
Chapter 4

A Threshold Adaptive
Cooperative Spectrum Sensing
Technique

4.1 Introduction

Opportunistic access to license spectrum needs spectrum sensing by CR user in
order to detect the presence of the primary user (PU) signal in licensed spectrum,
so that the licensed users [2,13] are protected from harmful interference. Spectrum
sensing is a crucial function for successful deployment of a CRN, which faces
challenges [2] in terms of sensing efficiency. For instance, the sensing performance
of secondary users (SUs) suffers due to the issues arising from spectral diversity
[2,16,17,21,22]. Spectral diversity issues like multipath fading, shadowing, hidden
terminal problem and receiver uncertainty problem [3,17–20,43] can be overcome
by exploiting the spatial diversity [3] of the SUs. Cooperative spectrum sensing [3,
17,32,33] has proven to emerge as an effective method to take advantage of spatial
diversity of the SUs, where SUs share their individual sensing results [17] among
themselves, and thereby eventually improving the sensing performance. In this
direction, the design of a cooperation model for CSS is challenging. Cooperative
behavior among SUs basically depends on the method of cooperation, which in
turn has the impact on detection accuracy or performance. Cooperative gain
and cooperation overhead are the two dominant factors that play important roles
while choosing a technique to model the cooperation among the SUs [1]. The
cooperative gain that can be achieved through the cooperation among SUs dictates
the efficiency of the sensing/detection performance of the SUs, which is essential
for protection of PUs in CRNs. On the other hand, the cooperation overhead
is the measure of cost incurred due to cooperation among the SUs, which in
turn is determined by sensing time, delay, energy and the operations involved
to perform cooperation activity. Among the two widely used approaches namely
parallel fusion (PF) model and game theoretic model [23,75,76], the game theoretic
modeling offers capability to incorporate dynamic change in behavior and can offer
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better result in terms of detection performance and throughput [3].

The cooperative spectrum sensing schemes studied in the literature
[3, 17, 32–34, 45, 46, 61–68, 77–79] mostly address to overcome the issues of mul-
tipath fading, shadowing and hidden node problem by modeling the framework
for cooperation and using the techniques to perform data reporting and data fu-
sion operations. The CSS technique by Saad et al. [34] proposes a distributed
game theoretic collaboration strategies for the SUs using non-transferable coali-
tional game. The aim of their technique is to study the impact on the network
topology of the inherent trade off that exists between the collaborative spectrum
sensing gains in terms of detection probability and the cooperation costs in terms
of false alarm probability. They also study the stability of the resulting coalition
structure and show that a maximum coalition size exists for the proposed utility
model. However, the CSS technique by Saad et al. [34] and most of the CSS
techniques in the literature assume a fixed Energy Detection (ED)[15] threshold
and the same probability of false alarm for all the secondary users (SUs). These
assumptions affect detection performance. The accuracy of the detection of CSS
can be improved by deciding the ED sensing threshold of the SUs adaptively.
Depending on their location/position, SUs can adopt their ED sensing threshold
values independently before they perform CSS. Spectral diversity plays an impor-
tant role in sensing performance, since it is dependent on the locations/positions
of the SUs. In practice, the choice of sensing threshold is affected by the spectral
diversity. Moreover, with the increase in number of SUs in coalition, the sensing
threshold requires to be as much accurate as possible. To the best of our knowl-
edge, no CSS technique with consideration of adaptive ED sensing threshold for
local sensing operations of SUs has been reported in the literature.

In this chapter, we formulate the problem of CSS as a non-transferable
coalition game [23, 24, 76], where SUs organize themselves into disjoint partitions
(also called coalitions) based on optimization of a utility function. The utility
function of each coalition takes into account both detection accuracy and cooper-
ation overhead. The utility/payoff function of the game collects the total revenue
to be optimized, while incorporating the distance adaptive individual ED sensing
thresholds, the individual probability of false alarms of the SUs. The utility/payoff
function also takes into account the costs due to reporting error and reporting en-
ergy indirectly through selecting the head of a coalition. SUs in the coalitions
resolve the spectral diversity problems due to their location diversity by utilizing
the ED sensing threshold adaptively and thus accurately estimate the PU signal
power. The revenue is collected in terms of probability of detection by means of
minimizing the probabilities of false alarm and miss detection of a coalition. The
game eventually establishes that with a given value of maximum tolerable prob-
ability of false alarm the optimal size of a coalition is decided. With the optimal
size of the coalition the game establishes that the utility (that is, the probability of
detection) of a coalition improves even for higher values of ED sensing thresholds.
The cost of reporting energy is minimized by adopting a policy for selecting the
head of a coalition while playing the game. A scheme for dynamic selection of
head of a coalition is proposed, which is based on selecting an SU as head having
its position at the minimum average distance from all other SUs. The distributed
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threshold adaptive CSS (TACSS) algorithm finds the optimal partition that max-
imizes the overall utility of all the coalitions in the network. The condition to
achieve the coalition stability is established through mathematical analysis. Fur-
ther, simulation based study is carried out to demonstrate how SUs can organized
themselves into stable partitions with optimal utility and convergence property of
the proposed scheme.

The rest of this chapter is organized as follows. Section 4.2 formally defines
the problem. The assumptions taken and symbols and notations used throughout
this chapter is also presented. The system model is presented in section 4.3. Sec-
tion 4.4 presents the proposed game theoretic model for CSS and the distributed
threshold adaptive CSS algorithm for its realization. In that section, the optimiza-
tion of cost parameters and the head selection scheme are described. The stability
of coalition is also studied and evaluated in that section. Section 4.5 evaluates
the performance of the proposed model through simulation based studies. Finally,
section 4.6 concludes this chapter.

4.2 Problem Statement

The main objective is to model the cooperative spectrum sensing for CR network
incorporating the interaction behavior of SUs for higher detection accuracy, while
mitigating the problem due to spatial diversity of the SUs and minimizing the
cooperation overhead and hence to improve probability of detection. The cooper-
ation overheads considered are the reporting error and reporting energy.

4.2.1 Assumptions

• A time slotted system is considered [2], where SUs and the PU synchronize
themselves with a common clock. The SUs synchronize their spectrum access
to the time-slot clock by, e.g., listening to the timing pilot on a broadcast
control channel of the PU network [2, 69]

• Distances of SUs (SU transmitters) from the PU transmitter is known

• Energy Detector(ED) [3, 15, 70] based approach is used for local/individual
spectrum sensing by the SUs because of its low computational and imple-
mentation complexity

• The SNR value of each of the SU in the network depends on its individual
ED threshold value

• Reporting channel incurs error due to multipath fading and shadowing with
infinite precision energy combining method used for sensing

• The noise present in the wireless channel is Additive White Gaussian Noise
(AWGN) [17]
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• SUs perform the spectrum sensing operation in Rayleigh fading [17] envi-
ronment

• Voting based rule is used by coalition head for combining individual sensing
results of SUs

4.2.2 Notations and Symbols Used

For the remainder of this chapter, the notations and symbols used are summarized
in Table 4.1.

Table 4.1: Notations and symbols used

Notations/Symbols Comments
S Represents a coalition
N Number of SUs in the network
PTX Primary transmitter
Pd,i Probability of detection of the ith SU
Pf,i Probability of false alarm of the ith SU
Pm,i Probability of miss detection of the ith SU
u Time bandwidth product
Γ(., .) Incomplete Gamma function
Γ() Gamma function
λ Fixed sensing threshold (Energy Detection thresh-

old) for an SU
γi,PU Average SNR of the received signal from the PU

at ith SU
hPU,i Path loss between PU and the ith SU
PPU PU signal power
σ2 Gaussian noise variance
κ Path-loss constant
µ Path loss exponent
dPU,i Distance of ith SU receiver from the PU transmit-

ter
Pe,i,l Probability of error of the channel from the ith SU

to coalition head l
γi,l Average SNR at the coalition head l from the ith

SU
Pi Transmission power of the ith SU, used for report-

ing sensing information to coalition head
hi,l Path loss between the ith SU and coalition head l
di,l Distance between ith SU receiver and the coalition

head l
ET Energy consumed for reporting the local sensing

result to coalition head by an SU
ed Energy dissipated per bit per metre2

et Energy spent by transmission circuitry per bit
b Number of bits to be transfered/received/sensed
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d Distance between transmitter and receiver
Qm,S Probability of miss detection of a coalition S
Qf,S Probability of false alarm of a coalition S
λi Adaptive sensing threshold (i.e. Energy Detection

threshold) for the ith SU
di Distance between the ith SU and the PU trans-

mitter
DPU Distance vector containing the distances between

SU transmitters and the PU transmitter
Vi,D Distance vector maintained by ith SU consisting

of relative distances between this SU and all other
SUs in a coalition

di,j Distance between the ith SU and the jth SU
davg,i Average distance between the ith SU and all other

SUs in a coalition
VD,avg Global vector consisting of average distance be-

tween every SU and all other SUs in a coalition
davg,min Minimum of the average distance between each

SU and all other SUs in a coalition
ET,i Energy consumed for reporting the local sensing

information by the ith SU to the coalition head
α Maximum tolerable probability of false alarm

P̂d,i Probability of detection of the ith SU with adap-
tive sensing threshold

P̂f,i Probability of false alarm of the ith SU with adap-
tive sensing threshold

P̂m,i Probability of miss detection of the ith SU with
adaptive sensing threshold

P̂e,i,l Probability of error in the channel from the ith

SU to the coalition head l while adaptive sensing
threshold is considered

Q̂m,S Probability of miss detection of a coalition S when
adaptive sensing thresholds of SUs are considered

Q̂f,S Probability of false alarm of a coalition S when
adaptive sensing threshold of SUs are considered

Pf,min Minimum probability of false alarm for the net-
work

Pe,min Minimum probability of reporting error for the
network

Smax Maximum number of SUs in a coalition S
D Defection function
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4.3 System Model

An ad-hoc CRN consisting of N numbers of SUs and a single PU is considered. A
time slotted system is considered, where SUs and the PU synchronize themselves
with a common clock. It is also assumed that when the PU is sensed to be absent,
it will remain absent for the entire period of the time slot and vice-versa. To
enable the sharing of sensing information among SUs, it is considered that every
SU exists within the coverage of every other SUs in the network. SUs in the CRN
are assumed to have the knowledge about their distance from the PU transmitter
and their relative distances from all other SUs within a coalition as shown in
Figure 4-1 using techniques like Global Positioning System (GPS).

Figure 4-1: Network Architecture

In presence of Rayleigh fading, as stated in [17], for a cooperative spectrum
sensing environment the probabilities of detection, miss detection, and false alarm
of an individual SU i, can be given by Eq.(4.1), (4.2) and (4.3) respectively.

Pd,i = e−
λ
2

u−2∑
n=0

1
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(
λ

2

)n
+

(
1 + γi,PU
γi,PU

)u−1
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[
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− λ
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u−2∑
n=0

1

n!

(
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(4.1)

Pm,i = 1− Pd,i (4.2)

Pf,i =
Γ
(
u, λ

2σ2

)
Γ(u)

(4.3)

where u is the time-bandwidth product, Γ(., .) is the incomplete gamma function,
λ is the fixed sensing threshold and Γ() is the gamma function. γi,PU represents
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the average SNR of the received signal from the PU at ith SU and is given by
γi,PU =

PPUhPU,i
σ2 with PPU be the PU transmitter signal power, σ2 be the Gaus-

sian noise variance and hPU,i be the path loss between the PU and the ith SU.
hPU,i is expressed by κ/dµPU,i with κ, µ and dPU,i being the path loss constant,

path loss exponent and the distance between the PU and the ith SU respectively.
The sensing parameters expressed by Eq.(4.1), (4.2) and (4.3) for individual sens-
ing suffer from problem of spectral diversity. To overcome this problem during
individual sensing, SUs can make use of collaboration among themselves to form
coalitions and perform CSS. The cooperative decision is made by selecting a head
as a fusion center of a coalition. The SUs in a coalition report their individual or
local sensing information to the head using the reporting channel. The main task
of the coalition head is to make a decision using the local sensing information of
the SUs by applying a fusion rule. The majority/voting rule is assumed that the
head uses for data fusion. Because the voting rule is more robust in situations of
unpredictable noisy environment, not all the SUs need to be perfect in reporting
to the head. While the CSS offers the enhancement of the sensing performance,
it suffers from cooperation overhead during reporting phase of the SUs. This
happens due to the presence of fading and shadowing over the reporting channel,
leading to incur reporting error and extra energy to report. In a Rayleigh fading
environment with BPSK modulation in use, the probability of reporting error (i.e.
Pe,i,l) from the ith SU to coalition head l of coalition S is given by Eq.(4.4), as
stated in [53].

Pe,i,l =
1

2

(
1−

√
γi,l

1 + γi,l

)
(4.4)

where γi,l = Pihi,l/σ
2 is the average SNR at the coalition head l from ith SU and Pi

being the transmission power of ith SU transmitter used for reporting the sensing
result to l. hi,l = κ/dµi,l is the path loss between the ith SU and the coalition head

l, where di,l is the distance between the head l and the ith SU. As stated in [71],
the energy spent during reporting can be given by Eq.(4.5)

ET = edbd
µ + etb (4.5)

where ed, et, b, d and µ represent the amount of energy dissipated per bit per
metre2, energy spent by transmission circuitry per bit, the number of bits to be
transferred/received/sensed, distance between transmitter and receiver and the
path loss exponent respectively. According to [80], using CSS the probability of
miss detection and the probability of false alarm of a coalition S with coalition
head l can be given by Eq.(4.6) and (4.7) respectively.

Qm,S =
∏

i∈S
[Pm,i(1− Pe,i,l) + (1− Pm,i)Pe,i,l] (4.6)

Qf,S = 1−
∏

i∈S
[(1− Pf,i)(1− Pe,i,l) + Pf,iPe,i,l] (4.7)

where Qm,S and Qf,S represent the probability of miss detection and probability
of false alarm of coalition S with Pm,i, Pf,i and Pe,i,l being the probability of miss
detection, probability of false alarm and probability of reporting error of the ith

SU respectively. From the Eq.(4.6), it is observed that for a coalition S, the
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Qm,S depends on Pm,i and Pe,i,l, ∀i ∈ S. The value of Pm,i of ith SU depends
on ED sensing threshold (λ) and the average SNR (γi,PU) of the received signal
from the PU at the ith SU. Pe,i,l of ith SU is dependent on γi,l. Similarly, from
Eq.(4.7), it can be stated that the false alarm probability of a coalition S has a
dependency on Pf,i and Pe,i,l, ∀i ∈ S, where Pf,i depends on sensing threshold (λ),
and Pe,i,l depends on γi,PU and γi,l respectively. Further, the distances between
the PU transmitter and ith SU, and ith SU and coalition head l have significant
impact on γi,PU and γi,l respectively. Having the impact of sensing threshold (λ)
on the accuracy of individual detection and false alarm probability, the choice of
it’s value is dependent on the distance between the ith SU and the PU transmitter.
Therefore, a formulation to adaptively estimate the value of sensing threshold (λ),
based on the distance between ith SU and the PU transmitter can be derived using
Eq.(4.8) as stated in [81].

λi = PPU − 10µlog(di) (4.8)

where PPU and λi are the PU transmitter signal power and the adaptive sensing
threshold of ith SU respectively, with di being the corresponding distance between
the ith SU and the PU transmitter.

4.4 Game Theoretic Formulation of the Pro-

posed CSS

4.4.1 CSS using Game Theory

The proposed framework of CSS requires to deal with dynamic behavior of SUs
during cooperation through the interaction among the SUs and to adapt the pa-
rameters like variations of distances of the SUs from the PU and other SUs in the
network on run. It is revealed in the literature [44] that the game theory [23, 24]
as a mathematical tool can be used to model and analyze such a collaborative
framework efficiently. Between the two categories of game theoretic approaches
(i.e. non-cooperative and cooperative game theory) [23,24], the cooperative game
theory considers the behavior of rational players with improvement of their mutual
benefit via cooperation. Therefore, the proposed framework of CSS problem can
be modeled efficiently using the cooperative game theoretic approach.

4.4.2 The Proposed Coalitional Game Model

Using game theory [23,24,76], the CSS framework is modeled as a non-transferable
coalition game and is named as threshold adaptive CSS or TACSS in short. The
game is represented by (N, ν), where N and ν represent the finite set of players
(SUs) and the payoff or utility associated with each of the players in the coalition
respectively. As shown in Fig.4-2, in the framework of coalitional game, formation
of coalitions are performed by partitioning the set of players into disjoint sets. The
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proposed model forms coalitions such that each player is a constituent member
of exactly one coalition. The utility function captures the trade-off between the
revenue generated in terms of probability of detection and the cost incurred due
to cooperation. The utility function is derived considering the distance adaptive
individual false alarm and reporting error of the SUs.

Figure 4-2: Distributed coalition formation by SUs

4.4.2.1 Design of Utility Function

Inspired by the work in [34], the utility function for a coalition S is designed to
capture the result of detection (that is, probability of detection) against the trade-
off in terms of probability of false alarm and is represented by ν(S), which can be
given by Eq.(4.9)

ν(S) = 1− (Qm,S + C(Qf,S)) (4.9)

where Qm,S and C(Qf,S) represent the probability of miss detection and the cost
function of coalition S. The cost function is defined in terms of the probability of
false alarm of the coalition S. During the game the optimal value of ν(S) can be
obtained depending on minimization of Qm,S and C(Qf,S). For a coalition S, the
values of Qm,S and C(Qf,S) depend on the probability of error during reporting
to the coalition head. Therefore, the minimization of reporting error indirectly
maximizes the utility of the coalition. Further, the cooperation overhead can be
optimized by minimizing the reporting energy of the SUs. The constraints due
to reporting energy and reporting error are indirectly considered in ν(S) through
selecting the head of the coalition S in such a way that the average distance
between every SU and the coalition head is minimized.
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4.4.2.2 Selection of Coalition Head

Let S be a coalition consisting ofK number of SUs denoted by {1, 2, . . . , K}. Using
the formulation derived in 3.4.3.2 the selection of coalition head for a coalition S
can be performed by calling the Algorithm 1 in Chapter 3.

4.4.3 Optimization of Cost Parameters

The maximization of utility eventually maximizes the probability of detection of
coalition S, which depends on optimization of cooperation overhead by means of
cost parameters reporting error over the channels and the reporting energy spent
during reporting.

4.4.3.1 Optimization of Probability of Error during Reporting

Substituting γi,l the Eq.(4.4) for probability of error can be expressed as

Pe,i,l =
1

2

1−

√√√√ Pihi,l
σ2

1 +
Pihi,l
σ2



=
1

2

1−

√√√√ Piκ
σ2dµi,l

1 + Piκ
σ2dµi,l



=
1

2

1−

√√√√√ Piκ
σ2dµi,l

σ2dµi,l+Piκ

σ2dµi,l


=

1

2

(
1−

√
Piκ

σ2dµi,l + Piκ

)
(4.10)

Now, assuming that the values of κ, σ2 and Pi are fixed for a particular instance
of time, we can rewrite Eq.(4.10) as

Pe,i,l =
1

2

(
1−

√
C1

C2d
µ
i,l + C1

)
(4.11)

where C1 = Piκ, C2 = σ2 are constant terms. So, Eq.(4.11) can be rewritten as

Pe,i,l =
1

2
(1−

√
X) (4.12)

where X = C1/(C2d
µ
i,l + C1). Now, from Eq.(4.12) it can be observed that the

term X ∝ 1/dµi,l, that is, X is inversely proportional to the distance between ith

SU and the coalition head l, which implies that if the value of di,l increases the

60



4.4. Game Theoretic Formulation of the Proposed CSS

value of X decreases polynomially. Considering this fact, the Eq.(4.12) can be
expressed such that Pe,i,l ∝ dµi,l, that is, the value of the error probability increases
as the value of di,l increases in polynomial order. Thus, it can be concluded that
the minimization of the average distance between all the SUs and the respective
coalition head minimizes the overall error probability of the coalition.

4.4.3.2 Optimization of Energy Consumption during Reporting

Considering the terms ed, et, µ and b as constant, for a particular instance of time,
the Eq.(4.5) can be rewritten as Eq.(4.13)

ET = C3d
µ + C4 (4.13)

where C3 = edb, C4 = etb are constant terms. Using the Eq.(4.13), the energy
spent during reporting by the ith SU to the coalition head l at a distance di,l can
be rewritten as

ET,i = C3d
µ
i,l + C4 (4.14)

Therefore, ET,i ∝ dµi,l for a large value of di,l. So, the value of ET,i can be optimized
by minimizing the value of di,l, which can be estimated using Eq.(??).

4.4.4 The Threshold Adaptive CSS Game

Using Eq.(4.8), the Eq.(4.1), (4.2) and (4.3) can be rewritten as

P̂d,i = e−
λi
2

u−2∑
n=0

1

n!

(
λi
2

)n
+

(
1 + γi,PU
γi,PU

)u−1

×

[
e
− λi

2(1+γi,PU) − e−
λi
2

u−2∑
n=0

1

n!

(
λiγi,PU

2(1 + γi,PU)

)n]
(4.15)

P̂m,i = 1− P̂d,i (4.16)

P̂f,i =
Γ
(
u, λi

2σ2

)
Γ(u)

(4.17)

Using Eq.(4.15), (4.16), (4.17) and the probability of reporting error to be P̂e,i,l
the Eq.(4.6) and (4.7) can be rewritten as follows.

Q̂m,S =
∏

i∈S

[
P̂m,i(1− P̂e,i,l) + (1− P̂m,i)P̂e,i,l

]
(4.18)

Q̂f,S = 1−
∏

i∈S

[
(1− P̂f,i)(1− P̂e,i,l) + P̂f,iP̂e,i,l

]
(4.19)
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Now using Eq.(4.18) and (4.19), the utility function of the proposed model can be
rewritten as

ν̂(S) = 1− (Q̂m,S + C(Q̂f,S)) (4.20)

The cost function C(Q̂f,S) in Eq.(4.20) can be described by a logarithmic barrier
penalty function given by [82] as follows.

C(Q̂f,S) =

 −σ2. log

(
1−

(
C(Q̂f,S)

α

)2
)
, if Q̂f,S < α,

+ ∞, if Q̂f,S ≥ α,
(4.21)

where α represents the maximum tolerable probability of false alarm of a coalition.

The proposed game with the utility function given by Eq.(4.20), satisfies
the following property and is proved for CSS.

Property 1: The proposed coalition game has a non-transferable utility.

Proof: Once the game arbitrates to form coalitions, the final decision of
any SU within a coalition is based on the decision taken by the selected coalition
head. Therefore, the miss detection and false alarm probabilities of a coalition
S become the miss detection and false alarm probabilities for any SU i, i ∈ S,
i.e. P̂m,i = Q̂m,s and P̂f,i = Q̂f,s. Thus the utility of the coalition S becomes the
utility of any SU i, i ∈ S that is, νi(S) = ν(S). So, the utility of the coalition
S cannot be arbitrarily distributed among the participants of the coalition S,
establishing that the game has non-transferable utility.
This completes the proof of Property 1.

The proposed game partitions the CRN into multiple disjoint coalitions.
The stability of the game in such a collaborative environment can be achieved
while the coalition’s formation follows the Pareto order conditions [83]. The
concept of the Pareto order condition can be incepted from the description given
in the book by Hossain et al. [83]

Definition 1: Pareto order - Consider two collections of coalitions
R = {R1, . . . , Rr} and S = {S1, . . . , Sk}, for r, k ≤ N , which are parti-
tions of the same subsets A ⊆ N (same player in R and S). For a collection
R = {R1, . . . , Rr}, let the utility of a player j in a coalition Rj ∈ R be denoted
by φj(R) = φj(Rj) ∈ ν(Rj). R is preferred over S by Pareto order, i.e. R . S, iff
R . S ⇔ φj(R) ≥ φj(S), ∀j ∈ R,S with at least one strict inequality (>) for a
player k. Where . is a preference operator or comparison operator.

Definition 2: Preference or comparison operator - A preference or
comparison operator . is defined to compare two collections of coalitions
R = {R1, . . . , Rr} and S= {S1, . . . , Sk}, which are partitions of the same subsets
A ⊆ N. R . S implies that the way R partition A is preferred to the way S

partitions A.

Using Definition 1 for Pareto order, we propose a coalition formation
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mechanism involving merge and splits rules as follows [84].

Definition 3: Merge Rule - Merge any arbitrary set of coalitions {S1, . . . , Sk},
where {

⋃k
j=1 Sj} . {S1, . . . , Sk}.

Definition 4: Split Rule - Split any coalition Ŝ = {
⋃k
j=1 Sj}, where

{S1, . . . , Sk} . {
⋃k
j=1 Sj}.

4.4.5 The Distributed Threshold Adaptive CSS Algorithm

The proposed game model is realized by a distributed algorithm, which is named
TACSS in short. The algorithm consists of four main phases - (i) Individual
local sensing by SUs, (ii) Adaptive coalition formation by an iterative merge and
split operation for maximizing coalition utility, (iii) Selection of coalition heads in
the resultant coalitions, and (iv) Performing coalition based sensing for making
cooperative decision per coalition. The algorithm for distributed TACSS assumes
that at any given time slot Tl, l 6= 0, the CRN is constituted by M number
of coalitions given by {S1, S2, S3, . . . , Sm} except at the first time slot T0. At
T0, there is no coalition and each SU performs non-cooperative spectrum sensing
individually. The steps of the proposed CSS algorithm are given as in Algorithm
3.

Time complexity analysis of Algorithm 3 (Distributed TACSS)

The time complexity of the algorithm can be determined by approximating the
number of comparisons (attempts) for merge and split operation. Considering the
worst case scenario of convergence, where there exist n singleton coalitions1 in
the network, denoted by {S1, S2, . . . , Sn}, the complexity of the algorithm can be
estimated as follows.

To approximate the number of merge attempts, suppose there are N num-
ber of singleton coalitions in N. During the first iteration of the algorithm,
any coalition Si,∀Si ∈ N attempts to form coalition with any other coalition
Sj, ∀Sj ∈ N and i 6= j. In worst case scenario, Si attempts to merge with Sj,
requiring at most (N − 1) comparisons. The merge attempts are repeated for all
members of N since each singleton coalition may try to form a larger coalition
requiring (N(N − 1)) number attempts. At the end of the first iteration, in worst
case, only one coalition will be formed consisting of only two members of N. The
rest of the members of N will fail to form any more coalitions and will remain
singleton. In the second iteration, all the member of N except those members
whoever already formed a larger coalition in the first iteration will try to merge
with the previously formed larger coalition. This may take at most (N−2) number
of comparisons. At the end of second iteration, in worst case, only one coalition
will be formed consisting of only three members of N. Similarly, the iteration

1In game theory [23], a coalition having only one player is called a singleton coalition.
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Algorithm 3: Distributed TACSS

Input: PPU (PU signal power), DPU (Distance vector containing the distances
of SUs from the PU), α (tolerable probability of false alarm)

Output: Final/cooperative sensing decision

Step 1: Each SU i computes the individual sensing threshold (λi) using Eq.(4.8)
and locally senses (that is, non-cooperative sensing using energy detec-
tion) the licensed spectrum using its λi.

Step 2: Start coalition formation considering individual SUs as coalitions with
single SU and go to Step 3. Each coalition with single SU i, is called
singleton coalition.

Step 3: Merge operation: Two coalitions Si and Sj , i 6= j can merge to form a
large coalition if and only if {Si

⋃
Sj} . {Si, Sj}

Step 4: Split operation: A coalition Ŝ = {Si
⋃
Sj} can be split to form two

sub-coalitions if and only if {Si, Sj} . {Ŝ} i.e. {Si, Sj} . {Si
⋃
Sj}

Step 5: Repeat the Step 3 and 4 until no more merge and split operations take
place , that is, the coalitions become stable.

Step 6: Select coalition head for coalition/s using Algorithm ??.

Step 7: Each SU i, ∀i ∈ S reports its local sensing information to their Coalition
head within the coalition S.

Step 8: Coalition head combines the local sensing information received from all
the SUs of the coalition S and the final decision about the sensing is
obtained.

process continues until coalitions are formed and become stable. Therefore, in the
worst case scenario the total time required for all the merge attempts can be given
as follows.

T (N) = N(N−1)+(N−2)+(N−3)+. . .+1 = N(N−1)+(N(N−1))/2 = O(N2)
(4.22)

In case of split attempts, any coalition S having N number of SUs, will
try to find/form all possible disjoint subsets of coalition S. Since the power set
of any set of size N contains all the possible subsets of that set, finding any two
disjoint subsets from that power set will take at most 2N number of comparisons.
Therefore, in worst case scenario for any coalition S of size N , the time complexity
for split attempts will be at most O(2N).

However, in practice the worst case time complexity for the Algorithm 3
is not always withstanding. The merge process in practice requires significantly
less number of attempts than in the worst case scenario; because in most of the
instances the number of SUs in a coalition is reasonably small. In such a instance
instead of going through all possible merge attempts with every coalition, whenever
a coalition finds a partner satisfying the condition for merge, it merges. Therefore,
in all cases it does not require to go through all the possible merge attempts.
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Similarly once a coalition is heading towards split, the search for further splits is
not necessary until the previous split attempt leads the coalition unstable.

4.4.5.1 Maximum Coalition Size

For the proposed algorithm, the maximum coalition size can be determined by
the formulation given in Theorem 1.

Theorem 1: For the given minimum probability of false alarm (Pf,min)
and minimum probability of error during reporting (Pe,min), any coalition S
resulting from Algorithm 3 can have maximum Smax number of SUs, which can
be approximated as follows.

Smax ≤
log(1− α)

log[(1 + 2Pf,minPe,min)− (Pf,min + Pe,min)]
(4.23)

Proof: In order to decide the maximum number of nodes in any coalition S,
the false alarm probability of every SU and the amount of error incurred during
reporting the individual sensing information to the head should be minimal. Let,
Pf,min and Pe,min represents the minimum probability of false alarm and minimum

probability of error respectively. Suppose the values of each P̂f,i and P̂e,i,l, ∀i ∈ S
is equal to the Pf,min and Pe,min respectively i.e. P̂f,1 = P̂f,2 = · · · = P̂f,k = P̂f,min
and P̂e,1,l = P̂e,2,l = · · · = P̂e,k,l = P̂e,min. Then, the Eq.(4.19) can be rewritten as

Q̂f,S = 1−
∏

i∈S
[(1− Pf,min)(1− Pe,min) + Pf,minPe,min]

= 1−
∏

i∈S
[(1 + 2Pf,minPe,min)− (Pf,min + Pe,min)]

= [(1 + 2Pf,minPe,min)− (Pf,min + Pe,min)]|S|

Since α is a maximum tolerable value for Q̂f,S for any coalition S.

α ≥ [(1 + 2Pf,minPe,min)− (Pf,min + Pe,min)]|S|

[(1 + 2Pf,minPe,min)− (Pf,min + Pe,min)]|S| ≤ 1− α

|S| log [(1 + 2Pf,minPe,min)− (Pf,min + Pe,min)] ≤ log(1− α)

|S| ≤ log(1− α)

log [(1 + 2Pf,minPe,min)− (Pf,min + Pe,min)]

Smax ≤
log(1− α)

log [(1 + 2Pf,minPe,min)− (Pf,min + Pe,min)]
(4.24)

This completes the proof of Theorem 1.
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4.4.6 Stability of Coalition

In coalitional game theoretic formulation the stability of coalitions is characterized
based on the defection measures in terms of defection function D [85].

Definition 5: Defection function - A defection function D is a function
associated with each partition P of N. P is a group of players in N. A partition
P is D-stable if no group of players is interested to leave P. Thus, the players
can form the coalitions only allowed by the function D.

With the proposed game model, the defection function Dp [85] can be
used to describe the stability of the formed coalitions of the network. Dp function
is a function which allows any group of players to leave the coalition S of N

using merge and split operations to create another coalition in N. Therefore, if a
coalition S is Dp stable if no players in S are willing to leave S using merge and
split operations to form other coalitions in N.

Theorem 2: The coalitions resulted from the proposed Algorithm 3 are
Dp stable.

Proof: As the proposed algorithm iterates to creates coalition using merge and
split operations following the Pareto order optimality, the coalitions formed after
(i + 1)th iteration is always preferable over ith iteration i.e. νi+1(S) . νi(S) for
any coalition S. As shown in [84, 85], any arbitrary merge and split operations
performed during coalition formation terminates, leading to convergence to a
stable coalition with respect to the merge and split rules. Therefore, the coalitions
resulted from the proposed Algorithm 3 are Dp stable.
This completes the proof of Theorem 2.

4.5 Simulation Results and Observations

In this section, simulation results are presented to evaluate the performance of
the proposed scheme in terms of achieved probability of false alarm, probability
of miss detection and the utility (the probability of detection) and compared with
the model by Saad et al. [34]. Since the model proposed by Saad et al. [34] is
similar to the proposed technique, we compare the performance of the proposed
scheme with the scheme by Saad et al. The results to show how the increase in
number of SUs in a coalition impacts the probability of false alarm and probability
of miss detection using both the proposed technique and the model by Saad et
al. are presented next. Then we present the results to show how the optimal size
of a coalition varies in order to tolerate different target probability of false alarm
values. The results to demonstrate how the distance between transmitter and
receiver impacts in consumption of extra energy during reporting in a coalition is
presented next. Further, we present the results to show the process of selection
of coalition head and how the selection of the coalition head affects the reporting
energy consumption. Finally, the results are presented to show how the selection
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of coalition head impacts the probability of error incurred during reporting by
SUs.

A MATLAB based simulation has been carried out to study the behavior
and the efficacy of the proposed TACSS model. The parameters taken for simu-
lation environment are listed in the Table 4.2. For simulation purpose, a network

Parameter Value
λ (fixed threshold) 20-80dB
R (radius of PU coverage) 2000m
PPU (PU transmitter power) 1mW

ed (energy dissipated per bit per metre2)
0.0013 pJ/bit/m2 as
taken by Zheng et
al. [74]

et (energy spent by transmission circuitry per bit)
5 nJ/bit/signal as
taken by Zheng et
al. [74]

σ2 (Gaussian noise variance) -50dBm - -90dBm

u (time bandwidth product)
5 as taken by
Ghasemi et al. [17]

κ (path loss constant) 1
µ (path loss exponent) 3

α (maximum tolerable probability of false alarm of a
coalition)

0.1 as used in IEEE
802.22 [86]

Table 4.2: Values of different parameters used in simulation

with a single PU which is placed at the center of a circular area with a radius
of 2000m . The SUs are placed randomly within the area of the network. The
fixed spectrum sensing threshold value is set to be in between 20 dB to 80 dB
for the model given by Saad et al. [34], whereas in the proposed TACSS model
thresholds are determined adaptively using Eq.(4.8) based on the distance of SUs
from the primary transmitter. In the experimental setup, the value of α, that is
the maximum tolerable probability of false alarm of a coalition is maintained to
be 0.1, and accordingly set the sensing threshold to be at least 20 dB.

Figure 4-3 to Figure 4-6 show the results of experiments conducted for
evaluating the performance of the proposed model with respect to different sens-
ing parameters and compared the performance with the model given by Saad et al.
[34]. For the proposed scheme, the SUs independently adapt their sensing thresh-
olds, whereas a fixed sensing threshold will be used by the SUs for the model by
Saad et al. The results in these figures are based on a coalition of size 20 nodes.
Figure 4-3 depicts the relationship between the adaptive sensing threshold and the
achieved probability of false alarm using the proposed TACSS model and the fixed
sensing threshold and the achieved probability of false alarm using the model by
Saad et al. [34]. It shows that the proposed model achieves the probability of false
alarm at per the results claimed by Saad et al. [34] while addressing the issues
of spatial diversity. Compared to the model by Saad et al. [34], which uses the
fixed sensing threshold for all the SUs, the proposed model chooses the sensing
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Figure 4-3: Threshold vs. Probability of False Alarm (with a coalition size of
20)

thresholds for SUs adaptively and diminishes the problem of spatial diversity.

Figure 4-4 shows the miss detection performance of both the proposed
model and the model by Saad et al. [34]. It shows that for sensing threshold upto
35 dB, the proposed model performs similar to the model by Saad et al. [34] in
terms of probability of miss detection. But, the miss detection performance of
the model by Saad et al. [34] gradually suffers as the sensing threshold increases
beyond 35 dB, whereas the proposed model performs consistently irrespective of
the values of sensing threshold. It is due to TACSS’s dynamic and adaptive nature
in choosing the individual sensing thresholds of the SUs in the coalition.

Figure 4-5 demonstrates the performance of both the proposed TACSS
model and the model by Saad et al. [34] in terms of utility. It shows that for
feeble values of sensing threshold, the proposed model performs similar to the
model by Saad et al. [34]. However, the utility achieved by the model by Saad
et al. gradually suffers as the sensing threshold value increases beyond 35dB.
On the other hand, the proposed model performs consistently. This consistently
better performance of the TACSS can be attributed to its adaptive behavior of
choosing distance adaptive sensing thresholds for the individual sensing of SUs in
the coalitions.

Figure 4-6 and Figure 4-7, show the impact of coalition size (no. of SUs)
on the probabilities of false alarm and miss detection in a coalition. Fig. 4-6 reveals
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Figure 4-4: Threshold vs. Probability of Miss Detection (with a coalition size of
20)

that when the number of SUs in a coalition the probability of false alarm increases
for both the models. However, the proposed model performs significantly better
than the model by Saad et al. [34], and the difference in performance becomes
higher in coalition with bigger size. Starting with coalition of 1 node as the number
of nodes increases in the coalition up to 30, the probability of false alarm achieved
is 0.062 for the proposed model, whereas it is 0.081 for the model by Saad et al.
[34].

Figure 4-7 shows the behavior of both the methods in terms of probability
of miss detection with increase in coalition size. With the increase in coalition
size, the miss detection probability of both the models decreases. However, the
proposed model outperforms the model by Saad et al. [34] when the coalition
size is comparatively smaller (up to 11 in the figure). The result shows that the
coalition with even 2 number of SUs can converge diminishing the probability of
miss detection up to an optimal range than that of the model by Saad et al. [34].

Figure 4-8 demonstrates the determination of optimal number of SUs,
which constitutes the optimal sized (i.e. Smax) coalition in order to tolerate a given
maximum probability of false alarm value (i.e. α). The results show that with
increasing values of probability of false alarm to be tolerated, more numbers of SUs
are required in a coalition to maintain the given probability of false alarm. It can
be seen that to maintain a target tolerable probability of false alarm of 0.1 (i.e. α =
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Figure 4-5: Utility achieved in terms of Probability of Detection against sensing
threshold

0.1) with minimum probability of false alarm of 0.001 and minimum reporting error
probability of 0.001 for the SUs, the optimal number of SUs required is 50. The
optimal size of coalition increases to maintain smaller values of target probability
of false alarm. This can be explained by the fact that, with optimal numbers of
SUs, the cost of the coalition is minimized (that is, false alarm probability of the
coalition).

Figure 4-9 shows the relationship between amount of energy consumption
during reporting and the distance between transmitter and receiver. In this simu-
lation setup, the coverage distance of maximum 5km is considered to evaluate the
energy consumption by the SUs. The figure shows that the energy spent for report-
ing the local sensing results by an SU (transmitter) to the coalition head (receiver)
increases with increase in distance between the transmitter and the receiver. It is
observed that larger the distance between the SUs and the coalition head, higher
is the amount of energy spent by the SUs to send their individual or local sensing
information to the head. This in turn increases the energy consumption overhead
due to reporting.

Figure 4-10 to Figure 4-12 illustrate about optimization of cost of report-
ing energy and reporting error as described in section 4.4.3. Figure 4-10 shows
the scenario corresponding to the selection of coalition head. For simulation, a
coalition of 15 SUs is assumed and SUs distances from the PU are generated ran-
domly. The figure shows that the 12th SU at a distance of 54m from the PU has
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Figure 4-6: Number of SUs vs. Probability of False Alarm

Figure 4-7: Number of SUs vs. Probability of Miss Detection
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Figure 4-8: Maximum tolerable probability of false alarm (α) vs. Optimal Coali-
tion Size

Figure 4-9: Distance vs. Reporting Energy

the minimum average distance and is selected as the coalition head.

Figure 4-11 shows the overhead incurred in terms of reporting energy,
while selecting different SUs as the coalition head. It shows that when an SU
with minimum average distance that is the SU with 54m as the average distance
is selected as the head of the coalition, the energy consumption by the coalition
becomes minimal.
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Figure 4-10: Distance of SUs w.r.t. the PU vs. Avg. distances of SUs

Figure 4-11: Reporting Energy vs. Coalition Head Selection

Figure 4-12 shows the probability of error incurred during reporting by
the SUs against the selection of different SUs as the coalition head. It shows that
the error probability can be minimized if an SU at a minimum average distance is
selected as the coalition head. This in turn minimizes the false alarm probability
of the coalition and hence enhances the performance of CSS.

Therefore, from the above experimental results it can be observed that the
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Figure 4-12: Probability of Error vs. Coalition head

proposed model can solve the spectral diversity problem while maintaining coali-
tion overhead due to reporting energy and reporting error at minimum compared
to the similar scheme in literature.

4.6 Conclusion

In this chapter, the cooperative spectrum sensing problem in CRN is investigated
to improve the detection efficiency while overcoming the impact of spatial diversity
problem during cooperation and reducing the cooperation overhead due to error in
reporting channel and the reporting energy. The proposed CSS scheme is modeled
as a cooperative game where SUs organize themselves into disjoint partitions while
maintaining the overall utility function. The proposed CSS scheme overcomes
the spatial diversity problem using a distance/location adaptive sensing threshold
determination technique, which in turn improves the accuracy in detecting the
PU signal. The proposed scheme is shown to reach stable partition analytically.
Simulation results further validates the claim. The effectiveness of the proposed
scheme is verified through its performance evaluation comparing against the model
by Saad et al. [34].

With the enhanced detection performance of proposed CSS schemes, the
next task is to use the detected opportunities efficiently for maximizing the ca-
pacity rate for SUs, which will be addressed in the next chapter.
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