarity for Lin, Jiang and Conrath and Wang of Gene 9447


		665	6			
ENTREZ	Pearson	Semantic				
ID	Corr	Lin	Jiang	Wang		
2306	0.447446	0.407	0.412	0.815		
9447	0.213661	0.423	0.471	0.723		
6656	1	1.73	1.387	1		
4249	0.186839	0.923	0.914	0.128		
6187	-0.03163	1.07	0.977	0.541		
10000			General			
8658	0.062237	0.756	0.707	0.473		
7157	0.292448	0.481	0.504	0.735		
2747	-0.02104	0.527	0.578	0.224		
5118	-0.06807	0.236	0.521	0.401		
1638	0.083528	0.555	0.638	0.207		

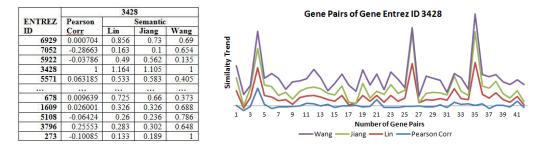
Similarity Trend 1 5 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 3 43 Number of Gene Pairs -Jiang -Wang - Lin Pearson Corr


Gene Pairs of Gene Entrez ID 6656

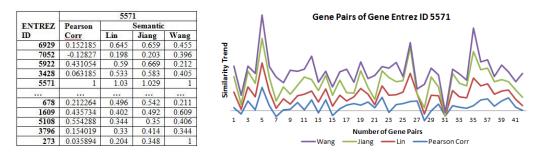
(b) Comparison of Gene Expression Similarity and Semantic Similarity for Lin, Jiang and Conrath and Wang of Gene 6656

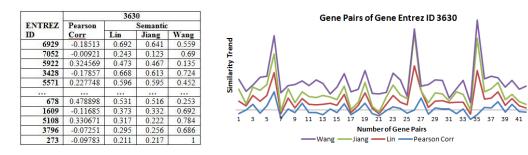


(c) Comparison of Gene Expression Similarity and Semantic Similarity for Lin, Jiang and Conrath and Wang of Gene 6187



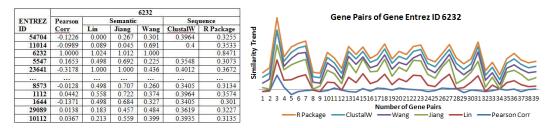
(d) Comparison of Gene Expression Similarity and Semantic Similarity for Lin, Jiang and Conrath and Wang of Gene 960


Figure A-6: Comparison of Gene Expression Similarity and Semantic Similarity for Lin, Jiang and Conrath and Wang of sample gene pairs of Lymphoma dataset

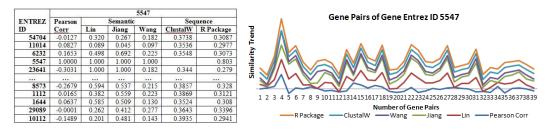

(a) Comparison of Gene Expression Similarity and Semantic Similarity for Lin, Jiang and Conrath and Wang of Gene 7052

(b) Comparison of Gene Expression Similarity and Semantic Similarity for Lin, Jiang and Conrath and Wang of Gene 3428

(c) Comparison of Gene Expression Similarity and Semantic Similarity for Lin, Jiang and Conrath and Wang of Gene 5571



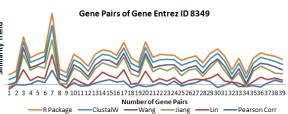
(d) Comparison of Gene Expression Similarity and Semantic Similarity for Lin, Jiang and Conrath and Wang of Gene 3630


Figure A-7: Comparison of Gene Expression Similarity and Semantic Similarity for Lin, Jiang and Conrath and Wang of sample gene pairs of Embryonal Tumours of Central Nervous System dataset

D. Comparison of Pair-wise Gene Expression Similarity, Semantic Similarity and Sequence Similarity

The gene expression similarity, Lin, Jiang and Conrath and Wang semantic similarity and sequence similarity of the some of the gene pairs of breast cancer dataset is given in *Figure* A-8. From the graph it can be clearly observed that the genes pair-wise scores for the various measures follow a common trend, indicating a correlation between gene expression similarity, semantic similarity and sequence similarity.

(a) Comparison of Gene Expression Similarity, Semantic Similarity for Lin, Jiang and Conrath and Wang and Sequence Similarity of Gene 6232

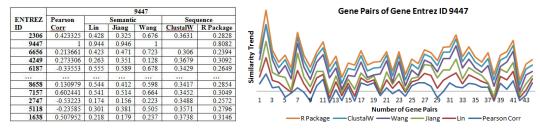


(b) Comparison of Gene Expression Similarity, Semantic Similarity for Lin, Jiang and Conrath and Wang and Sequence Similarity of Gene 5547

				6917			
ENTREZ	Pearson		Semantic	:	Seq	uence	Gene Pairs of Gene Entrez ID 6917
ID	Corr	Lin	Jiang	Wang	ClustalW	R Package	2 A
54704	0.0061	0.000	0.267	0.268	0.3786	0.3305	
11014	0.2997	0.089	0.045	0.138	0.3583	0.3096	
6232	-0.1181	1.000	1.000	0.588	0.3643	0.3	
5547	0.0587	1.000	1.000	0.232	0.3714	0.3163	
23641	0.0262	1.000	1.000	0.203	0.3333	0.3023	
	1222		1202	1000			
8573	0.1852	1.000	1.000	0.186	0.3738	0.3276	
1112	-0.1999	1.000	1.000	0.368	0.3583	0.2987	1 2 3 4 5 6 7 8 9101112131415161718192021222324252627282930313233343536373839
1644	0.0581	1.000	1.000	0.394	0.3845	0.3094	
29089	0.0855	0.346	0.574	0.482	0.4964	0.3806	Number of Gene Pairs
10112	-0.0124	0.402	0.665	0.195	0.4182	0.2905	-RPackage -ClustalW -Wang Jiang -Lin -Pearson Corr

(c) Comparison of Gene Expression Similarity, Semantic Similarity for Lin, Jiang and Conrath and Wang and Sequence Similarity of Gene 6917

				8349				
ENTREZ	Pearson		Semantio	:	Seq	Sequence		
ID	Corr	Lin	Jiang	Wang	ClustalW	R Package		
54704	-0.3125	0.000	0.129	0.176	0.3524	0.3422		
11014	-0.0272	0.079	0.000	0.098	0.4	0.3612		
6232	-0.0473	1.071	1.035	0.485	0.4119	0.3563		
5547	0.0101	0.257	0.730	0.182	0.3595	0.3111		
23641	0.2711	0.257	0.730	0.114	0.3952	0.3581		
8573	-0.0644	0.257	0.730	0.216	0.3524	0.3226		
1112	-0.1827	0.693	0.763	0.198	0.4024	0.3387		
1644	0.0868	0.257	0.730	0.315	0.3679	0.301		
29089	0.3001	0.127	0.359	0.456	0.3833	0.3302		
10112	0 1703	0.134	0.456	0 260	0.4	0 3173		



(d) Comparison of Gene Expression Similarity, Semantic Similarity Sequence Similarity for Lin, Jiang and Conrath and Wang and of Gene 8349

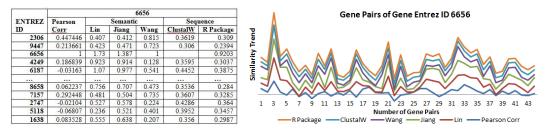
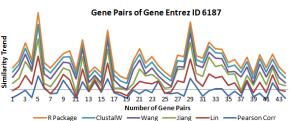
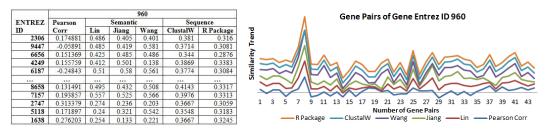

Figure A-8: Comparison of Gene Expression Similarity, Semantic Similarity and Sequence Similarity for Lin, Jiang and Conrath and Wang and Sequence Similarity of sample gene pairs of Breast Cancer dataset

Figure A-9 depicts the gene expression similarity, Lin, Jiang and Conrath and Wang semantic similarity and sequence similarity of the some of the gene pairs of Lymphoma dataset. From the graph it can be clearly observed that the genes pair-wise scores for the various measures follow a common trend, indicating a correlation between gene expression similarity, semantic similarity and sequence similarity. This

is borne out also by *Figure* A-10 for the gene pairs of Embryonal Tumours of Central Nervous System dataset.

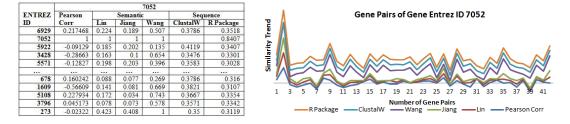


(a) Comparison of Gene Expression Similarity, Semantic Similarity for Lin, Jiang and Conrath and Wang and Sequence Similarity of Gene 9447



(b) Comparison of Gene Expression Similarity, Semantic Similarity for Lin, Jiang and Conrath and Wang and Sequence Similarity of Gene 6656

				6187			
ENTREZ	Pearson		Semanti	c	Sequence		
ID	Corr	Lin	Jiang	Wang	ClustalW	R Package	
2306	-0.58725	0.504	0.533	0.44	0.375	0.3097	
9447	-0.33553	0.555	0.589	0.678	0.3429	0.2649	
6656	-0.03163	1.07	0.977	0.541	0.4452	0.3875	
4249	-0.58127	0.979	0.931	0.128	0.3869	0.3269	
6187	1	1.432	1.254	1		0.8659	
8658	-0.24991	0.783	0.761	0.571	0.3738	0.3059	
7157	-0.7338	0.513	0.56	0.586	0.3548	0.3201	
2747	0.501957	0.549	0.541	0.203	0.425	0.3614	
5118	-0.14327	0.151	0.403	0.483	0.419	0.3374	
1638	-0.61011	0.485	0.405	0.232	0.3524	0.3052	



(c) Comparison of Gene Expression Similarity, Semantic Similarity for Lin, Jiang and Conrath and Wang and Sequence Similarity of Gene 6187

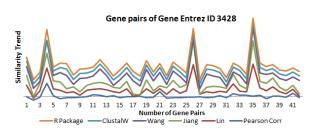
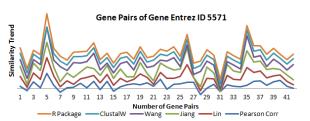
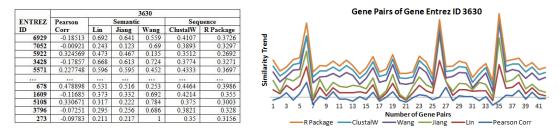

(d) Comparison of Gene Expression Similarity, Semantic Similarity for Lin, Jiang and Conrath and Wang and Sequence Similarity of Gene 960

Figure A-9: Comparison of Gene Expression Similarity, Semantic Similarity for Lin, Jiang and Conrath and Wang and Sequence Similarity of sample gene pairs of Lymphoma dataset


(a) Comparison of Gene Expression Similarity, Semantic Similarity for Lin, Jiang and Conrath and Wang and Sequence Similarity of Gene 7052

	3428								
ENTREZ	Pearson		Semanti	c	Sequence				
ID	Corr	Lin	Jiang	Wang	ClustalW	R Package			
6929	0.000704	0.856	0.73	0.69	0.3929	0.3127			
7052	-0.28663	0.163	0.1	0.654	0.3476	0.3301			
5922	-0.03786	0.49	0.562	0.135	0.356	0.3208			
3428	1	1.164	1.105	1		0.8271			
5571	0.063185	0.533	0.583	0.405	0.3667	0.2846			
			1.12						
678	0.009639	0.725	0.66	0.373	0.3619	0.2988			
1609	0.026001	0.326	0.326	0.688	0.3607	0.2943			
5108	-0.06424	0.26	0.236	0.786	0.3714	0.3311			
3796	0.25553	0.283	0.302	0.648	0.3631	0.3124			
273	-0 10085	0 133	0 189	1	0.35	0 3182			



(b) Comparison of Gene Expression Similarity, Semantic Similarity and Sequence Similarity for Lin, Jiang and Conrath and Wang of Gene 3428

	5571									
ENTREZ	Pearson		Semanti	5	Sequence					
ID	Corr	Lin	Jiang	Wang	ClustalW	R Package				
6929	0.152185	0.645	0.659	0.455	0.4155	0.3561				
7052	-0.12827	0.198	0.203	0.396	0.3583	0.3028				
5922	0.431054	0.59	0.669	0.212	0.3619	0.2628				
3428	0.063185	0.533	0.583	0.405	0.3667	0.2846				
5571	1	1.03	1.029	1		0.8731				
			1.22							
678	0.212264	0.496	0.542	0.211	0.4298	0.3711				
1609	0.435734	0.402	0.492	0.609	0.4036	0.3201				
5108	0.554288	0.344	0.35	0.406	0.35	0.2806				
3796	0.154019	0.33	0.414	0.344	0.3726	0.3031				
273	0.035894	0.204	0.348	1	0.3798	0.3067				

(c) Comparison of Gene Expression Similarity, Semantic Similarity for Lin, Jiang and Conrath and Wang and Sequence Similarity of Gene 5571

(d) Comparison of Gene Expression Similarity, Semantic Similarity for Lin, Jiang and Conrath and Wang and Sequence Similarity of Gene 3630

Figure A-10: Comparison of Gene Expression Similarity, Semantic Similarity for Lin, Jiang and Conrath and Wang and Sequence Similarity of sample gene pairs of Embryonal Tumours of Central Nervous System dataset

E. Result of Internal Validation

The internal validation measures of connectivity, Dunn index and silhouette width for each of the eight algorithms for the Breast Cancer dataset are shown in *Table* A-1. It

is noticed that hierarchical clustering with two clusters performs the best in the case of connectivity and silhouette width and with four clusters in case of Dunn index. The plots of the connectivity, Dunn index, and silhouette width are given in *Figure* A-11, which indicates that hierarchical clustering outperforms the other clustering algorithms under each validation measure and hence appears to be the method of choice.

Clustering	Validation		Numbe	er of Cluster	rs	
Algorithm	Measures	2	3	4	5	6
hierarchical	Connectivity	2.929	5.8579	8.7869	11.7159	14.6448
	Dunn	0.7	0.6464	0.779	0.6109	0.6561
	Silhouette	0.3772	0.3482	0.33	0.2283	0.2021
kmeans	Connectivity	5.8579	16.2127	16.546	30.0127	39.7175
	Dunn	0.6464	0.4386	0.4902	0.3318	0.3538
	Silhouette	0.374	0.2763	0.253	0.1119	0.1019
diana	Connectivity	5.8579	5.8579	8.7869	19.7528	19.9194
	Dunn	0.6464	0.6464	0.779	0.5083	0.5083
	Silhouette	0.374	0.3482	0.33	0.1891	0.1882
som	Connectivity	2.929	17.225	42.019	48.2409	59.0298
	Dunn	0.7	0.3534	0.3388	0.2798	0.3083
	Silhouette	0.3772	0.1222	0.0854	0.0121	-0.0197
pam	Connectivity	28.4897	30.6187	33.381	35.3571	37.2361
-	Dunn	0.2716	0.2905	0.2995	0.36	0.3837
	Silhouette	0.0902	0.0781	0.0852	0.0706	0.0559
sota	Connectivity	26.4512	35.2464	37.7075	38.2075	41.1448
	Dunn	0.3005	0.2998	0.3341	0.3341	0.3341
	Silhouette	0.0919	0.0873	0.0828	-0.0106	-0.0429
clara	Connectivity	28.4897	30.6187	33.381	35.3571	37.2361
	Dunn	0.2716	0.2905	0.2995	0.36	0.3837
	Silhouette	0.0902	0.0781	0.0852	0.0706	0.0559
model	Connectivity	34.3698	16.2127	16.546	25.0968	25.7079
	Dunn	0.3518	0.4386	0.4902	0.4902	0.5422
	Silhouette	0.1651	0.2763	0.253	0.1901	0.1787
Optimal Score	es:					
	Score	Method	Clusters			
Connectivity	2.929	hierarchical	2			
Dunn	0.779	hierarchical	4			
Silhouette	0.3772	hierarchical	2			

Table A-1: Scores of Internal Validation Measures for the Breast Cancer dataset

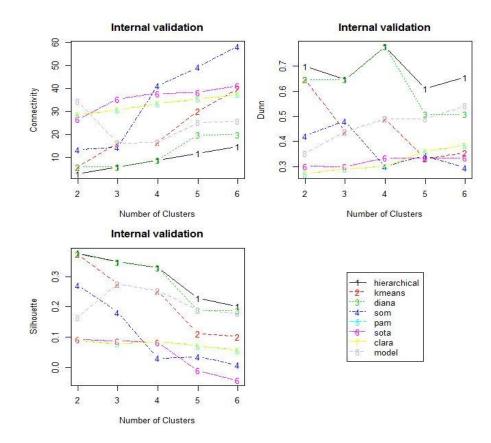


Figure A-11: The plots of the connectivity, Dunn index, and silhouette width for the Breast Cancer dataset

The eight algorithms using the Lymphoma dataset are subjected to the calculation of connectivity, Dunn index and silhouette width internal validation measures and the results are shown in *Table* A-2. As in the case in *Table* A-1, it is noticed that hierarchical clustering with two clusters performs the best in the case of connectivity and silhouette width and with three clusters in case of Dunn index. This indicates that hierarchical clustering outperforms the other clustering algorithms under each validation measure and from the plots of connectivity, Dunn index, and silhouette width shown in *Figure* A-12 hierarchical clustering appears to be the method of choice.

Clustering	Validity					
Algorithm	Measures	2	3	4	5	6
hierarchical	Connectivity	4.2869	7.2159	9.7159	16.9147	19.2897
	Dunn	0.8238	0.977	0.6611	0.4195	0.511
	Silhouette	0.8972	0.8406	0.8273	0.7657	0.7259
kmeans	Connectivity	4.2869	13.3524	15.8524	16.9147	19.2897
	Dunn	0.8238	0.2025	0.2025	0.4195	0.511
	Silhouette	0.8972	0.8007	0.788	0.7657	0.7259

1'	<u>a</u>	1 20 40	7.0150	15 (055	10 1057	10.0607
diana	Connectivity	4.2869	7.2159	15.6357	18.1357	19.8607
	Dunn	0.8238	0.977	0.2668	0.3938	0.4111
	Silhouette	0.8972	0.8406	0.7847	0.7722	0.7314
som	Connectivity	4.2869	13.3524	15.8798	23.9929	28.8571
	Dunn	0.8238	0.2025	0.0376	0.0366	0.0331
	Silhouette	0.8972	0.8007	0.6156	0.5943	0.4918
pam	Connectivity	4.2869	13.8044	20.5766	22.6599	25.1599
-	Dunn	0.8238	0.029	0.0361	0.0474	0.0699
	Silhouette	0.8972	0.5765	0.5986	0.6054	0.5932
sota	Connectivity	7.9778	11.9647	14.4647	19.4813	20.9813
	Dunn	0.1042	0.2027	0.2027	0.2395	0.4851
	Silhouette	0.8023	0.7918	0.7789	0.7249	0.7347
clara	Connectivity	4.2869	13.3234	18.831	20.6643	25.6242
	Dunn	0.8238	0.029	0.0366	0.0474	0.0652
	Silhouette	0.8972	0.5587	0.5964	0.6024	0.5945
model	Connectivity	13.9925	40.7837	39.077	45.2472	49.2341
	Dunn	0.0119	0.0036	0.0034	0.0034	0.0067
	Silhouette	0.3321	-0.0332	0.1733	0.2006	0.24
Optimal Score	s:					
Measures	Score	Method	Clusters			
Connectivity	4.2869	hierarchical	2			
Dunn	0.977	hierarchical	3			
Silhouette	0.8972	hierarchical	2			

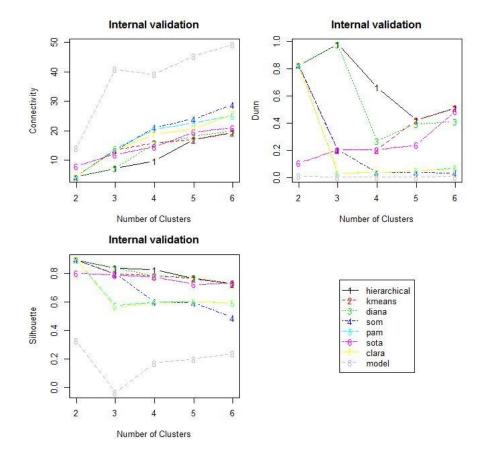


Figure A-12: The plots of the connectivity, Dunn index, and silhouette width for the Lymphoma dataset

The internal validation scores for the measures of connectivity, Dunn index and silhouette width for the Embryonal Tumours of Central Nervous System dataset are shown in *Table* A-3. The optimal scores shows that hierarchical clustering with two clusters performs the best in each case, which is confirmed by the plots of the connectivity, Dunn index and silhouette width in *Figure* A-13. SOTA is seen not to perform well as it could not uncover clusters between the ranges four to six.

Clustering	Validation		Numl	per of Cluster	a G	
Algorithm	Measures	2	3	4	5	6
hierarchical	Connectivity	2.9290	5.8579	4 8.7869	15.3111	18.2401
merarennear	Dunn	1.7906	0.6743	0.5279	0.3530	0.4330
	Silhouette	0.8416	0.6274	0.5591	0.3330	0.4330
kmeans	Connectivity	2.9290	15.5933	13.9083	16.8373	19.7663
	Dunn	1.7906	0.2166	0.2155	0.2622	0.2806
	Silhouette	0.8416	0.4468	0.3842	0.3642	0.3405
diana	Connectivity	2.9290	14.2833	16.4028	18.7984	21.7274
	Dunn	1.7906	0.1793	0.2814	0.3223	0.3451
	Silhouette	0.8416	0.4039	0.4298	0.4193	0.3678
som	Connectivity	2.9290	15.5933	16.8373	28.8837	36.7782
50111	Dunn	1.7906	0.2166	0.1653	0.0874	0.0909
	Silhouette	0.8416	0.2100	0.3593	0.1655	0.1893
pam	Connectivity	2.9290	16.3127	17.2472	37.7722	42.3845
	Dunn	1.7906	0.1589	0.2155	0.1543	0.1543
	Silhouette	0.8416	0.3900	0.3876	0.2089	0.1927
sota	Connectivity	13.4321	14.3667	NA	NA	NA
	Dunn	0.0601	0.0601	NA	NA	NA
	Silhouette	0.3133	0.3036	NA	NA	NA
clara	Connectivity	2.9290	17.4556	27.0302	39.9345	42.3845
•••••	Dunn	1.7906	0.2082	0.1146	0.1268	0.1543
	Silhouette	0.8416	0.4432	0.2535	0.1889	0.1927
1.1						
model	Connectivity	21.8623	27.5202	28.4548	38.2885	57.5889
	Dunn	0.0601	0.1345	0.1345	0.2147	0.1106
	Silhouette	0.3055	0.2969	0.3050	0.2924	0.0660
Optimal Scores	:					
	Score	Method	Clusters			
Connectivity	2.9290	hierarchical	2			
Dunn	1.7906	hierarchical	2			
Silhouette	0.8416	hierarchical	2			

 Table A-3: Scores of Internal Validation Measures for the Embryonal Tumours of Central Nervous System dataset

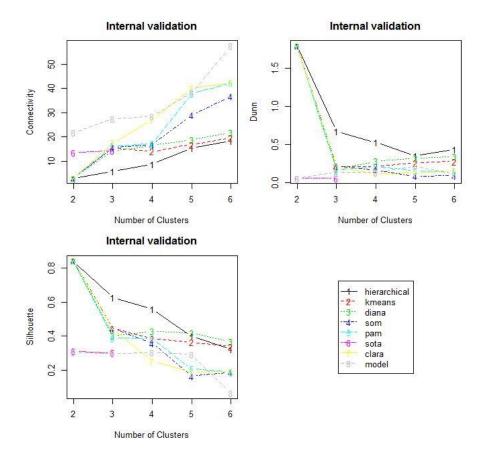


Figure A-13: The plots of the connectivity, Dunn index, and silhouette width for the Embryonal Tumours of Central Nervous System dataset

F. Result of Stability Measures

The results of APN, AD, ADM and FOM for the Breast Cancer dataset are given in *Table* A-4.

Clustering	Validation		Number	r of Cluster	S	
Algorithm	Measures	2	3	4	5	6
hierarchical	APN	0.0022	0.0095	0	0.0007	0.0029
	AD	2.9282	2.7599	2.5345	2.3969	2.2656
	ADM	0.0142	0.0721	0	0.0039	0.0131
	FOM	0.2535	0.2455	0.2276	0.2245	0.2188
kmeans	APN	0.0062	0.0189	0.0196	0.0188	0.0614
	AD	2.8815	2.7049	2.5194	2.3658	2.2546
	ADM	0.0195	0.1349	0.0772	0.0606	0.2108
	FOM	0.2453	0.2406	0.2297	0.2229	0.2206
diana	APN	0.014	0.0102	0.002	0.0155	0.0074
	AD	2.9087	2.7618	2.5364	2.3801	2.2426
	ADM	0.0821	0.0772	0.0066	0.0882	0.0459
	FOM	0.2468	0.2464	0.2286	0.2235	0.2182
som	APN	0.1159	0.1977	0.2954	0.3578	0.3588
	AD	3.0412	3.0197	2.7384	2.6827	2.5544
	ADM	0.4747	0.7853	0.764	0.9293	0.9193

Table A-4: Scores of Stability Measures for the Breast Cancer dataset

	FOM	0.248	0.2458	0.2392	0.231	0.2326
pam	APN	0.02	0.0161	0.0204	0.0526	0.1105
-	AD	2.9623	2.75	2.5661	2.3923	2.3213
	ADM	0.1316	0.0512	0.0639	0.1034	0.2211
	FOM	0.2572	0.2432	0.2323	0.2228	0.2243
sota	APN	0.1951	0.2074	0.2061	0.1932	0.193
	AD	3.0026	2.9005	2.8139	2.667	2.5647
	ADM	0.4622	0.5552	0.6112	0.6088	0.6153
	FOM	0.257	0.2532	0.2473	0.2388	0.2329
clara	APN	0.02	0.0192	0.0204	0.035	0.072
	AD	2.9623	2.7511	2.5661	2.3873	2.297
	ADM	0.1316	0.057	0.0639	0.0753	0.1456
	FOM	0.2572	0.2435	0.2323	0.2222	0.2227
model	APN	0.0217	0.0085	0.0226	0.0744	0.0776
	AD	2.9038	2.6755	2.5151	2.395	2.2251
	ADM	0.0925	0.0363	0.0606	0.2165	0.1665
	FOM	0.2515	0.2364	0.2301	0.2224	0.2114
Optimal Sco	ores:					
•	Score	Method	Clusters			
APN	0	hierarchical	4			
AD	2.2251	model	6			
ADM	0	hierarchical	4			
FOM	0.2114	model	6			

For the APN and ADM measures, values close to zero are preferred. The optimal score in *Table* A-4 shows that hierarchical clustering with four clusters gives the best score, as was also in the case of internal validation. However, for the other two measures model based clustering with six clusters has the best score. It is illustrative to graphically visualize each of the validation measures.

The plots of the APN, AD, and ADM are given in *Figure* A-14. The APN measure shows an interesting trend, in that it initially stabilizes from two to four clusters for all the clustering methods except for SOM and SOTA, but marginally increases afterwards. Though hierarchical clustering with four clusters has the best score, Diana with six clusters is a close second. The AD and FOM measures tend to decrease as the number of clusters increases. Here model based clustering with six clusters has the best overall score, though the other algorithms have similar scores. The plot of the FOM measure is very similar to the AD measure, so it has been omitted from the figure. For the ADM measure hierarchical with four clusters again has the best score.

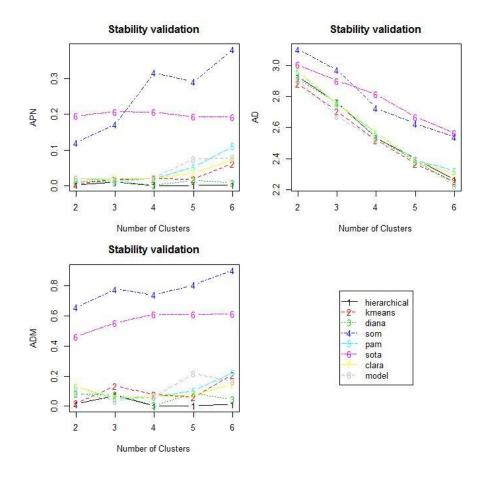


Figure A-14: The plots of the APN, AD and ADM of stability measures for the Breast Cancer dataset

For the Lymphoma dataset, the plots of the APN, AD, and ADM are given in *Figure* A-14. Though the graph of APN measure shows DIANA as the most favorable algorithm, one must keep in mind that this algorithm is a special case of the hierarchical algorithm. Thus, hierarchical clustering with two clusters gives the best score and it matches the findings as seen in the case of internal validation in the optimal score given in *Table* A-5. For the AD and FOM measures, PAM with six clusters has the best overall score, but over the entire range of clusters evaluated SOM, K-means, and Diana have comparable performance. Similarly, for the ADM measure hierarchical has a more stable and better performance.

Clustering	Validation	Number of Clusters						
Algorithm	Measures	2	3	4	5	6		
hierarchical	APN	0	0	0.0125	0.0065	0.0006		
	AD	1530.555	1329.008	1274.068	909.3139	809.4373		
	ADM	0	0	83.4987	59.4935	2.7571		
	FOM	342.5648	291.3158	271.6255	190.8146	157.797		
kmeans	APN	0	0.006	0.013	0	0.0006		
	AD	1530.555	1093.747	1042.737	877.4125	809.4373		
	ADM	0	31.9941	86.5842	0	2.7571		
	FOM	342.5648	238.5607	215.6405	173.3368	157.797		
diana	APN	0	0	0.0009	0.0009	0.0017		
	AD	1530.555	1329.008	968.9797	900.9588	846.0369		
	ADM	0	0	4.1009	4.1009	8.9774		
	FOM	342.5648	291.3158	198.0643	179.1709	168.7001		
som	APN	0	0.0126	0.0754	0.0216	0.0444		
	AD	1530.555	1099.501	882.7788	738.393	694.3283		
	ADM	0	77.6999	203.8568	54.9332	106.6066		
	FOM	342.5648	238.2675	214.3498	190.1775	176.4898		
pam	APN	0	0.01	0.0221	0.0197	0.0245		
-	AD	1530.555	1085.268	841.5224	722.548	657.184		
	ADM	0	25.778	75.9067	58.4361	66.9982		
	FOM	342.5648	272.8504	213.5807	176.8744	157.5351		
sota	APN	0	0	0	0	0		
	AD	1521.36	1068.687	1000.666	915.7482	813.0903		
	ADM	0	0	0	0	0		
	FOM	439.792	232.5206	216.3393	193.6261	156.8454		
clara	APN	0	0.0138	0.0254	0.0354	0.0736		
	AD	1530.555	1099.382	848.081	742.9175	703.8746		
	ADM	0	59.1567	64.0555	85.9023	167.6837		
	FOM	342.5648	275.6008	209.5931	174.8482	156.8659		
model	APN	0.0008	0.0232	0.006	0.0137	0.0142		
	AD	1988.862	1965.832	1269.142	1192.047	739.7668		
	ADM	2.911	4.7961	1.1664	12.7412	14.4177		
	FOM	615.289	618.8861	436.0153	434.2291	208.9034		
Optimal Sco	res:							
	Score	Method	Clusters					
APN	0	hierarchical	2					
AD	657.184	pam	6					
ADM	0	hierarchical	2					
FOM	156.8454	sota	6					

 Table A-5: Scores of Stability Measures for the Lymphoma dataset

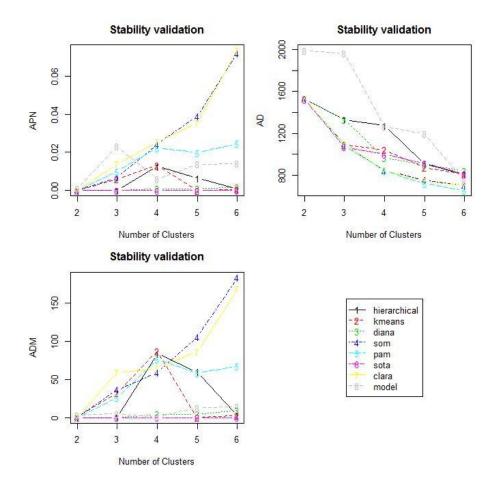


Figure A-15: The plots of the APN, AD and ADM of stability measures for the Lymphoma dataset

The plots for the Embryonal Tumours of Central Nervous System dataset of APN, AD, and ADM are given in *Figure* A-16. Hierarchical clustering with two clusters is seen to be performing the best score and it confirms the findings of internal validation, followed by Diana. This is confirmed by the optimal scores given in *Table* A-6. It is seen that PAM and k-means also perform well. For the AD and FOM measures, PAM with six clusters has the best overall score along with k-means. SOTA is seen not to perform well in this case as it could not uncover clusters between the ranges four to six.

Clustering	Validation	Number of Clusters						
Algorithm	Measures	2	3	4	5	6		
hierarchical	APN	0	0	0.017	0.0088	0.0079		
	AD	2831.785	2575.523	2378.493	2153.259	2021.896		
	ADM	0	0	81.2571	102.1255	74.6602		
	FOM	360.8386	332.3272	298.2834	278.2367	266.9793		
kmeans	APN	0	0.0204	0.0069	0.039	0.0174		
	AD	2831.785	2328.474	2027.98	1900.727	1776.726		
	ADM	0	72.412	35.2552	108.3335	62.6617		
	FOM	360.8386	295.5827	263.1819	236.2135	222.3414		
diana	APN	0	0.0039	0	0.0019	0.0046		
	AD	2831.785	2405.219	2088.549	1970.159	1859.723		
	ADM	0	107.0119	0	13.6494	31.417		
	FOM	360.8386	311.1003	263.5247	259.23	249.3723		
som	APN	0.095	0.0965	0.1939	0.2826	0.2235		
	AD	3010.729	2446.893	2219.343	2144.637	1928.805		
	ADM	418.846	495.1717	582.3461	733.2932	601.8914		
	FOM	426.7409	359.6395	309.9975	296.1228	277.789		
pam	APN	0	0.0291	0.0327	0.0264	0.0278		
1	AD	2831.785	2303.267	2068.245	1884.061	1762.742		
	ADM	0	136.7734	128.434	96.6943	92.9114		
	FOM	360.8386	302.1433	270.1488	252.8933	232.0985		
sota	APN	0.0798	0.1756	NA	NA	NA		
	AD	3090.101	2973.923	NA	NA	NA		
	ADM	262.433	515.4014	NA	NA	NA		
	FOM	413.3749	392.2832	NA	NA	NA		
clara	APN	0	0.0832	0.1688	0.0691	0.0947		
	AD	2831.785	2368.853	2248.118	1905.098	1791.091		
	ADM	0	294.6688	657.8768	164.1097	200.0441		
	FOM	360.8386	300.8604	279.2093	256.7445	232.4297		
model	APN	0.0095	0.0234	0.0408	0.0809	0.0891		
	AD	3077.805	2366.015	2141.536	1936.032	1856.468		
	ADM	30.7028	64.4391	101.093	234.2042	278.5476		
	FOM	430.198	328.2964	304.3724	269.9173	258.5611		
Optimal Sco	res:							
	Score	Method	Clusters					
APN	0	hierarchical	2					
AD	1762.742	pam	6					
ADM	0	hierarchical	2					
FOM	222.3414	kmeans	6					

Table A-6: Scores of Stability Measures for the Embryonal Tumours of Central Nervous
System dataset

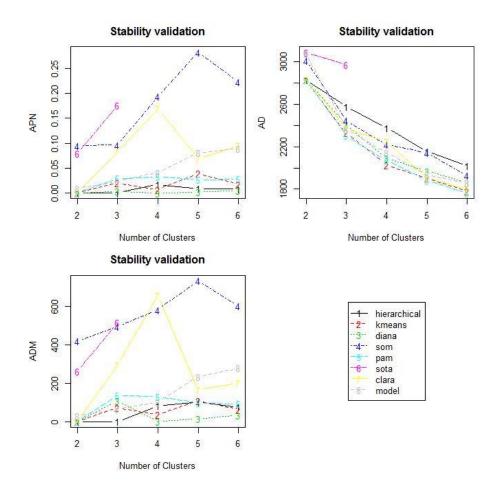


Figure A-16:The plots of the APN, AD and ADM of stability measures for the Embryonal Tumours of Central Nervous System dataset

G. Results of BHI and BSI

The BHI and the BSI values were computed for each clustering algorithm in the range of cluster numbers from two to six. The breast cancer data is considered first. *Table* A-7 shows the scores for the Breast Cancer dataset and it is seen that DIANA has the highest BHI score for six clusters and the highest BSI score is by hierarchical algorithm for two clusters, which indicates that consistency of clustering for genes with similar biological functionality is given by hierarchical algorithm.

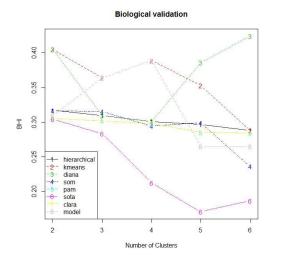

A 1	Measure					
Algorithm	Measure	2	3	4	5	6
hierarchical	BHI	0.3172	0.3095	0.3011	0.2966	0.2882
	BSI	0.8253	0.6611	0.5725	0.5329	0.5179
kmeans	BHI	0.4047	0.3639	0.3889	0.3529	0.2879
	BSI	0.6371	0.4925	0.4579	0.3006	0.2511
diana	BHI	0.4047	0.3095	0.3011	0.3861	0.4241

Table A-7: Scores of BHI and BSI for the Breast Cancer dataset

	BSI	0.6574	0.6605	0.5708	0.3361	0.3021
som	BHI	0.3163	0.3156	0.2947	0.2989	0.2361
	BSI	0.7014	0.5614	0.3147	0.2431	0.1773
pam	BHI	0.3052	0.3022	0.2979	0.2853	0.2839
-	BSI	0.5904	0.5511	0.4181	0.3831	0.3612
sota	BHI	0.3041	0.2833	0.2125	0.1708	0.1867
	BSI	0.4697	0.4221	0.4131	0.4092	0.3934
clara	BHI	0.3052	0.3022	0.2979	0.2853	0.2839
	BSI	0.5904	0.5501	0.4181	0.3895	0.3725
model	BHI	0.3091	0.3639	0.3889	0.2651	0.2651
	BSI	0.3612	0.4574	0.4493	0.3891	0.3246
Optimal Scores	:					
-	Score	Method	Clusters			
BHI	0.424	diana	6			
BSI	0.8253	hierarchical	2			

Figure A-17 shows the plots of BHI for the eight clustering algorithms which reveal that DIANA happens to produce most homogeneous biological clusters based on this dataset and the results are statistically significant when the number of clusters is between four and six.

The plots of BSI are shown in *Figure* A-18 and hierarchical algorithm seems to be the most stable in its capability of producing clusters using reduced datasets that are biologically alike. Considering both indices, it can be said that hierarchical algorithm is the best choice for this dataset to maximize the biological homogeneity and DIANA can be a worthwhile consideration if six clusters are desired.

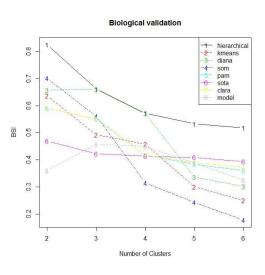
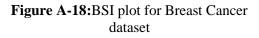
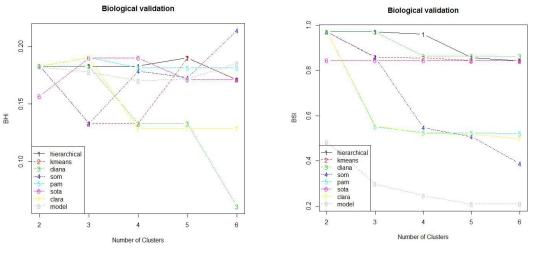
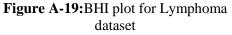



Figure A-17:BHI plot for Breast Cancer dataset




The scores for the Lymphoma dataset is shown in *Table* A-8 and it is seen that SOM has the highest BHI score for six clusters and the highest BSI score is again by hierarchical algorithm for two clusters, which indicates its consistency to produce most homogeneous biological clusters based on this dataset.

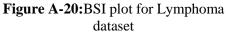

Algorithm	Measure	Number of Clusters					
Algorithm	Measure	2	3	4	5	6	
hierarchical	BHI	0.1827	0.1827	0.1827	0.1899	0.1711	
	BSI	0.9704	0.9704	0.9593	0.8566	0.8425	
kmeans	BHI	0.1827	0.1329	0.1329	0.1899	0.1711	
	BSI	0.9704	0.8585	0.8554	0.8433	0.8425	
diana	BHI	0.1827	0.1827	0.1329	0.1329	0.0608	
	BSI	0.9704	0.9704	0.8632	0.8632	0.8619	
som	BHI	0.1827	0.1329	0.1783	0.1728	0.1977	
	BSI	0.9704	0.8570	0.5474	0.5077	0.3879	
pam	BHI	0.1827	0.1901	0.1813	0.1813	0.1813	
	BSI	0.9704	0.5507	0.5242	0.5239	0.5218	
sota	BHI	0.1566	0.1899	0.1899	0.1711	0.1711	
	BSI	0.8433	0.8433	0.8433	0.8425	0.8425	
clara	BHI	0.1827	0.1901	0.1284	0.1284	0.1284	
	BSI	0.9704	0.5544	0.5207	0.5187	0.4993	
model	BHI	0.1821	0.1775	0.1701	0.1717	0.1851	
	BSI	0.4830	0.2983	0.2476	0.2102	0.2098	
Optimal Scores:							
	Score	Method	Clusters				
BHI	0.1977	som	6				
BSI	0.9704	hierarchical	2				

Table A-8: Scores of BHI and BSI for the Lymphoma dataset

Figure A-19 shows that SOM produces the most homogeneous biological clusters when six clusters are required and hierarchical is the most consistent of all the algorithms. The plots of BSI are shown in *Figure* A-20 and hierarchical algorithm appears to be the most stable in its capability of producing clusters that are biologically alike and model-based clustering appears to be the least stable. It can be concluded that hierarchical algorithm seems to be the best choice for this dataset to maximize the biological homogeneity, considering both the indices.

Finally, for the Embryonal Tumours of Central Nervous System dataset, the BHI and the BSI scores are shown in *Table* A-9 and in both cases, hierarchical scores the highest points for producing biological significant clusters.

Algorithma	Magazza	Number of Clusters					
Algorithms	Measure	2	3	4	5	6	
hierarchical	BHI	0.2604	0.2556	0.2551	0.3725	0.375	
	BSI	0.8654	0.8153	0.7806	0.6187	0.5784	
kmeans	BHI	0.2604	0.3004	0.267	0.2685	0.2712	
	BSI	0.8654	0.5328	0.4299	0.407	0.396	
diana	BHI	0.2604	0.2791	0.2766	0.275	0.2771	
	BSI	0.8654	0.6094	0.5388	0.5323	0.5036	
som	BHI	0.2604	0.3004	0.2873	0.2715	0.324	
	BSI	0.7783	0.5109	0.3581	0.2972	0.2376	
pam	BHI	0.2604	0.2743	0.2656	0.3019	0.2993	
	BSI	0.8654	0.4532	0.4405	0.299	0.2941	
sota	BHI	0.2813	0.2747	NA	NA	NA	
	BSI	0.3908	0.3515	NA	NA	NA	
clara	BHI	0.2604	0.3077	0.2572	0.2977	0.2993	
	BSI	0.8654	0.5033	0.43	0.293	0.2836	
model	BHI	0.2687	0.269	0.2646	0.2783	0.2635	
	BSI	0.376	0.3659	0.3472	0.2918	0.2192	
Optimal Scor	es:						
-	Score	Method	Clusters				
BHI	0.375	hierarchical	6				
BSI	0.8654	hierarchical	2				

Table A-9: Scores of BHI and BSI for the CNS dataset

Although hierarchical shows a marked increase for cluster sizes of five or six, SOM can be the algorithm of choice when four clusters are desired, as shown in *Figure* A-

21. When the plots of BSI as shown in *Figure* A-22 are compared, it can be seen that all the clustering algorithms have produced significantly consistent results barring SOTA, as it could not generate clusters between the ranges four to six. Hierarchical algorithm seems to be the most stable in its ability of producing biologically relevant clusters and on comparing both the indices, it can be concluded that hierarchical algorithm is the best choice for this dataset to maximize the biological homogeneity.

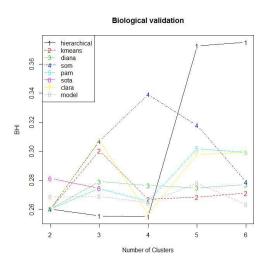


Figure A-21:BHI plot for CNS dataset

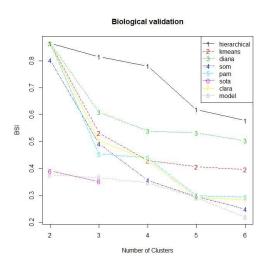


Figure A-22:BSI plot for CNS dataset