List of Figures

1-1	Percentage of Individuals using Internet during 2005-2014	2
2-1	WiFi-based Long Distance Network Architecture	16
2-2	Multiradio Operation at a Single Node	26
3-1	Types of Nodes in WiLD Network Architecture	55
3-2	Simultaneous Synchronous Operation (SynOp)	56
3-3	TDMA Frame Format	57
3-4	Network Synchronization in 2C: An Example	61
3-5	Node's State Transition between SynTx and SynRx	63
3-6	FTP Throughput with increasing Slot Size: 2C vs. 2P	69
3-7	VoIP Delay with increasing Slot Size: 2C vs. 2P	70
3-8	Throughput and Delay Characteristics at Normal Load: 2C vs. 2P	71
3-9	Throughput and Delay Characteristics at Saturated Load: 2C vs. 2P	73
3-10	No. of Hops vs. Node Joining Time in 2C	74
4-1	Explaining Various Concepts Related to DQBA in a Tree Topology	83
4-2	A Customized Superframe Structure	85
4-3	A Cluster-based Network Architecture	87

4-4	A Figure Depicting Static Slot Allocation Process	. 92
4-5	A Figure Depicting Dynamic Slot Allocation Process	. 93
4-6	Simulation Topology for DQBA	. 94
4-7	Network configuration for 1-hop scenario with uniform load from both the children nodes	. 96
4-8	Throughput achieved by RT and BE traffic with uniform load from both the children in 1-hop topology	. 96
4-9	Delay of RT and BE traffic with uniform load from both the children in 1-hop topology	. 96
4-10	Network Configuration for 2-hop scenario with uniform load from both the children of a sub-tree	. 97
4-11	Throughput achieved by RT and BE traffic with uniform load from both the children of a sub-tree in a 2-hop topology	. 97
4-12	Delay of RT and BE traffic with uniform load from both the children of a sub-tree in a 2-hop topology	. 98
4-13	Network configuration for 3-hop scenario with uniform load from both the children of a sub-tree	. 99
4-14	Throughput achieved by RT and BE traffic with uniform load from both the children of a sub-tree in a 3-hop topology	. 99
4-15	Delay of RT and BE traffic with uniform load from both the children of a sub-tree in a 3-hop topology	. 99
4-16	Network configuration for 1-hop scenario with skewed traffic load from single side of a sub-tree	. 100
4-17	Throughput achieved by RT and BE traffic load from single side of a sub-tree in a 1-hop topology	. 101
4-18	Delay of RT and BE traffic with RT traffic load from single side of a sub-tree in a 1-hop topology	. 101
4-19	Network configuration for 2-hop scenario with skewed traffic load from single side of a sub-tree in 2-hop topology	. 102

4-20	Throughput achieved by RT and BE traffic load from single side of a sub-tree in a 2-hop topology
4-21	Delay of RT and BE traffic with RT traffic load from single side of a sub-tree in a 2-hop topology
4-22	Network configuration for 3-hop scenario with skewed traffic load from single side of a sub-tree in a 3-hop topology
4-23	Throughput achieved by RT and BE traffic load from single side of a sub-tree in a 3-hop topology
4-24	Delay of RT and BE traffic with RT traffic load from single side of a sub-tree in a 3-hop topology
5-1	A TDMA Frame with p number of Slots
5-2	Active and Inactive States of a Flow in RPS
5-3	TDMA Packet Scheduling: An Example
5-4	Throughput performance of different priority classes of traffic using RPS and 2C protocols with probabilistic traffic
5-5	Delay performance of different priority classes of traffic using RPS and 2C protocols with probabilistic traffic
5-6	Delay Performance over variable Queue Size: RPS vs. 2C 125
6-1	Route Discovery procedure for finding multiple paths from Source to Gateway node
6-2	Admission Control and Load Balancing in QGMR: An Example $$ 150
6-3	Multi-path Route Maintenance: An Example
6-4	Simulation Topology for QGMR
6-5	Control overhead of QGMR and AOMDV protocols
6-6	VoIP Performance: QGMR vs. AOMDV
6-7	Video Streaming Performance: QGMR vs. AOMDV 158

6-8	Throughput Performance of VoIP and Video Streaming using
	QGMR and AOMDV with Path Failure
6-9	Throughput Performance of Best-effort traffic using QGMR and
	AOMDV protocols with path failure
6-10	Throughput Performance of VoIP, Video Streaming and Best-effort
	Traffic in AOMDV and QGMR protocols considering Path Failure . 160