Bibliography

- [1] Chong, H.-Q. et al. Integrated cognitive architectures: a survey. Artificial Intelligence Review 28 (2), 103–130, 2007.
- [2] Piaget, J. & Inhelder, B. *The child's conception of space*, Routledge and Kegan Paul Ltd, 1956.
- [3] Rüetschi, U. J. Wayfinding in Scene Space: Modelling Transfers in Public Transport. Ph.D. thesis, University of Zürich, 2007.
- [4] Fong, T. et al. Collaborative control: A robot-centric model for vehicle teleoperation. Ph.D. thesis, Carnegie Mellon University, The Robotics Institute, 2001.
- [5] Poncela, A. et al. A new efficiency-weighted strategy for continuous human/robot cooperation in navigation. Systems, Man and Cybernetics, Part A: Systems and Humans, IEEE Transactions on 39 (3), 486–500, 2009.
- [6] Urdiales, C. et al. Wheelchair collaborative control for disabled users navigating indoors. Artificial Intelligence In Medicine 52, 177–191, 2011.
- [7] Carlson, T. & Demiris, Y. Collaborative control for a robotic wheelchair: evaluation of performance, attention, and workload. *Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on* **42** (3), 876–888, 2012.
- [8] Herbert, A. S. The architecture of complexity. In *Proceedings of the American Philosophical Society*, 467–482, 1962.
- [9] Trafton, J. G. et al. ACT-R/E: An embodied cognitive architecture for human robot interaction. Journal of Human-Robot Interaction 2, 30–55, 2013.
- [10] Schultz, A. C. et al. Integrating exploration, localization, navigation and planning with a common representation. Autonomous Robots 6 (3), 293– 308, 1999.

- [11] Cernan, E. The Vision for Space Exploration: National Aeronautics and Space Administration. //www.nasa.gov/pdf/55583main_vision_space_exploration2.pdf, 2008. [Online; accessed 10-5-2015].
- [12] HRI2006. 2006 Conference on Human-Robot Interaction (HRI 06). http://www.hri2006.org/HRI2006CFP.pdf, 2006. [Online; accessed 16-October-2014].
- [13] Tuomela, R. We-intentions revisited. *Philosophical Studies* **125** (3), 327–369, 2005.
- [14] Sebanz, N. & Knoblich, G. Prediction in joint action: What, when, and where. *Topics in Cognitive Science* 1 (2), 353–367, 2009.
- [15] Green, S. et al. Human Robot Collaboration: A Literature Review and Augmented Reality Approach in Design. In *International Conference on Mechatronics and Embedded Systems and Applications*, 2007.
- [16] Bratman, E. M. Shared cooperative activity. *The philosophical review* 327–341, 1992.
- [17] Bratman, M. Intention, plans and practical reason, Harvard University Press, 1987.
- [18] Searle, J. R. Collective intentions and actions. *Intentions in communication* 401, 401, 1990.
- [19] Warneken, F. et al. Collaborative partner or social tool? new evidence for young children's understanding of joint intentions in collaborative activities. Developmental Science 15 (1), 54–61, 2012.
- [20] Cohen, P. R. & Levesque, H. J. Teamwork. Nous 487–512, 1991.
- [21] Hoffman, G. & Breazeal, C. Collaboration in human-robot teams. In *Proceedings of 1st Intelligent Systems Technical Conference*, 2004.
- [22] Clark, H. Using language, Cambridge university press, 1996.
- [23] Klein, G. et al. Ten challenges for making automation a team player in joint human-agent activity. *IEEE Intelligent Systems* (6), 91–95, 2004.
- [24] Klein, G. et al. Common ground and coordination in joint activity. Organizational simulation 53, 2005.

- [25] Kataria, A. & Praetorius, G. On common ground at sea, the proactive negotiation for channel navigation. In *International conference on applied human factors and ergonomics*. 222–230, 2014.
- [26] Grosz, B. J. & Kraus, S. The evolution of sharedplans. In *Foundations and Theories of Rational Agency*. 227–262, Kluwer Academic Publishers, 1998.
- [27] Norman, D. A. Some observations on mental models. *Mental models* **7** (112), 7–14, 1983.
- [28] Rouse, W. B. et al. The role of mental models in team performance in complex systems. Systems, Man and Cybernetics, IEEE Transactions on 22 (6), 1296–1308, 1992.
- [29] Mathieu, J. E. *et al.* The influence of shared mental models on team process and performance. *Journal of applied psychology* **85** (2), 273, 2000.
- [30] Cannon-Bowers, J. A. et al. Cognitive psychology and team training: Training shared mental models and complex systems. Human Factors Society Bulletin 33 (12), 1–4, 1990.
- [31] Grosz, B. J. & Kraus, S. Collaborative plans for complex group action. *Artificial Intelligence* **86** (2), 269–357, 1996.
- [32] Fan, X. et al. Extending the recognition-primed decision model to support human-agent collaboration. In Proceedings of the fourth international joint conference on Autonomous agents and multiagent systems. 945–952, ACM, 2005.
- [33] Miller, M. S. et al. Training teams with collaborative agents. In *Intelligent tutoring systems*. 63–72, Springer, 2000.
- [34] Martin, C. et al. An environment for distributed collaboration among humans and software agents. In Proceedings of the second international joint conference on Autonomous agents and multiagent systems. 1062–1063, ACM, 2003.
- [35] Miao, Y. et al. Naughty agents can be helpful: Training drivers to handle dangeroussituations in virtual reality. In Advanced Learning Technologies, 2006. Sixth International Conference on. 735–739, IEEE, 2006.
- [36] Hedfi, R. et al. Towards collective collaborative design: An implementation of agent-mediated collaborative 3d products design system. In Collaborative Technologies and Systems (CTS), 2010 International Symposium on. 314–321, 2010.

- [37] Jordan, N. Allocation of functions between man and machines in automated systems. *Journal of applied psychology* **47** (3), 161, 1963.
- [38] Bradshaw, J. M. *et al.* Adjustable autonomy and human-agent teamwork in practice: An interim report on space applications. In *Agent autonomy*, 243–280, Springer, 2003.
- [39] Hanna, N. & Richards, D. A collaborative agent architecture with human-agent communication model. In Dignum, F. et al. (eds.) Cognitive Agents for Virtual Environments, 70–88, Springer Berlin Heidelberg, 2013.
- [40] Sycara, K. Integrating agents into human teams. In Proceedings of the Human Factors and Ergonomics Society Annual Meeting, vol. 46. 413–417, SAGE Publications, 2002.
- [41] Fan, X. & Yen, J. Realistic cognitive load modeling for enhancing shared mental models in human-agent collaboration. In Proceedings of the 6th international joint conference on Autonomous agents and multiagent systems, ACM, 2007.
- [42] Burke, J. L. & Murphy, R. R. Human–robot interaction in usar technical search: two heads are better than one. In 13th IEEE International Workshop on Robot and Human Interactive Communication. 307–312, 2004.
- [43] Casper, J. & Murphy, R. Human-robot interactions during the robot-assisted urban search and rescue response at the world trade center. Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on 33 (3), 367–385, 2003.
- [44] Rachid, A. On human models for collaborative robots. In 2013 International Conference on Collaboration Technologies and Systems. 551–556, 2013.
- [45] Montreuil, V. et al. Planning human centered robot activities. In *IEEE International Conference on Systems, Man and Cybernetics*. 2618–2623, 2007.
- [46] Sisbot, E. A. et al. A human aware mobile robot motion planner. Robotics, IEEE Transactions on 23 (5), 874–883, 2007.
- [47] Koppula, H. & Saxena, A. Anticipatory planning for human-robot teams, 2014.
- [48] Edsinger, A. & Kemp, C. C. Human-robot interaction for cooperative manipulation: Handing objects to one another. In *The 16th IEEE International Symposium on Robot and Human interactive Communication*. 1167–1172, IEEE, 2007.

- [49] Mainprice, J. & Berenson, D. Human-robot collaborative manipulation planning using early prediction of human motion. In *Intelligent Robots and Systems (IROS)*, 2013 IEEE/RSJ International Conference on. 299–306, IEEE, 2013.
- [50] Broz, F. et al. Designing POMDP models of socially situated tasks. In RO-MAN. 39–46, IEEE, 2011.
- [51] Armstrong-Crews, N. & Veloso, M. Oracular partially observable markov decision processes: A very special case. In *International Conference on Robotics and Automation*. 2477–2482, IEEE, 2007.
- [52] Rosenthal, S. & Veloso, M. Modeling humans as observation providers using pomdps. In RO-MAN, 2011 IEEE. 53–58, IEEE, 2011.
- [53] Mouaddib, A.-I. *et al.* A decision-theoretic approach to cooperative control and adjustable autonomy. In *ECAI*. 971–972, 2010.
- [54] Rosenthal, S. *et al.* Learning accuracy and availability of humans who help mobile robots. In *AAAI*, 2011.
- [55] Nikolaidis, S. et al. Efficient model learning from joint-action demonstrations for human-robot collaborative tasks. In Proceedings of the Tenth Annual ACM/IEEE International Conference on Human-Robot Interaction, HRI '15. 189–196, 2015.
- [56] Galindo, C. et al. Multihierarchical interactive task planning: application to mobile robotics. Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on 38 (3), 785–798, 2008.
- [57] Allen, J. et al. Mixed-initiative interaction. Intelligent Systems and their Applications, IEEE 14 (5), 14–23, 1999.
- [58] Finzi, A. & Orlandini, A. Human-robot interaction through mixed-initiative planning for rescue and search rovers. In Bandini, S. & Manzoni, S. (eds.) AI*IA 2005: Advances in Artificial Intelligence, vol. 3673 of Lecture Notes in Computer Science, 483–494, 2005.
- [59] Adams, J. A. et al. Mixed initiative interaction and robotic systems. In Workshop on Supervisory Control of Learning and Adaptive Systems, Nineteenth National Conference on Artificial Intelligence, 2004.
- [60] Riley, V. A general model of mixed-initiative human-machine systems. In *Proceedings of the Human Factors and Ergonomics Society Annual Meeting*, vol. 33. 124–128, SAGE Publications, 1989.

- [61] Maria Jose Acosta, D. K. & Choi, H.-J. Robot with emotion for triggering mixed-initiative interaction planning. In 2008 IEEE 8th International Conference on Computer and Information Technology Workshops. 98–103, 2008.
- [62] Johnson, M. et al. Coactive design: Designing support for interdependence in joint activity. Journal of Human-Robot Interaction 3 (1), 43–69, 2014.
- [63] Morley, K. L. M. D. N. Directing agent communities: An initial framework. In Proceedings of IJCAI Workshop on Autonomy, Delegation, and Control: Interacting with Autonomous Agents, 2001.
- [64] Murphy, R. R. et al. Mixed-initiative control of multiple heterogeneous robots for urban search and rescue, 2000.
- [65] Inagaki, T. Design of humanâAŞmachine interactions in light of domaindependence of human-centered automation. Cognition, Technology & Work 8 (3), 161–167, 2006.
- [66] Billings, C. E. Aviation automation: The search for a human-centered approach, 1997.
- [67] Enes, A. & Book, W. Blended shared control of zermelo's navigation problem. In *American Control Conference (ACC)*. 4307–4312, 2010.
- [68] Sheridan, T. B. Telerobotics, automation, and human supervisory control, MIT press, 1992.
- [69] Ciger, J. Collaboration with agents in VR environments. Doctoral dissertation, Swiss Federal Institute of Technology in Lausanne, Lausanne, Switzerland, 2005.
- [70] Laird, J. E. et al. Chunking in soar: The anatomy of a general learning mechanism. *Machine learning* 1 (1), 11–46, 1986.
- [71] Laird, J. E. et al. Chunking in soar: The anatomy of a general learning mechanism. technical report., 1985.
- [72] Newell, A. Unified theories of cognition, Harvard University Press, 1994.
- [73] Langley, P. & Choi, D. A unified cognitive architecture for physical agents. In Proceedings of the National Conference on Artificial Intelligence. 1469–1474, 2006.

- [74] Anderson, J. R. et al. An integrated theory of the mind. Psychological review **111** (4), 1036, 2004.
- [75] Sun, R. & Peterson, T. Hybrid learning incorporating neural and symbolic processes. In Fuzzy Systems Proceedings, 1998. IEEE World Congress on Computational Intelligence., The 1998 IEEE International Conference on, vol. 1, 727–732, IEEE, 1998.
- [76] Dennett, D. C. The intentional stance, MIT press, 1989.
- [77] Bratman, M. E. et al. Plans and resource-bounded practical reasoning. Computational intelligence 4 (3), 349–355, 1988.
- [78] Rosenbloom, P. S. Supraarchitectural capability integration: From soar to sigma. In *Proceedings of the 13th International Conference on Cognitive Modelling*. 67–68, 2015.
- [79] Rosenbloom, G. J. . U. V., P. S. Towards emotion in sigma: From appraisal to attention. In Proceedings of the 8th Conference on Artificial General Intelligence. 142–151, 2015.
- [80] Rao, A. S. & Georgeff, M. P. BDI agents: From theory to practice. In ICMAS, vol. 95. 312–319, 1995.
- [81] Stocker, R. Towards the formal verification of human-agent-robot teamwork. Ph.D. thesis, University of Liverpool, 2013.
- [82] Wooldridge, M. An introduction to multiagent systems, John Wiley & Sons, 2009.
- [83] Georgeff, M. et al. The belief-desire-intention model of agency. In *Intelligent Agents V: Agents Theories, Architectures, and Languages*, 1–10, Springer, 1999.
- [84] Wooldridge, M. J. Reasoning about rational agents, MIT press, 2000.
- [85] Weiss, G. Multiagent systems: a modern approach to distributed artificial intelligence, MIT press, 1999.
- [86] Jiang, H. et al. EBDI: an architecture for emotional agents. In Proceedings of the 6th international joint conference on Autonomous agents and multiagent systems, ACM, 2007.
- [87] Van Dyke Parunak, H. et al. A model of emotions for situated agents. In Proceedings of the fifth international joint conference on Autonomous agents and multiagent systems. 993–995, ACM, 2006.

- [88] Myers, K. L. & Yorke-Smith, N. A cognitive framework for delegation to an assistive user agent. In *Proceedings of the AAAI 2005 Fall Symposium on Mixed-Initiative Problem-Solving Assistants*. 94–99, 2005.
- [89] Busetta, P. & Ramamohanarao, K. An architecture for mobile BDI agents. In Proceedings of ACM symposium on Applied Computing. 445–452, 1998.
- [90] Ancona, D. & Mascardi, V. Coo-BDI: Extending the BDI model with cooperativity. In *Declarative Agent Languages and Technologies*, 109–134, Springer, 2004.
- [91] Morris, A. & Ulieru, M. FRIEND: A human-aware BDI agent architecture. In IEEE International Conference on Systems, Man, and Cybernetics. 2413–2418, 2011.
- [92] Padmanabhan, V. et al. Actions made explicit in BDI. In AI 2001: Advances in Artificial Intelligence, 390–401, Springer, 2001.
- [93] Panzarasa, P. et al. Modelling sociality in a BDI framework. In Proceedings of the first Asia-Pacific conference on Intelligent Agent Technology. 202–206, World Scientific Publishing, 1999.
- [94] Norling, E. et al. Enhancing multi-agent based simulation with humanlike decision making strategies. In Multi-Agent-Based Simulation, 214–228, Springer, 2001.
- [95] Singh, S. S. P. L., D & James, G. Integrating learning into a bdi agent for environments with changing dynamics. In Walsh, T. (ed.) *Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence*. 1–6, The John Hopkins University Press, 2015.
- [96] Walczak, A. et al. Augmenting BDI agents with deliberative planning techniques. In *Programming Multi-Agent Systems*, 113–127, Springer, 2007.
- [97] Rens, G. et al. BDI agent architecture for a POMDP planner. In Proceedings of the Ninth Symposium on Logical Formalizations of Commonsense Reasoning, 109–114, 2009.
- [98] Meneguzzi, F. R. et al. Propositional planning in BDI agents. In *Proceedings* of the 2004 ACM symposium on Applied computing. 58–63, ACM, 2004.
- [99] Neal Lesh, C. R. & Sidner, C. L. Using plan recognition in human-computer collaboration. In *UM99 User Modeling: Proceedings of the Seventh International Conference*, 1999.

- [100] Alami, R. et al. An architecture for autonomy. The International Journal of Robotics Research 17 (4), 315–337, 1998.
- [101] Lee, S. et al. An integrated human decision making model for evacuation scenarios under a BDI framework. ACM Transactions on Modeling and Computer Simulation 20 (4), 23, 2010.
- [102] Burghart, C. et al. A cognitive architecture for a humanoid robot: A first approach. In *Humanoid Robots*, 2005 5th IEEE-RAS International Conference on. 357–362, IEEE, 2005.
- [103] Schultz, A. C. Using Computational Cognitive Models to Build Better Human-Robot Interaction. http://nationalacademyofengineering.net/nae/naefoe.nsf/0754c87f163f599e85256cca00\588f49/862570b60074eda88625721300668596/\protect\T1\textdollarFILE/Schultz_Alan.pdf, 2008. [Online; accessed 7-January-2015].
- [104] Trafton, J. G. et al. Enabling effective human-robot interaction using perspective-taking in robots. Systems, Man and Cybernetics, Part A: Systems and Humans, IEEE Transactions on 35 (4), 460–470, 2005.
- [105] Bonasso, R. P. Introduction to part three. In Kortenkamp, D. et al. (eds.) Artificial Intelligence and Mobile Robots: Case Studies of Successful Robot Systems. 193–194, AAAI Press / MIT Press, 1998.
- [106] Gat, E. Three-layer architectures. In Kortenkamp, D. et al. (eds.) Artificial Intelligence and Mobile Robots: Case Studies of Successful Robot Systems. 195–210, AAAI Press / MIT Press, 1998.
- [107] Bekey, G. A. Autonomous robots: from biological inspiration to implementation and control, MIT press, 2005.
- [108] Arkin, R. C. Behavior-based robotics, MIT press, 1998.
- [109] Brooks, R. A. A robust layered control system for a mobile robot. *Robotics* and Automation, IEEE Journal of 2 (1), 14–23, 1986.
- [110] Kortenkamp, D. et al. Introduction: Mobile robots—a proving ground for ai. In Kortenkamp, D. et al. (eds.) Proceedings of the 2006 ACM conference on human-robot interaction. 3–18, AAAI Press / MIT Press, 1998.
- [111] Russell, S. & Norvig, P. Artificial intelligence: A modern approach, Prentice Hall, New Jersey, 2003.

- [112] Ross, R. The SharC cognitive control architecture. Tech. Rep. SFB/TR 8: I3–[SharC], Universitat Bremen, 2004.
- [113] Medeiros, A. A. A survey of control architectures for autonomous mobile robots. *Journal of the Brazilian Computer Society* 4 (3), 1998.
- [114] Fong, T. et al. A preliminary study of peer-to-peer human-robot interaction. In Systems, Man and Cybernetics, 2006. SMC'06. IEEE International Conference on, vol. 4. 3198–3203, IEEE, 2006.
- [115] Pierro, P. Stabilizer architecture for humanoid robots collaborating with humans. Ph.D. thesis, Universidad Carlos III de Madrid, 2013.
- [116] Ali, M. et al. An architecture supporting proactive robot companion behavior. In *In New Frontiers in Human-Robot Interaction at AISB*, 2009.
- [117] Schultz, A. C. & Trafton, J. G. Towards collaboration with robots in shared space: spatial perspective and frames of reference. *interactions* **12**, 22–24, 2005.
- [118] Trafton, J. G. et al. Children and robots learning to play hide and seek. In Schultz, A. C. & Goodrich, M. (eds.) Proceedings of the 2006 ACM conference on human-robot interaction, ACM press, 2006.
- [119] Kennedy, W. G. et al. "like-me" simulation as an effective and cognitively plausible basis for social robotics. *International Journal of Social Robotics* 1 (2), 181–194, 2009.
- [120] Murugesan, A. et al. Cognitive models of failure and recovery in natural language interactions: A joint actions approach. In 15th Workshop on the Semantics and Pragmatics of Dialogue, 2011.
- [121] Petry, M. et al. Intelligent wheelchair simulation: requirements and architectural issues. In 11th International Conference on Mobile Robotics and Competitions, Lisbon. 102–107, 2011.
- [122] Nisbet, P. D. Who's intelligent? wheelchair, driver or both? In *Control Applications*, 2002. Proceedings of the 2002 International Conference on, vol. 2, 760–765, IEEE, 2002.
- [123] Vanhooydonck, D. et al. Shared control for intelligent wheelchairs: an implicit estimation of the user intention. In *Proceedings of the 1st international workshop on advances in service robotics*. 176–182, 2003.

- [124] Prassler, E. et al. Navigating a robotic wheelchair in a railway station during rush hour. The international journal of robotics research 18 (7), 711–727, 1999.
- [125] Levine, S. P. et al. The navchair assistive wheelchair navigation system. Rehabilitation Engineering, IEEE Transactions on 7 (4), 443–451, 1999.
- [126] H. Hoyer, U. B. Omni: Office wheelchair with high manoeuvrability and navigational intelligence for people with severe handicap. In *Edited final report*, *OMNI Konsortium*, 1996.
- [127] Miller, D. P. Assistive robotics: an overview. In Assistive Technology and Artificial Intelligence, 126–136, Springer, 1998.
- [128] Rao, R. et al. Human robot interaction: application to smart wheelchairs. In Proceedings of IEEE International Conference on Robotics and Automation. 3583–3588, 2002.
- [129] Yanco, H. A. Wheelesley: A robotic wheelchair system: Indoor navigation and user interface. In *Assistive technology and artificial intelligence*, 256–268, Springer, 1998.
- [130] Bourhis, G. & Agostini, Y. The VAHM robotized wheelchair: System architecture and human-machine interaction. *Journal of Intelligent and Robotic systems* **22** (1), 39–50, 1998.
- [131] Connell, J. & Viola, P. Cooperative control of a semi-autonomous mobile robot. In *International conference on Robotics and Automation*. 1118–1121, 1990.
- [132] Levine, S. P. et al. The navchair assistive wheelchair navigation system. Rehabilitation Engineering, IEEE Transactions on 7 (4), 443–451, 1999.
- [133] Bruemmer, D. J. et al. Shared understanding for collaborative control. Systems, Man and Cybernetics, Part A: Systems and Humans, IEEE Transactions on 35 (4), 494–504, 2005.
- [134] Katevas, N. I. *et al.* The autonomous mobile robot senario: a sensor aided intelligent navigation system for powered wheelchairs. *Robotics & Automation Magazine* 4 (4), 60–70, 1997.
- [135] Mandel, C. et al. Towards an autonomous wheelchair: Cognitive aspects in service robotics. In *Proceedings of Towards Autonomous Robotic Systems* (TAROS 2005). 165–172, Citeseer, 2005.

- [136] Taha, T. et al. Wheelchair driver assistance and intention prediction using pomdps. In 3rd International Conference on Intelligent Sensors, Sensor Networks and Information. 449–454, 2007.
- [137] Mazo, M. et al. Experiences in assisted mobility: the siamo project. In Control Applications, 2002. Proceedings of the 2002 International Conference on, vol. 2. 766–771, IEEE, 2002.
- [138] Huntemann, A. et al. Bayesian plan recognition and shared control under uncertainty: Assisting wheelchair drivers by tracking fine motion paths. In IEEE/RSJ International Conference on Intelligent Robots and Systems. 3360–3366, 2007.
- [139] Demeester, E. et al. User-adapted plan recognition and user-adapted shared control: A bayesian approach to semi-autonomous wheelchair driving. Autonomous Robots 24 (2), 193–211, 2008.
- [140] Parikh, S. P. *et al.* Integrating human inputs with autonomous behaviors on an intelligent wheelchair platform. *Intelligent Systems*, *IEEE* **22** (2), 33–41, 2007.
- [141] Urdiales, C. et al. Biometrically modulated collaborative control for an assistive wheelchair. Neural Systems and Rehabilitation Engineering, IEEE Transactions on 18 (4), 398–408, 2010.
- [142] Lopes, A. C. *et al.* Assisted navigation for a brain-actuated intelligent wheelchair. *Robotics and Autonomous Systems* **61** (3), 245–258, 2013.
- [143] Vanhooydonck, D. *et al.* Adaptable navigational assistance for intelligent wheelchairs by means of an implicit personalized user model. *Robotics and Autonomous Systems* **58** (8), 963 977, 2010.
- [144] Zeng, Q. et al. A collaborative wheelchair system. Neural Systems and Rehabilitation Engineering, IEEE Transactions on 16 (2), 161–170, 2008.
- [145] Montello, D. & Sas, C. Human Factors of Wayfinding in Navigation, 2003– 2008, CRC Press/ Taylor & Francis, Ltd., 2006.
- [146] Golledge, R. G. Human wayfinding and cognitive maps. In Golledge, R. C.
 (ed.) Wayfinding Behavior: Cognitive Mapping and Other Spatial Process,
 5–45, The John Hopkins University Press, 1999.
- [147] Raubal, M. Agent-based Simulation of Human Wayfinding: A Perceptual Model for Unfamiliar Buildings. Doctoral dissertation, Faculty of Science and Informatics, Vienna University of Technology, Vienna, 2001.

- [148] Weisman, J. Evaluating architectural legibility way-finding in the built environment. *Environment and behavior* **13** (2), 189–204, 1981.
- [149] Tolman, E. Cogntive map in rats and men. The Psychological Review 55 (4), 189–208, 1948.
- [150] Hirtle, S. & Jonides, J. Evidence of hierarchies in cognitives maps. *Memory & Cognition* 13, 208–217, 1985.
- [151] McNamara, T. Mental representations of spatial relations. *Cognitive Psychology* 18, 87–121, 1986.
- [152] Siegel, A. W. & White, S. H. The development of spatial representations of large-scale environments. Advances in child development and behavior 10, 9, 1975.
- [153] Ishikawa, T. Spatial Knowledge Acquisition in the Environment: The Integration of Separately Learned Places and the Development of Metric Knowledge. Doctoral dissertation, Computer Science Department, University of California, Santa Barbara, 2002.
- [154] R.Montello, D. A new framework for understanding the acquisition of spatial knowledge in large-scale environments. In Egenhofer, M. J. & Golledge, R. G. (eds.) Spatial and temporal reasoning in geographic information systems, 143–154, New York: Oxford University Press, 1998.
- [155] Evans, G. W. Environmental cognition. *Psychological bulletin* **88** (2), 259, 1980.
- [156] Foley, J. E. & Cohen, A. J. Mental mapping of a megastructure. *Canadian Journal of Psychology* **38** (3), 440, 1984.
- [157] Colle, H. A. & Reid, G. B. The room effect: Metric spatial knowledge of local and separated regions. *Presence: Teleoperators and virtual environments* 7 (2), 116–128, 1998.
- [158] Tversky, B. Distortions in cognitive maps. *Geoforum* **23** (2), 131 138, 1992.
- [159] Lynch, K. *The Image of the City*, M.I.T. Press, Cambridge, Massachusetts, 1960.
- [160] Couclelis, H. Verbal directions for way-finding: Space, cognition, and language. In *The construction of cognitive maps*, 133–153, Springer, 1996.

- [161] Thorndyke, P. W. & Hayes-Roth, B. Differences in spatial knowledge acquired from maps and navigation. *Cognitive psychology* **14** (4), 560–589, 1982.
- [162] Golledge, R. G. Path selection and route preference in human navigation: A progress report, Springer, 1995.
- [163] Gärling, T. & Gärling, E. Distance minimization in downtown pedestrian shopping. *Environment and Planning A* **20**, 547–554, 1988.
- [164] ÓNeill, M. Effects of familiarity and plan complexity on wayfinding in simulated buildings. *Journal of Environmental Psychology* **12**, 319–327, 1992.
- [165] Dalton, R. C. The secret is to follow your nose: route path selection and angularity. *Environment and Behavior* **35** (1), 107–131, 2003.
- [166] Bailenson, J. et al. Road climbing: Principles governing asymmetric route choices on maps. Journal of Environmental Psychology 18, 251–264, 1998.
- [167] Raubal, M. & Egenhofer, M. Comparing the complexity of wayfinding tasks in built environments. *Environmental psychology B* **25** (6), 895–913, 1998.
- [168] Jansen-Osmann, P. & Fuchs, P. Wayfinding behaviour and spatial knowledge of adults and children in a virtual environment. *Journal of Environmental Psychology* **53** (3), 171–181, 2006.
- [169] Spiers, H. J. & Maguire, E. A. The dynamic nature of cognition during wayfinding. *Journal of Environmental Psychology* **28** (3), 232–249, 2008.
- [170] Hamburger, K. & Knauff, M. SQUARELAND: A virtual environment for investigating cognitive processes in human wayfinding. *PsychNology* 9 (2), 137–163, 2011.
- [171] Goldiez, B. et al. Effects of augmented reality display settings on human wayfinding performance. *IEEE Transactions on Systems, Man, and Cybernetics, Part C* **37** (5), 839–845, 2007.
- [172] Christenfeld, N. Choices from identical options. *Psychological Science* **6**, 50–55, 1995.
- [173] Gillner, S. & Mallot, H. A. Navigation and acquisition of spatial knowledge in a virtual maze. *Journal of Cognitive Neuroscience* **10** (4), 445–463, 1998.
- [174] Darken, R. P. & Sibert, J. L. Wayfinding strategies and behaviors in large virtual worlds. In *Proceedings of the SIGCHI conference on Human factors* in computing systems. 142–149, ACM, 1996.

- [175] Cutmore, T. R. H. et al. Cognitive and gender factors influencing navigation in a virtual environment. *International Journal of Human-Computer Studies* 53, 223–249, 2000.
- [176] Janzen, G. & Turennout, M. Selective neural representation of objects relevant for navigation. *Nature Neuroscience* **7**, 673–677, 2004.
- [177] Güarling, T. et al. Spatial orientation and wayfinding in the designed environment: A conceptual analysis and some suggestions for postoccupancy evaluation. Journal of Architectural Planning Resources 3, 55–64, 1986.
- [178] Cook, S. A Pathfinding Approach for Real-world Situations. Ph.D. thesis, University of Leeds, School of Computing Studies, 2011.
- [179] Ruddle, R. A. & Lessels, S. Three levels of metric for evaluating wayfinding. Presence: Teleoperators and Virtual Environments 15 (6), 637–654, 2006.
- [180] Ericsson, K. A. & Simon, H. A. Protocol analysis, MIT-press, 1984.
- [181] Aginsky, V. et al. Two strategies for learning a route in a driving simulator. Journal of Environmental Psychology 17 (4), 317–331, 1997.
- [182] Murakoshi, S. & Kawai, M. Use of knowledge and heuristics for wayfinding in an artificial environment. *Environment and Behavior* **32** (6), 756–774, 2000.
- [183] Wiener, J. & Mallot, H. Fine-to-coarse route planning and navigation in regionalized environments. *Spatial Cognition and Computation* **3** (4), 331–358, 2003.
- [184] Qiang, Z. A Collaborative Wheelchair System. Ph.D. thesis, National University of Singapore, 2008.
- [185] Ferguson, G. & Allen, J. F. A cognitive model for collaborative agents. In *AAAI Fall Symposium: Advances in Cognitive Systems*, 2011.
- [186] Urlings, P. et al. A future framework for interfacing BDI agents in a real-time teaming environment. Journal of Network and Computer Applications 29 (2), 105–123, 2006.
- [187] d'Inverno, M. et al. A formal specification of dMARS. In Proceedings of the 4th International Workshop on Intelligent Agents IV, Agent Theories, Architectures, and Languages. 155–176, Springer-Verlag, 1998.
- [188] Wooldridge, M. & Jennings, N. R. Intelligent agents: Theory and practice. The knowledge engineering review 10 (02), 115–152, 1995.

- [189] Lankenau, A. et al. Self-localization in large-scale environments for the bremen autonomous wheelchair. Lecture notes in computer science 34–61, 2003.
- [190] Allen, J. et al. A problem solving model for collaborative agents. In Proceedings of the first international joint conference on Autonomous agents and multiagent systems: part 2, 774–781, ACM, 2002.
- [191] Fikes, R. E. & Nilsson, N. J. Strips: A new approach to the application of theorem proving to problem solving. *Artificial intelligence* **2** (3), 189–208, 1972.
- [192] Ahmad, N. Intent Recognition in Multi-Agent Systems: Collective Box Pushing and Cow Herding. Ph.D. thesis, University of Kansas, 2013.
- [193] Levesque, H. J. et al. On acting together. In Proceedings of the Eighth National Conference on Artificial Intelligence Volume 1. 94–99, AAAI Press, 1990.
- [194] Cohen, P. et al. On team formation. In Contemporary Action Theory. Synthese. 87–114, Kluwer Academic Publishers, 1998.
- [195] Wallis, G. & Bülthoff, H. Learning to recognize objects. *Trends in cognitive sciences* **3** (1), 22–31, 1999.
- [196] M.Kosslyn, S. et al. Visual images preserve metric spatial information: Evidence from studies of image scanning. Journal of Experimental Psychology: Human Perception and Performance 4, 47–60, 1978.
- [197] Mallot, H. A. & Gillner, S. Route navigation without place recognition:what is recognized in recognition-triggered responses? *Perception* **29**, 43–55, 2000.
- [198] Gunzelmann, G. et al. Orientation tasks with multiple views of space: Strategies and performance. Spatial Cognition and Computation 4 (3), 207–253, 2004.
- [199] Hughes, S. B. & Lewis, M. Attentive navigation for viewpoint control in virtual environments. *Human Factors* 47 (3), 630–643, 2005.
- [200] Frankenstein, J. et al. Influence of geometry and objects on local route choices during wayfinding. In *Spatial cognition vii*, 41–53, Springer, 2010.
- [201] Hirtle, S. C. *et al.* The effect of activity on relevance and granularity for navigation. In *Spatial Information Theory*, 73–89, Springer, 2011.

- [202] Frankenstein, J. et al. The language of landmarks: the role of background knowledge in indoor wayfinding. Cognitive processing 13 (1), 165–170, 2012.
- [203] Kettunen, P. et al. Landmarks in nature to support wayfinding: the effects of seasons and experimental methods. Cognitive processing 1–9, 2013.
- [204] Schölkopf, B. & Mallot, H. A. View-based cognitive mapping and path planning. *Adaptive Behavior* **3** (3), 311–348, 1995.
- [205] Morganti, F. et al. Planning optimal paths: A simple assessment of survey spatial knowledge in virtual environments. Computers in Human Behavior 23 (4), 1982–1996, 2007.
- [206] Burigat, S. & Chittaro, L. Navigation in 3D virtual environments: Effects of user experience and location-pointing navigation aids. *Computers in Human Behavior* **65** (11), 945–958, 2007.
- [207] Waller, D. The walkabout: Using virtual environments to assess large-scale spatial abilities. Computers in Human Behavior 21 (2), 243–253, 2005.
- [208] Jansen-Osmann, P. & Wiedenbauer, G. Wayfinding performance in and the spatial knowledge of a color-coded building for adults and children. *Spatial cognition and computation* 4 (4), 337–358, 2004.
- [209] Tenbrink, T. et al. Wayfinding and description strategies in an unfamiliar complex building. In L. Carlson, C. H. & Shipley, T. (eds.) Proceedings of the 33rd Annual Conference of the Cognitive Science Society. 1262–1267, Cognitive Science Society, 2011.
- [210] Tenbrink, T. & Wiener, J. The verbalization of multiple strategies in a variant of the traveling salesperson problem. *Cognitive Processing* **10** (2), 143–161, 2009.
- [211] Tenbrink, T. & Seifert, I. Conceptual layers and strategies in tour planning. Cognitive Processing 12, 109–125, 2011.
- [212] Srinivas, S. Influence of Motivation on Wayfinding. Doctoral dissertation, School of Information Sciences, University of Pittsburgh, 2010.
- [213] Blackwell, M. Multiple hypothesis testing: The F-test. *Matt Blackwell Research*, 2008.

- [214] Hartwig, H. The Wayfinding Metaphor-Comparing the Semantics of Wayfinding in the Physical World and the WWW. Doctoral dissertation, Faculty of Science and Informatics, Vienna University of Technology, Vienna, 2002.
- [215] Cheng, K. & Newcombe, N. Is there a geometric module for spatial orientation? squaring theory and evidence. *Psychonomic Bulletin & Review* 12 (1), 1–23, 2005.
- [216] Presson, C. C. Strategies in spatial reasoning. *Journal of Experimental Psychology: Learning, Memory, and Cognition* 8, 243–251, 1982.
- [217] Murray, M. P. *Econometrics: A Modern Introduction*, Pearson Addison Wesley, 2006.
- [218] Werner, S. & Long, P. Cognition meets le corbusier-cognitive principles of architectural design. In *Spatial cognition III*, 112–126, Springer, 2003.
- [219] Pandey, A. K. Towards Socially Intelligent Robots in Human Centered Environment. Ph.D. thesis, University of Toulouse, 2012.
- [220] Clodic, A. et al. Shary: a supervision system adapted to human-robot interaction. In *Experimental Robotics*. 229–238, Springer, 2009.
- [221] Galindo, C. et al. An architecture for cognitive human-robot integration. application to rehabilitation robotics. In *IEEE International Conference Mechatronics and Automation*. 329–334, 2005.
- [222] Nunes, U. et al. Shared-control architecture: concepts and experiments. In Int. Workshop on Service Robots: Applications and Safety issues in an Emerging Market.
- [223] Müller, J. P. & Pischel, M. The agent architecture inteRRaP: Concept and application, 2011.
- [224] Ferguson, I. A. Touring machines: Autonomous agents with attitudes. Computer 25 (5), 51–55, 1992.
- [225] Crum, R. M. et al. Population-based norms for the mini-mental state examination by age and educational level. *Journal of Occupational and Environmental Medicine* **269** (18), 2386–2391, 1993.
- [226] Katz, S. Assessing self-maintenance: activities of daily living, mobility, and instrumental activities of daily living. *Journal of the American Geriatrics Society* **31** (12), 721–727, 1983.

- [227] Balakirsky, S. & Kootbally, Z. USARSim/ROS: A combined framework for robotic control and simulation. In *ASME/ISCIE 2012 International Symposium on Flexible Automation*. 101–108, American Society of Mechanical Engineers, 2012.
- [228] Quigley, M. et al. ROS: an open-source robot operating system. In ICRA Workshop on Open Source Software, 2009.
- [229] ROS.org. About ros. http://wiki.ros.org/ROS/Tutorials, 2007. [Online; accessed 16-January-2015].
- [230] Balakirsky, S. USARSim. http://sourceforge.net/projects/, 2013. [Online; accessed 10-January-2014].
- [231] Howe, A. E. & Dahlman, E. A critical assessment of benchmark comparison in planning. *Journal of Artificial Intelligence Research* 17 (1), 1–33, 2002.
- [232] Kuo, C. et al. Development of agent-based autonomous robotic wheelchair control systems. Biomedical Engineering: Applications, Basis and Communications 15 (06), 223–234, 2003.
- [233] Galindo, C. et al. A multi-agent control architecture for a robotic wheelchair. Applied Bionics and Biomechanics 3 (3), 179–189, 2006.
- [234] Ross, R. J. et al. Towards dialogue based shared control of navigating robots. In Spatial Cognition IV. Reasoning, Action, Interaction, 478–499, Springer, 2005.

Publications

Publications based on the Thesis Works Book Chapter

 A. Saikia and S. M. Hazarika. Solving a Maze: Experimental Exploration on Wayfinding Behavior for Cognitively Enhanced Collaborative Control. In A. Agrawal et al. (Eds.), Intelligent Interactive Technologies and Multimedia (pp. 163-177). Springer Berlin Heidelberg, 2013.

Journal

- A Saikia and S. M. Hazarika. The cBDI: Towards an Architecture for Human-Machine Collaboration. International Journal of Social Robotics (IJSR). (Under Review)
- 2. A.Saikia and S. M. Hazarika. Finding a Way around a Maze: A Pilot study on Human Wayfinding in View-Based Navigation. Frontiers in Psychology. (Communicated)
- 3. A. Saikiaa, Md. A. Khana, S. Puspha, S. I. Tauhidia, R. Bhattacharyyaa, S. M. Hazarikaa, J. Q. Gan.cBDI-based Collaborative Control for a Robotic Wheelchair, Procedia Computer Science. (To Appear)

Workshop

- A. Saikia, R. Bhattacharyya, S. M. Hazarika. Towards a Cognitive Agent for Collaborative Control of an Intelligent Wheelchair (abstract), International IEEE/EPSRC Workshop on Autonomous Cognitive Robotics, 2014, University of Stirling, Stirling, UK.
- 2. A. Saikia, S. M. Hazarika. cBDI-based Architecture for Cognitive Collaborative Control of an Intelligent Wheelchair. ACM-W Regional Celebration of Women in Computing, East and North-East, 2015, IIT-G, IN.

Other Publications

- 1. A. Saikia and S. M Hazarika. Bispectrum Analysis of EEG during Observation and Imagination of Hand Movement, Students' Technology Symposium (TechSym), pp.128-133, IEEE, 2011.
- 2. A. Saikia and S. M Hazarika. Bispectrum Analysis of EEG in Estimation of Hand Movement First International Conference on Advances in Computing and Communications, pp 109-118, Springer-Verlag, 2011.
- A. Saikia , N. M Kakoty and S. M Hazarika. Wavelet Selection for EMG based Grasp Recognition through CWT. First International Conference on Advances in Computing and Communications, pp. 1116-1125, Springer-Verlag, 2011.
- 4. S. M Hazarika, A. Saikia, S. Bordoloi, U. Sharma and N. Kotoky. Brain Computer Interface as Sensor for Ambient Intelligent Living: A Position Paper. Proc. of International Conference on Intelligent Infrastructure: 47th Annual National Convention of CSI. December 2012.
- 5. N. M Kakoty, A. Saikia and S. M Hazarika. Exploring a Family of Wavelet Transforms for EMG based Grasp Recognition. Journal of Signal Image and Video Processing, Vol. 9, No. 3, pp. 553-559, Springer, 2015.