
Chapter 2

Literature Survey

2.1 Introduction

The key enabling technology that emerges for dynamic spectrum access (DSA)
techniques for radio communication is the cognitive radio (CR), which is supported
by the Software Defined Radio (SDR) technology. The Cognitive Radio Network
(CRN) has emerged as a strong candidate for next generation wireless communica-
tion networks due to its properties like - capacity to autonomically utilize unused
spectrum portions opportunistically, and seamless communication. This disserta-
tion contributes algorithms and schemes in the area of cognitive radio networks.
In this context, this chapter provides the background about functionalities and
a comprehensive survey on various works done in the field of spectrum sensing,
power and channel allocation and primary user channel usage pattern modeling
for medium access control (MAC) level sensing decision. This survey will provide
a strong foundation to appreciate the different schemes developed throughout this
dissertation. The rest of this chapter is organized as follows. Section 2.2 discusses
about different spectrum sensing techniques and their working principles. Section
2.4 discusses about the technique of cooperative spectrum sensing. In this sec-
tion the issues of cooperative spectrum techniques are also discussed. Section 2.5
presents the power and channel allocation techniques used for CR communication.
This section also focuses on the capacity rate optimization issues related to CR
communication. Section 2.6 discusses medium access control (MAC) layer level
spectrum sensing techniques and their implications for protocol level decision mak-
ing. This section also presents the channel access mechanisms used for medium
access control by the application level protocols. Finally, section 2.7 concludes
this chapter.
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2.2 Spectrum Sensing

The advent of cognitive radio (CR) is to design the radio frequency (RF) unit of a
terminal to be sensitive and aware of the possible changes in its surrounding radio
environment. The spectrum sensing is the key function of CR which enables the
CR to dynamically adapt to environmental changes by detecting the unoccupied
spectrum portion called spectrum holes or white spaces [2]. The important and
fundamental task of each user in CRN called secondary user (SU) is to detect
the presence or absence of licensed users also called primary users (PUs) of a
licensed spectrum band using the spectrum sensing functionalities. This results
in detection of the PU signals if they are present in the spectrum band, otherwise
identify the availability of the spectrum portion if PUs are absent. The other
goal of spectrum sensing in the context of CRN is that depending on detection
performance the SU transmissions should not cause interference to PUs through
either limiting its interference level within tolerable level of PUs or switching to
an another available spectrum band.

The detection performance of spectrum sensing function plays a crucial
role in terms of accuracy for success of CR transmission while protecting primary
transmission. In spectrum sensing, three important matrices are used to measure
the detection performance. They are - probability of detection, probability of miss
detection and probability of false alarm and are stated as follows:

• probability of detection - it is the probability that an SU declares the presence
of a PU when the PU indeed occupies the spectrum band.

• probability of false alarm - it is the probability that a SU declares that the
PU is present in a spectrum band when the spectrum is actually free (i.e.
not occupied by PU).

• probability of miss detection - it is the probability that a SU declares that
PU is absent when the PU indeed occupies the spectrum band. It can be
defined as the opposite of probability of detection.

Based on the above measures for achieving an optimal probability of detection, a
spectrum sensing function requires to generate miss detection and false alarm as
minimum as possible. Since every miss detection causes the interference to the
PU and a false alarm reduces the resultant spectral efficiency, therefore, improving
spectral efficiency while maintaining a given level of detection accuracy or vice-
versa is important.

Most of the spectrum sensing techniques in the literature [2] focuses on pri-
mary transmitter detection based on local/individual (i.e. non-cooperative sens-
ing) observations by the SUs. The recent development is in the area of cooperative
sensing, where CR nodes can collaborate or cooperate for improving spectrum
sensing performance. But local/individual sensing schemes are the basis for all of
those techniques.
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Signal Processing for Spectrum Sensing

The spectrum sensing is the procedure that can be seen as a kind of receiving
signal processing at SUs, because spectrum sensing detects spectrum holes by
local measurement of input signal (PU signal) spectrum, which is referred to as
local spectrum sensing. In CRN the SUs will independently detect the channel
through continuously sensing the spectrum. In this process, the local/individual
sensing for primary signal detection is formulated as a binary hypothesis testing
model as follows [17]:

x(t) =

{
n(t), H0

h(t).s(t) + n(t), H1
(2.1)

where x(t), s(t), h(t) and n(t) denote the received signal at SU, the transmitted PU
signal, the amplitude gain of the sensed channel, and the additive white Gaussian
noise (AWGN) with mean zero respectively. H0 and H1 represent the hypothesis
of absence and presence of the PU signal in the specified frequency band. With
H0 and H1 the definitions of the probabilities of detection Pd, false alarm Pf and
missed detection Pm as stated by Digham et al. [38] can be given by:

Pd = P{decision = H1|H1} = P{Y > λ|H1} (2.2)

Pf = P{decision = H1|H0} = P{Y > λ|H0} (2.3)

Pm = 1− Pd = P{decision = H0|H1} (2.4)

where Y and λ represent the decision statistic and the decision threshold respec-
tively. The value of λ is chosen depending on a given detection performance
requirement. Based on the measured values of Pd and Pf , the performance eval-
uation metric of spectrum sensing techniques are expressed and the plot of Pd
versus Pf is called the receiver operating characteristic (ROC) curve.

In the literature various spectrum sensing techniques are proposed depend-
ing on amount of information about the primary signal available to the secondary
users, as discussed in the following.

2.2.1 Matched Filter Detection

When the information about PU transmitter signal is known to SU, matched fil-
ter based technique is optimal for stationary Gaussian noise scenarios since it
maximizes the received signal-to-noise ratio (SNR) [15, 16]. The advantage of
the matched filter based technique is that it can achieve optimal performance
requiring less time for processing due to coherency. But to achieve the optimal
performance, it requires the perfect knowledge of structure of PU signal waveform
(i.e. modulation type and order, the pulse shape and the frame format informa-
tion) [1, 15, 16, 39] a priory. The matched filter based technique suffers severely
if the accuracy of this information is not correct. In case of CRN such a priory
knowledge is not suitably available to the SUs and the complexity and the im-
plementation cost of this technique is very high especially when the number of

17



Chapter 2. Literature Survey

licensed bands increases. Therefore, from the requirement of adaptive nature of
CR technology, this technique is not practical and suitably applicable for CR.

2.2.2 Cyclostationary Feature Detection

Another detection technique used for spectrum sensing is the cyclostationary fea-
ture detection [2]. This technique can differentiate between noise signals and the
modulated signals that is used for communication [1, 15, 16, 39–41]. The modu-
lated signals are generated coupling with sine wave carriers, pulse trains, repeating
spreadings, hopping sequences, and cyclic prefixes, which result in built-in redun-
dancy of signal periodicity. These kind of modulated signals are called as cyclo-
stationarity since their mean and autocorrelation exhibit the periodicity property.
This technique of detection exploits the fact that the primary user signals are
modulated signals exhibiting the cyclostationary property with spectral correla-
tion while the noise present is a wide-sense stationary signal with no correlation
[40, 41]. The detection is performed based on the features of the signal by an-
alyzing a spectral correlation function during the sensing. Due to the capacity
of this detection technique to discriminate the noise from transmitted signal it is
robust to the uncertainty of noise power [1,15,16,39–41]. The disadvantage of this
detection technique is that it requires higher computational complexity and long
observation times to produce the result. Also, it needs the perfect knowledge of
the cyclic frequencies of the primary user signal, which might not be available to
the SUs.

2.2.3 Likelihood Ratio Test (LRT)

The spectrum sensing can be modeled as a binary hypothesis testing problem
as discussed in section 2.2, with H0 (the null hypotheses) and H1 (the alternative
hypotheses) [17]. For a given probability of false alarm, using the Neyman-Pearson
(NP) theorem [17] the test statistic which maximizes the probability of detection
is the likelihood ratio test (LRT) defined as:

L(X) =
p(X|H1)

p(X|H0)
(2.5)

where X and p(·) denote the received signal vector and the probability density
function (PDF) respectively. Although LRT is proven to be NP optimal [2, 17],
it requires the exact distribution of PU signal, noise estimation and the channel
gains, which makes it intractable in practical implementation.

2.2.4 Energy Detection

The energy detector (ED) based spectrum sensing is also known as radiometry
or periodogram [2, 15]. Due to its low computational and implementation com-
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plexities, it is most commonly used to perform spectrum sensing. It is also called
as blind detection technique since the SUs do not need any a priory information
about the primary users signal and the channel gains. For a Gaussian noise model,
the primary signal is detected depending on only the knowledge of the noise power
(or noise floor) [42] present in the spectrum band. This technique works accumu-
lating the energy of the received signal during the sensing interval and declares
that the band is occupied if the energy level exceeds a specified threshold value.
The threshold is chosen depending on a given desired probability of false alarm
[15] to be achieved. In order to measure the energy level of primary signal, the
output signal of a bandpass filter with certain bandwidth, say B is squared and
integrated over the observation interval, say T . Then, the output of the integrator,
say Y is compared with the given threshold to decide the absence or presence of
the PU signal. Since the implementation of the ED technique is simple and less
expensive it is adopted in most of the spectrum sensing techniques in the litera-
ture [1, 15–18, 39]. The performance of the ED technique is susceptible to noise
uncertainty while it is very robust to unknown fading channel. Again since it is
unable to differentiate signal types, it can only determine the presence or absence
of the signal. Because of which it is prone to produce false alarm by unintended
signals in a spectrum band.

2.3 Limitations of Local Spectrum Sensing

Since CR transmission is considered to be lower priority in a licensed spectrum, a
fundamental requirement is to avoid harmful interference to potential PUs in their
vicinity. On the other hand, PUs are supposed to be operating without any change
in their infrastructure for spectrum sharing with cognitive networks. Therefore,
SUs should be able to independently detect presence of PUs through spectrum
sensing. Although it is raveled that theoretically the interference can only hap-
pens at primary receivers, it is difficult for SU to have direct measurement of the
communication link between PU transmitter and receivers. Consequently due to
the complex wireless environment and uncertainty of the locations of PU receivers,
the SU must ensure high sensitivity such that it outperforms PU receivers by a
large margin in order to prevent hidden terminal problem. The hidden termi-
nal problem occurs when the SU is shadowed, in destructive multhi-path fading
environment, or inside the buildings with high penetration loss, while in a close
neighborhood a PU exists with the marginal reception capacity because of the
channel conditions. In such a situation, the SU would inflict interference to the
PU. Therefore, the performance of spectrum sensing under low signal-to-noise
(SNR) is crucial in such an environment. This results in a difficulty in detection
of PU activity in the spectrum band, which can be related by the trade off be-
tween false alarm probability and miss detection probability. That is, high false
alarm probability leads to low spectrum utilization and high missing detection
probability increases interference to PU. From such a scenario it can be stated
that that local spectrum sensing always suffers from limitations on detecting weak
signal. Hence, the cooperative Spectrum Sensing(CSS) is the solution to improve
spectrum utilization and the detection ability of SUs especially under low SNR
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situations.

2.4 Cooperative Spectrum Sensing (CSS)

The techniques discussed in section 2.2 adopt spectrum sensing to be performed
by SUs individually, which face the challenges in terms of sensing efficiency due to
inherent spectral diversity problems [3, 15–22, 43] like multipath fading, shadow-
ing, hidden terminal problem and receiver uncertainty problem. Again for CRN,
the reliability of spectrum sensing is crucial in terms of accuracy to spot the white
space in the spectrum. It is revealed that the problem of inherent spectral diversity
issues can be overcome using cooperative spectrum sensing [3,32,33] performed by
the SUs. The aim of cooperative sensing is to improve the spectrum sensing per-
formance by exploiting the spatial diversity during the observations of SUs, which
are located spatially in distant locations apart. By cooperation, SUs can share
their individual sensing information to make a combined decision more accurate
than the individual decisions. Using the cooperation among SUs, the enhanced
sensing performance that can be achieved due to the spatial diversity is called
cooperative gain.

2.4.1 Classification of Cooperative Sensing

Depending on techniques to share the sensing information in the network by the
cooperating SUs, cooperative spectrum sensing (CSS) can be classified into three
categories [3]: centralized, distributed, and relay-assisted as shown in Figure 2-1.

Figure 2-1: Classification of CSS: (a) centralized, (b) distributed (c) relay-
assisted [3].

• Centralized CSS - In this category the process of cooperative sensing is
controlled by a central authority called fusion center (FC). The FC is respon-
sible to initiate the sensing process by selecting a channel or a frequency
band of interest and sends control information to the cooperating SUs to
perform local sensing by them. Using the control channel the SUs report
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their sensing results back to the FC, which then performs the fusion opera-
tion on the received individual sensing information from the SUs and takes
a decision about the presence or absence of PUs in the band. Finally the FC
informs the decision back to SUs. The method of centralized CSS is shown
in Figure 2-1(a).

• Distributed CSS - In this case, the SUs share their individual sensing infor-
mation through communicating among themselves in a distributed manner
and eventually converge to a unified decision about the presence or absence
of PUs by iterations. As shown in Figure 2-1(b), based on distributed pro-
cedure, every SU sends their own sensing information to every other SUs
followed by combining their own result with the received sensing informa-
tion from others, and then takes a decision about PU’s presence or absence
by using a local criterion. Until the the given criterion is not satisfied, the
SUs send their combined results to every other SUs again and repeat the pro-
cess until the algorithm converges. At the convergence a consensus among
the SUs is reached about a decision.

• Relay-assisted CSS - As shown in Figure 2-1(c), depending on the strength
of sensing channel/spectrum and reporting channel some of the SUs might
be in under duck situation if the strength of reporting channel from them
are weak. In such a situation, a SU with a strong reporting channel, can
serve as relays to assist others in forwarding the sensing results from the
under duck SUs to the FC in case of centralized implementation or to the
other SUs in case of distributed implementation.

2.4.2 Components of Cooperative Spectrum Sensing

The conventional process for cooperative sensing involves three steps as: local
sensing, reporting information to fusion center and data fusion. As given by
Akyildiz et al. [3], these steps are supported by other components as follows,
which are important for implementation of cooperative sensing framework:

• Cooperation Model - refers to the model of cooperation used by the SUs to
implement the cooperation framework for sensing. Two approaches are used
namely: parallel fusion (PF) model and game theoretic model.

• Sensing Technique - refers to the spectrum sensing techniques used by SUs
for their individual sensing to observe the RF environment and to collect the
information about PU signals or to indicate the availability of the spectrum
band.

• Hypothesis Testing - refers to the statistical test used by the SUs individually
to take a decision about presence or absence of a PU in a spectrum of interest.

• Control Channel and Reporting - refers to the common control channel to
be used by the cooperating SUs to report to the fusion center or to the
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leader/head node, who is responsible for taking decision in collaborative
way.

• Data Fusion - refers to the mechanism used by fusion center or the
leader/head to fuse the sensing data received from all the cooperating SUs
for a decision to make out. Techniques like AND rule, OR rule, voting rule
are used to take a decision.

• User Selection - refers to how to optimally select the cooperating SUs to
frame the cooperation footprint, which will maximize the cooperative gain
and minimize the cooperation overhead.

• Knowledge Base - refers to the information in the knowledge base either
having with a priori information or the knowledge accumulated through the
experience, which may facilitates the CSS process to improve the overall
detection performance. The knowledge may include PU and/or SU location
information, PU activity models and received signal strength (RSS) profiles.

2.4.3 Cooperation Framework

Different approaches are used to design the cooperation framework for spectrum
sensing, which uses the cooperation model based on PF or game theoretic mod-
eling. Depending on the modeling it can be stated that the parallel cooperation
model focuses on the “sensing” part, while the game theoretic model emphasizes
on the cooperation part in cooperative sensing.

2.4.3.1 Parallel Fusion (PF) Model

It is the most popular and widely used approach to model the cooperation frame-
work for distributed detection and data fusion [3]. As shown in Figure 2-2, to
perform distributed detection and data fusion, a group of spatially distributed
SUs observe a frequency band using hypothesis H1 or H0 through the observations
called yi. The SUs then report their results ui to a central authority called fusion
center (FC). The FC combines all the reported information using a data fusion
technique and makes a global sensing decision u by using the binary hypothesis
testing. Finally the decision is broadcast to all cooperating SUs. The advantage
is that the PF model targets to achieve the detection performance utilizing the
distributed signal processing approach.

2.4.3.2 Game Theoretic Model

The game theory [23, 24] is a mathematical tool which can analyze the strategic
interactions among multiple decision makers dynamically and can address the op-
timization issues on run. It is revealed in the literature [44] that the game theory
can be used to model and analyze a collaborative framework efficiently. Between
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Figure 2-2: The Parallel Fusion Cooperation Model [3].

the two categories of game theoretic approaches (i.e. non-cooperative and coop-
erative game theory) [23,24], the cooperative game theory considers the behavior
of rational players with improvement of their mutual benefit via cooperation. As
shown in Figure 2-3, using the coalitional game theory [23], the cooperative sens-
ing framework is modeled as a cooperative game having the SUs as set of players.
The SUs in the game behave in collaborative and cooperative manner to achieve a
common goal in terms of improving detection performance, which is derived as the
utility function. Depending on the nature of the game to be played using different
strategies, the behaviors (cooperative and/or selfish behavior) of the cooperating
SUs are modeled differently.

Figure 2-3: The Coalitional Game based Cooperation Model.

In the literature, the works in [34,45] address the modeling of CSS frame-
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work by means of game theoretic approach. In [34], the problem of cooperative
spectrum sensing is modeled as a non-transferable coalitional game. The game is
represented by (N, ν), where N be a finite set of cooperating players (SUs) and ν
is the utility or payoff associated with each of the players within a coalition. Since
each of the SUs have their own utility, the game said to have non-transferable
utility. The utility of a coalition S is defined as

ν(S) = Qd,S − C(Qf,S)) (2.6)

where Qd,S and Qf,S of coalition S are the detection and false alarm probabilities
respectively. C(Qf,S) is the cost function in terms of Qf,S. Playing the game the
SUs collaborate and self-organize into disjoint coalitions dynamically, while taking
into account the trade off between maximization of probability of detection to the
cost incurred in terms of reducing the probability of false alarm. Depending on
the improvement of the utility of the SUs coalitions merge and split autonomously.
In [45], an evolutionary game is used to model a distributed cooperative sensing
framework, which study the cooperation and non-cooperation behaviors of selfish
SUs to maximize their individual throughput. In this model SUs can select an
action from a set of actions composing with rules like “interested to participate”
or “denies to participate” in cooperation. The throughput of the SUs depends
on their willingness to join cooperation or not. SUs interacting with other SUs
in the game using the replicator dynamics learn the best strategy to decide to
cooperate or not during cooperative sensing. The CSS technique given in [46]
addresses a throughput-efficient sensing as selfish or altruistic coalition formation
game depending on their individual gain, which considers the sensing duration
and reporting delay of SUs as cooperation overhead. But the cooperation over-
head because of constraints like reporting time, reporting energy, possible error
on reporting channel due to the spectral diversity of the SUs and delay required
for computing for a decision by the fusion center play important roles in CSS
performance, which are challenging.

2.4.4 Cooperative System Issues

The cooperative gain that can be achievable through cooperation can be affected
by many factors.

• The spatially correlated shadowing impacts the sensing detection perfor-
mance. Because of some obstacle SUs face the situation of spatially cor-
related shadowing leading to impact their observations to be correlated in
nature. This gives rise the problem of selection of SUs for cooperation.

• The cooperative system incurs cooperation overhead in terms of extra sens-
ing time, delay, reporting delay, reporting energy, and operations to perform
cooperative sensing compared to the individual spectrum sensing.

• The cooperation overhead due to the possible vulnerability to security at-
tacks in terms of impacting the parameters of cooperative sensing.
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2.5 Power Allocation in CRN

Power allocation is the key technique for success of CRN, yet to maintain the
quality of service (QoS) of PUs. Utilizing the detected spectrum opportunities
by means of maximization of capacity rate requires optimal power allocation into
the channels by a SUs. The power allocation for secondary transmission is needed
to be performed provided the allowed aggregated interference to PU-receivers are
maintained. Depending on different objectives like utility maximization and power
minimization, the optimal power allocation strategies in CRN have been studied
for different network structure/system models including: 1) single antenna based
CRNs as in [47,48] 2) orthogonal frequency division multiplexing (OFDM) based
CRNs as in [49, 50] 3) cognitive relay networks [51] and 4) multi-antenna based
CRNs [51]. The power allocation problem in CRN can be addressed using tools
like game theory [23, 24, 51], graph coloring theory [51], evolutionary algorithms
like genetic algorithm [51], particle swarm optimization [51], ant colony algorithm,
[51], and convex optimization theory [51].

2.5.1 Classification of Power Allocation Infrastructure

Depending on the availability of dedicated base stations to control transmit power
levels of SUs the power allocation insfrastructure can be classified into two cate-
gories [13]: centralized and distributed.

• Centralized Power Allocation - In this category as in conventional wire-
less communications, dedicated base stations control the transmit-power lev-
els of SUs so as to provide the required coverage area and thereby achieving
the receiver performance. The base station is responsible to regulate the
power allocation for SUs provided the PU protection from harmful interfer-
ence.

• Distributed Power Allocation - In this category, SUs operate in decen-
tralized manner and the power allocation is based on adopting distributed
recourse allocation techniques like water-filling [25] rooted in information
theory [13].

2.5.2 Water Filling Concept

Water-filling (WF) [25] is a technique used in communication systems design and
in practice for equalisation strategies on communications channels, which is rooted
in information theory. Like water finds its level even when filled in one part of
a vessel with multiple openings, as a consequence of Pascal’s law [52, 53], the
amplifier circuitry in communications network repeaters, or receivers amplify each
channel up to the required power level compensating for the channel impairments.
The required power level is regulated based on total power feasibility of an user
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Figure 2-4: The graphical representation of constraint water-filing [4]

terminal, while adjusting against the channel impairments or noise floor in terms of
the inverse of the channel gain. Therefore, the principle of WF method [25,28,54]
is to allocate power in channels/sub-channels provided the water level is settled so
as to satisfy the total power feasibility constraint of an user terminal. The water
level is measured capturing the difference between a user terminal’s maximum
feasible total power level to be allocated in a channel/sub-channel and the channel
impairment or noise floor present in the channel/sub-channel. The water level is
denoted by the inverse of Lagrange multiplier for the total power constraint. From
the Figure 2-4 [4], the concept of the WF procedure can be understood, which
shows the graphical interpretation of the constrained water-filling. It is shown
that the maximum allowable transmit power on each sub-channel is represented
as a dotted rectangular box, while 1

µ
, pi and 1

gi2
being the water level, allocated

power in a channel/sub-channel and the channel/sub-channel impairment for a
channel/sub-channel index i. For simplicity of presentation, the inverse of channel
gain is sorted in ascending order in the Figure 2-4.

2.5.3 Power Allocation for Underlay Mode CRN

For a CR communication, the maximization of SUs capacity rate requires optimum
power allocation, which is regulated by the interference power constraint of PUs.
Coexisting with PUs in underlay mode communication, SUs implement the strict
PU protection, while power allocation is performed. Considering the channel to be
used in orthogonal frequency division multiplexing (OFDM) manner, the classic
traditional water-filling (WF) [25] based power allocation techniques are used for
OFDM sub-channels. Because of the capability of OFDM framework to use the
spectrum bandwidth of a given wireless channel through number of orthogonal
sub-channels in parallel manner, the WF based technique adaptively pours power
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into the sub-channels. This can offer the improved capacity rate for SUs. For
underlay mode CR transmission, the PU protection depends on the interference
tolerance behavior of the PU receiver. Using the OFDM framework, interference
tolerance of PU can be done in two ways [29].

• The peak interference power (PIP) constraint of each of the sub-channels
and

• The average interference power (AIP) constraint over all the sub-channels

Compared to PIP, AIP imposes lose constraint on SUs and offers larger instan-
taneous interference in a sub-channel providing larger throughput as long as the
interference averaged over all the sub-channels is within the threshold limit.

In the literature, various power allocation techniques [4, 13, 26–28, 54–60]
have been proposed. An optimization problem of capacity rate maximization is
addressed in [26, 27] using water-filling (WF) [35] framework of power allocation,
which uses a binary search method to iteratively invoke the classic WF algorithm.
Most of these approaches in the literature assume that the SU transmitter has
the knowledge of the channel state information (CSI) [4,13,26] to the PU receiver
and performs the power allocation considering the total transmit power constraint
initially and then followed by the interference constraint accordingly. It is also
found that the classic WF based power allocation approaches face challenges [13,
26–28] in terms of ensuring strict PU protection and the computation overhead
to find the water level for optimal solution, which indirectly affects the capacity
rate of a SU. Optimizing the power allocation on the channels without resorting to
expensive search to find water level is challenging. The schemes based on iterative
water-filling (IWF) for multiuser power allocation to maximize the capacity rates
suffer from the issue of convergence. To address these problems a number of
approaches have been proposed by the researchers. Further, in presence of average
interference power (AIP) [29] constraint of primary user this problem of power
allocation is more interesting. Accordingly, the power allocation problem needs to
be addressed as optimization problem to achieve the capacity rate improvement.

2.6 MAC Layer Sensing

The protocol level decision about the availability of opportunities in the licensed
spectrum is taken at medium access control (MAC) level sensing [30]. The task
of the MAC level sensing is to improve the opportunity detection efficiency with
protocol level policy making and decide about the availability of a licensed channel
for secondary communication. The MAC layer sensing determines when a SU has
to sense and which channels. A SU takes decision for MAC layer level sensing
depending on application level requirement.
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2.6.1 Difference between Physical Layer Sensing and MAC
Layer Sensing

The term spectrum sensing in cognitive radio communication refers to the tradi-
tional physical layer sensing techniques discussed in section 2.2 and cooperative
spectrum sensing techniques discussed in section 2.4, which is used to detect spec-
trum holes or absence of primary user signal at physical layer level. The spectrum
sensing at medium access control (MAC) layer refers to the MAC layer policy
which is used to decide how often and in which order to sense those physical
channels depending on application requirement.

2.6.2 MAC Layer Sensing Techniques

The MAC layer level sensing can be done in ways: proactive or reactive sensing.
The proactive sensing indicates the policy of periodic sensing, whereas the reac-
tive category is performed following the on demand policy. The aim of both the
techniques are to optimize the sensing period that maximizes the discovery of op-
portunity and to determine the order of sensing the channels that minimizes the
delay in finding an idle channel.

• Proactive Sensing - In this sensing mode SUs periodically monitor the
licensed channels with certain sensing periods. The periodically collected
channel information is used to estimate channel usage patterns of PUs so
that SUs can determine the sensing order of channels depending on their
need to locate an idle channel. The periodic sensing operation is derived
as a common sampling procedure. The sampling period and the sampling
interval are decided in terms of sensing period and listening interval of the
SUs. Since different channels have their own usage pattern, the sampling
parameters are determined channel by channel basis. The proactive sensing
suffers from high sensing overhead since even when there is no data to be
transmitted it periodically senses multiple channels. But it can reduce the
searching time to find an idle channel so that an end-to-end packet delay
can be minimized.

• Reactive Sensing - In this sensing mode while a SU has packet to trans-
mit or receive, it sequentially monitors all the licensed channels to find an
idle channel. Without the knowledge of channels dynamics, SUs cannot de-
termine their optimal sensing order, which minimizes the time required to
locate an idle channel. So, in this sensing mode, an SU senses the chan-
nels in random order. This technique does not incur unnecessary sensing
overheads, but requires a larger channel searching delay than the optimally
ordered sensing based on the estimation of channels dynamics.

With the strict requirement to primary protection for underlay mode channel
access, the policies for MAC layer sensing of SUs require the information about
the availability of licensed channels and the estimation of interference level to PUs.
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In such a scenario, the SUs require to learn about the channels usage pattern of
its PUs. Depending on learning SUs can predict future availability of a channel,
which helps to alleviate the sensing overhead problem of proactive sensing. The
channel usage pattern of PUs in terms of ON and OFF state of a PU follows the
Markovian process.

2.7 Conclusion

In this chapter, we have presented a comprehensive survey on the background of
CRN and the existing works related to the problems addressed in this dissertation.
With a detailed understanding of the state-of-the-art, the research contributions
are presented in the subsequent chapters.
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