
Chapter 2

Materialized View Selection in
Data Warehouses: Approaches,
Issues and Challenges

2.1 Introduction

Research on the problem of selecting views to materialize in data warehouses
started in the early nineties when several heuristic greedy algorithms were pro-
posed [4,6,21,22,24]. With the increasing growth in dimensionality of data ware-
houses, the solution space also grows exponentially [3,4,21,22,33]. To address this
issue, various stochastic, evolutionary, data mining and clustering based optimiz-
ing approaches have been proposed with different data structures and representa-
tions of the problem.

Several greedy approaches have been proposed by defining different cost
and benefit parameters to deal with the view selection for materializing prob-
lem [4, 6, 21, 22, 24]. Most of these approaches use multidimensional lattice struc-
tures to select views for materialization, based on the original greedy algorithm
proposed by Harinarayan et al. in [4], and popularly referred to as the HRU-
Greedy algorithm. In [22] and [33], a competitive heuristic for selection of views
to optimize total query response time is proposed using the notion of an AND-OR
view graph given as an input. Selection of views for materializing closely resem-
bles with 1/0 Knapsack problem but with the difference that selection of a view
depends on what are the other views that have been selected so far. With the ex-
ponential growth of solution space with increase in number of dimensions of data
warehouses and candidate views for materialization the view selection problem be-
comes NP-hard [3,4,21,22,33]. Therefore, most recent approaches use stochastic or
randomized algorithms like Simulated Annealing (SA), Genetic Algorithms (GA),
Particle Swarm Optimization (PSO) etc.. Most of these approaches use graphical
representations of query workloads. Wagner et al. designed an evolutionary al-
gorithm for view selection problem by considering the amount and importance of

19



Chapter 2. Materialized View Selection in Data Warehouses: Approaches,
Issues and Challenges

data retrieved by data warehouse queries [34]. Data mining techniques also have
been used effectively on workloads (sets of queries) representative of data ware-
house usages to deduce quasi-optimal configurations of materialized views and/or
indexes [10–13].

A major challenge to handle the view selection problem for materialization
in data warehouses is to reduce the complexity of the view selection algorithms
and to improve scalability. In this chapter, a detailed review of literature surveyed
on techniques proposed for selecting views to materialize in data warehouses are
presented by introducing respective data representations with discussion on var-
ious research challenges and associated issues. Different representations used for
handling this problem with their associated issues are presented in Section 2.2.
In Section 2.3 existing techniques for selecting views to materialize in data ware-
houses are discussed. Section 2.4 presents a discussion on performances of solution
models suggested so far with related issues and challenges. In Section 2.5, conclud-
ing discussion about contribution from this survey and limitations of the study
are presented.

2.2 Representations of views in Data Ware-

houses

Based on our survey of literature on selecting views for materializing in data
warehouses, it has been observed that the distribution of research activities on
this problem started in 1996 by representing views and data warehouses for ap-
plying greedy algorithmic approaches and heuristic approaches in materialized
view selection problem. Later from late nineties query processing graph based
models have been used for representing this problem. From 2005 onwards multi-
ple query processing plan based model has become popular for incorporating SQL
sub-expression results as views by considering indexes and keys of relational model
to deal with general SQL queries that include select, project, join and aggregation
operations. Parallel to these models few query-attribute-view matrix based mod-
els also have been proposed for applying data mining and clustering techniques for
handling this problem. The surveyed literature on different representations and
approaches are reviewed in following sub-sections.

2.2.1 Multidimensional lattice representation of views

Typically, data in data warehouses are conceptualized as multi-dimensional data
cubes where each cell of the data cube is a view consisting of an aggregation of
interest [4]. Early approaches to the view selection problem for materializing in-
vestigated the issue of which cells of the data cube are to be materialized when it
is too costly to save all the cells or views. Harinarayan et al. in [4] used a lattice
framework to express dependencies among different cells or views of the data cube
to handle this problem. This is pioneering work in the view selection for materi-

20



2.2. Representations of views in Data Warehouses

Figure 2-1: A lattice structure for 3 attributes

alizing problem. They use a multidimensional lattice representation consisting of
nodes representing the possible views that may be candidates for materializing,
and edges representing dependencies between the connected views [4,6, 35]. Each
node of the lattice structure represents a view labeled with the set of dimensions
of the ”group by” list for the respective view with the number of rows in the
view. Thus lattices are the hyper cubes, in which the views are vertices of an n-
dimensional cube for some n. An example of lattice structure is shown in Figure
2-1, where label on the top node, {C1, C2, C3}6M , means ”group by” is used for
C1, C2 and C3 and it returns 6 million rows.

A multidimensional lattice consists of nodes, depicting the possible views
that can be materialized, and edges representing dependencies among these views.
The greedy algorithm popularly known as the HRU-Greedy algorithm [4] calcu-
lates the benefit of each possible view in successive iterations and selects the view
which is most beneficial for materialization and adds it to the set of selected views.
This process is continued till a pre-specified number (k) of materialized views have
been selected and added to the list. To compute benefits, a cost model must be
defined. The linear cost model defined in HRU-Greedy is T = m× A+ C, where
T is the running time of the query on a view of size A. C gives the fixed cost, i.e.,
the overhead of running this query on a view of negligible size and m is the ratio
of the query time to the size of the view, after accounting for the fixed cost.

The advantage of this representation and technique is that the most ben-
eficial views can be found directly from the base relations or schema of the data
warehouse without considering query log files and query access frequency. How-
ever, the basic disadvantage of the lattice representation is that the number of
nodes in the lattice structure grows exponentially with the dimension of the data
warehouse. Since only query-response generation cost and space cost are consid-
ered for optimizing the selection of views for materializing without considering
query frequency and view maintenance cost, this data structure is not applicable
for frequent query access and frequent base table updating.

21



Chapter 2. Materialized View Selection in Data Warehouses: Approaches,
Issues and Challenges

Figure 2-2: An Expression AND DAG

Figure 2-3: An Expression AND-OR DAG

2.2.2 AND-OR view graph representation of queries and
views

In [22] and [33], a graph termed as AND-OR view graph is suggested as one of
the inputs to the view selection problem. The queries and views are expressed
in terms of directed acyclic graphs (DAGs). In this representation, an OR-View
graph is defined to express that any view can be computed from any of its related
views. An AND-view graph is used to express that a query, sub-expression of
query or a view is uniquely evaluated by some other views. These DAGs are
defined as expression DAGs of queries and views. Using these notions a directed
acyclic graph termed as AND-OR view graph is defined. The AND DAGs and
AND-OR DAGs are used to represent sub-expressions of queries. Therefore these
are termed as expression DAGs. This model of representation is defined by three
basic definitions as stated below.

Definition 5. An expression AND DAG for a query or a view is a directed
acyclic graph having the base relations as ’sinks’ with no outgoing edges and the
view (node) v as a ’source’ with no incoming edge. All of the views v1, v2, . . . ,
vk are required to compute the cost of u when a node or view u has outgoing edges
to nodes v1, v2, . . . , vk. This dependence is indicated by drawing a semicircle
called an AND arc to indicate the dependency of evaluating u through the edges
(u, v1), (u, v2),..., (u, vk) [36].

Such an AND arc has an operator and a cost associated with it, which is
the cost incurred during the computation of u from v1, v2, ...vk.

22



2.2. Representations of views in Data Warehouses

But AND DAGs do not depict alternative ways of evaluating a view.
Therefore, the expression AND-OR DAG is defined which may have more than
one AND arc at each node. An expression AND DAG and an expression AND-OR
DAG is illustrated in Figure 2-2 and 2-3 respectively. The expression AND-OR
DAG is defined below.

Definition 6. An expression AND-OR DAG for a view or a query v is a
DAG with v as a source and the base relations as sinks such that each non-sink
node is associated with one or more AND arcs. More than one AND arc at a node
depicts multiple ways of computing that node [36].

Using Definitions 5 and 6 an AND-OR view graph is defined as Definition 7
for defining the materialized view selection problem.

Definition 7. A DAG G, with base relations as the sink is called an AND-OR
view graph for a set of views and query responses v1, v2, · · · vk, if for each vi, there
is a sub-graph Gi in G that is an expression AND-OR DAG for vi. Each node v in
an AND-OR view graph has the following parameters associated with it: space Av,
query frequency fv (frequency of the queries on v), update-frequency gv (frequency
of updates on v), and reading cost Rv (cost incurred in reading the materialized
view v) [36].

The view selection for materialization problem using AND-OR View graph
is stated as - given an AND-OR view graph G and a quantity A (available space),
the view-selection problem is to select a set of views M which constitute a subset of
the nodes in G, that minimizes the total query response time, under the constraint
that the total space occupied by M is less than A under a maintenance-cost
constraint [22,36].

In [36], a heuristic model based on this representation was used to handle
view selection problem and found that a fairly close optimal solution was obtained.
Stochastic, evolutionary and other bio-inspired algorithm based models are pre-
sented on this problem in [37–40] and [41] using AND-OR graph representation of
views.

This representation is widely used for the general problem of selection
of views in a data warehouse. The AND-OR view graph represents the general
data warehouse scenario in an easily understandable manner for analyzing the
queries and their component views. Therefore, it is suitable for computing the
cost of answering queries (using the sets of materialized views in the view graph)
and the maintenance cost. Each query and its attached views and base tables are
considered individually and thus, sharing of materialized views by multiple queries
is ignored.

23



Chapter 2. Materialized View Selection in Data Warehouses: Approaches,
Issues and Challenges

2.2.3 Optimal multiple query execution plan based graph-
ical representation

Another approach used in view selection for materializing in data warehouses uses
a DAG representing all frequently asked queries or a specific number of queries by
a query processing strategy of warehouse views [7]. Here, the leaf nodes correspond
to the base relations in the member databases and the root nodes correspond to
warehouse queries. The graph is called a Multiple View Processing Plan (MVPP).
Analogous to a query execution plan, different MVPPs for the same view spec-
ification may be appropriate under different query update characteristics of the
applications. The idea is that for different types of analysis, a data warehouse
may contain multiple views that are shared by a number of queries. Therefore, it
may be more efficient not to materialize all of the views, but to materialize certain
commonly shared views or portions of the base data, from which the warehouse
views can be derived.

An example MVPP graph is illustrated here by five base relations: Em-
ployee(ecode, name, deptid), Dept(deptid, name, location), Paybill(ecode, ac-
count head code, amount), Account head(account head code, details), Transac-
tion(tid, narration, ecode, date) and by following four (SQL) queries and an MVPP
graph in the Figure 2-4.

• Query 1:

SQL> select employee.name from employee,

dept where dept.location=’Tezpur’ and

employee.deptid=dept.deptid;

• Query 2:

SQL> select transaction.narration

from employee, transaction, dept

where dept.location=’Tezpur’ and

employee.deptid=dept.deptid and

transaction.ecode=employee.ecode;

• Query 3:

SQL> select account_head.details,

employee.name, paybill.amount from

employee, dept, paybill,

account_head where

dept.location=’Tezpur’

and employee.deptid=dept.deptid

and employee.ecode=paybill.ecode

and paybill.account_head_code=

account_head.account_head_code

and paybill.amount>4000;

24



2.2. Representations of views in Data Warehouses

Figure 2-4: An MVPP graph

• Query 4:

SQL> select account_head.details,

paybill.amount

from paybill, account_head where

paybill.amount>40000

and paybill.account_head_code

=account_head.account_head_code;

The number of rows in each view is given by the side of each node or view
in the MVPP graph depicted in Figure 2-4. For example, the node ’Result 1’
in the MVPP graph means, it has 35.35 thousand rows. The unit ’k’ denotes a
thousand and ’m’ denotes million. Query frequencies are marked on top of each
query. In Figure 2-4, the frequency of query 1 is 10, query 2 is 0.5 and so on.

The problem for materialized view design in terms of MVPP can be de-
scribed as: If V is the set of vertices in an MVPP, and ∀v ∈ V , R(v) is the result
relation generated by corresponding vertex v, then to determine a set of vertices
in V , such that if ∀v ∈ V , R(v) is materialized, the cost of query processing and
view maintenance is minimal.

Yang et al. [7] designed a heuristic algorithm to select views for material-
izing by using MVPP DAG. Derakhshan et al. [8,9] applied Simulated Annealing
algorithm using this representation in view selection for materializing problem.
In [14], MVPP DAG representation is used for defining the problem as multi-
objective optimization problem and applied Multi-Objective Simulated Annealing
techniques.

25



Chapter 2. Materialized View Selection in Data Warehouses: Approaches,
Issues and Challenges

The MVPP representation is suitable for depicting relationships among
queries to the base relations through intermediate and shared temporary views.
From the MVPP graph, the size of intermediate views can be found or computed
easily and provided as input to the view selection for materialization algorithm.
But the cost involved in generation of an MVPP graph from the query workload
of a data warehouse is high when the query processing plan changes and input
workload is very large.

2.2.4 Query - Attribute matrix representation

This approach is based on detection of common sub-expressions within workload
queries and finding the underlying views [10–13, 42]. A workload is syntactically
analyzed to enumerate relevant candidate views. The warehouse’s transaction logs
are first analyzed over a certain time period and the most appropriate workload
is considered for anticipating future workload of the system by the warehouse ad-
ministrator. In [10,11,13], all the queries and the attributes in them are identified
and then by analyzing the workload queries and their sub expressions, a query vs.
attribute binary matrix is formed. In this matrix, each row represents a query
and each column is an attribute. A cell is marked as one if a particular attribute
is present in a particular query, and zero otherwise. Data mining techniques are
applied to this matrix to obtain a set of candidate views for materializing.

The query vs. attribute binary matrix is well exploited by data mining
techniques to obtain a candidate set of views and indexes for materializing [10,11].
Although the matrix representation is easy to implement and directly usable by
data mining and clustering algorithms, the main difficulty is syntactic analysis of
the query workload.

2.2.5 Associated issues in different representations

The pioneering view selection for materialization algorithms, the HRU-Greedy
algorithm and the Polynomial Greedy Algorithm (PGA) [4,6] use the lattice rep-
resentation of views in data warehouses. Though this representation is suitable
and easy to implement in low dimensional deterministic cases, the main disadvan-
tage of this representation is that the number of nodes in the lattice structure is
exponential relative to the number of dimensions. The AND-OR view graph and
the MVPP representation are mostly used in stochastic algorithms for view selec-
tion for materialization. However, the graph generation process becomes costly for
complex and huge query workloads. The matrix representation of view attributes
and base relations is directly usable by data mining and clustering algorithms.
However the need of syntactic analysis of large query workload is an issue to be
handled.

Other approaches such as wavelet framework [43] represent multidimen-
sional data cubes by decomposing the cubes into an indexed hierarchy of wavelet

26



2.2. Representations of views in Data Warehouses

Table 2.1: Representations used in view selection algorithms and associated
issues

Notions View selection algo-
rithms used

Associated issues

Lattices HRU-Greedy, PGA Exponential growth with di-
mension of data warehouse.
Only query-response genera-
tion cost and space cost are
considered, query frequen-
cies and view maintenance
frequencies are not consid-
ered.

AND-OR
graphs

Heuristic, GA, MA,
PSO

Plan for multiple query pro-
cessing is not considered and
therefore sharing of mate-
rialized views by multiple
queries are ignored.

MVPP graphs Heuristic algorithm,
Simulated Anneal-
ing(SA), Parallel
Simulated Anneal-
ing(PSA)

Cost of building view graphs
when the query process-
ing plan changes and input
workload is large.

Wavelet
-Dwarf struc-
ture

Heuristic-greedy al-
gorithm by physical
re-designing of Data
warehouse

To change physical design of
data warehouse.

Query vs. at-
tribute binary
matrix

Clustering Requirement of scanning
through numerous sub-
queries and intermediary
results.

view elements that correspond to partial aggregations of data cubes. Although
keeping aggregated values in data warehouses is in the spirit of view materializa-
tion, it is all about changing the physical design of the data cubes. Similarly, [44]
propose a concept called dwarf structure to compress data cubes which impacts
on the physical design of data warehouses.

Almost all the approaches we have seen, analyze queries to find sub-
expressions or intermediate views within frequent queries that may be beneficial
if materialized. Semantic analysis of sub-expressions is used either to generate
some kind of graphs or to generate matrices which are used as input to the view
selection algorithm for materialization. Scanning through numerous intermediate
results is very costly and these methods are not scalable with respect to the num-
ber of queries [11]. The various data structures and concepts used in different
view selection algorithms and associated issues are presented in Table 2.1.

27



Chapter 2. Materialized View Selection in Data Warehouses: Approaches,
Issues and Challenges

2.3 Existing View Selection Techniques

In following sub-sections, various approaches and algorithms used for selecting
views to materialize in data warehouses are presented with their advantages and
limitations.

2.3.1 Greedy algorithmic approaches

Most of the heuristic approaches in materialized view selection are descendants
of the view selection algorithm for materializing in data warehousing called the
HRU-Greedy algorithm [4]. It searches the hypercube lattice structure to select an
optimum set of views in terms of space utilization and the number of views. The
algorithm suffers from the problem of exponential explosion with dimensionality.
Nadeua et al. [6] propose an algorithm called the Polynomial Greedy Algorithm,
PGA, for a scalable solution. The execution time for the PGA algorithm is lower
than that for the HRU algorithm theoretically as well as experimentally, but the
scalability problem remains. In [3, 22, 33, 36] a greedy algorithm framework for
the view selection problem using the AND-OR view graph is used. Yang et al.
in [7] present a heuristic algorithm which can provide a feasible solution based on
individual optimal query plans. In [45], a query based view selection approach
is proposed considering both the size and the query frequency of each view to
greedily select the top-k views for materialization.

2.3.1.1 The HRU algorithm

To solve the optimization problem, the HRU greedy algorithm first tries to mini-
mize the average time taken to derive views under the constraint of materializing
a fixed number of views [4]. It uses the hypercube lattice notion to represent the
various views or GROUP-BY statements in queries as discussed in Section 2.2.
Suppose we have a data cube lattice with known associated space cost for each
view. Let C(v) be the cost of view v. Let us assume that we can select a maximum
of k views in addition to the top-view. If a view w can be answered by v, it is said
that the view w is covered by v. For each view w that v covers, this algorithm
compares the cost of answering w using v and using another view from S which
is the cheapest so far for answering or deriving w. If the cost of v is less than
the cost of its competitor, the difference is part of the benefit of selecting v as a
materialized view. The total benefit is the summation of benefits over all views.
The HRU Greedy algorithm for selecting k views to materialize is given in Algo-
rithm 1 where B(v, S) is the total benefit using v to evaluate w. In HRU-Greedy,
the number of views to be materialized is first fixed. This number of views to be
materialized is the number of iterations of the algorithm. In different iterations,
each node or view other than the top-view is evaluated in terms of benefits (if it
is materialized) and the highest benefit node or view is selected for that iteration.

Let us consider Figure 2-1. If {C2, C3} is selected, the total benefit will

28



2.3. Existing View Selection Techniques

Algorithm 1: The HRU Greedy algorithm

Require: k number of candidate views v1, v2, · · · , vk and the top-view
Ensure: The selected set of views S for materializing
1: S ←{top-view}
2: for i = 1 to k do
3: Select a view vi which is not in S, such that B(vi, S) is maximized
4: S ← S ∪ {vi}
5: end for
6: Return The set of views S

be (6−0.8)M×4 or 20.8M , because 4 nodes or views, viz., {C2, C3}, {C3}, {C2}
and {} are dependent on it. Similarly for {C3}, the benefit is 5.99M × 2. Thus,
we compute the benefit for each node and the most beneficial node is added to
the list of selected views for materialization. Then again in the next iteration, the
whole process is repeated assuming that one view is already materialized. In the
first iteration if {C2, C3} is selected, then in next iteration, the benefit of {C3}
will be (0.8−0.01)M×2, i.e., 0.79M×2 and the benefit of {C1} is (6−0.1)M×2.
Thus after computing the benefits of all the remaining nodes, the most beneficial
node is selected for materialization in this iteration. The process continues for the
fixed number of iterations and in each of the iterations one view is selected and
added to the list of views that are to be selected for materializing.

In each of the iterations, the algorithm evaluates every unselected node,
and in each evaluation, it considers the effect on every descendant. Thus we
find that, if k views are to be selected and there are a total of n nodes in the
lattice structure, the complexity of this algorithm is O(kn2). If d is the number of
dimensions in the data cube, the number of nodes in the lattice structure equals
to 2d. i.e. n = 2d. Therefore, complexity becomes O(n2) = O(22d). Thus the
algorithm results in exponential bursts when number of dimensions is high.

Advantage: The HRU-Greedy algorithm needs to know the size of each
of the views beforehand. And by knowing this, it computes the benefit of each and
every combination of views if materialized. Therefore the most beneficial views
can be determined for materializing. Hence this algorithm can yield the most
optimum solution of the problem.

Limitations: The main problem with this technique is that the algorithm
results in exponential bursts when the number of views grows. It also does not take
into account query access frequency and view maintenance cost due to updating
of base tables.

2.3.1.2 The Polynomial Greedy Algorithm (PGA)

In PGA model [6], each iteration of the HRU-Greedy algorithm is divided into a
nomination phase and a selection phase to tame the exponential growth of HRU-
Greedy algorithm. From the top-view, it first selects the most beneficial node

29



Chapter 2. Materialized View Selection in Data Warehouses: Approaches,
Issues and Challenges

in the lattice structure of views which is connected to the top view. This node
is added to the list of nominations. Then from this nominated node, it selects
the most beneficial node from the next layer of connected nodes. This is again
added to the list of nominated nodes. The process goes on till it traverses to the
bottom. Out of this set of nominated nodes, the most benefiting node is selected
for materializing and put into the list of selected views. In the second iteration,
from the top node, out of all nodes connected to the top view but not already
nominated, the most beneficial node is selected for inclusion in the nomination
list. From this node, the most beneficial node from the connected nodes is selected
for adding to the nomination list and so on. From this second list of nominations,
the most beneficial node is selected and added to the list of selected views for
materializing. This process continues for some iterations and a list of views or
nodes from the lattice is selected for materializing.

Advantage: To overcome the problem of evaluating an exponential num-
ber of nodes, as in the case of HRU-Greedy algorithm, it considers only the promis-
ing nodes of the lattice and thereby the PGA model controls the complexity of
the HRU model.

Limitations: Though the PGA model can reduce the complexity of the
HRU-Greedy algorithm, the HRU algorithm is better than the PGA algorithm in
terms of the quality of solutions [6]. The limitation of exponential growth of nodes
for lattice representation of candidate views still remains.

2.3.1.3 AND-OR View Graph based greedy algorithm

Gupta et al. in [22] and [36] present a heuristic greedy algorithm using AND-OR
view graph to optimize selection of views for materializing considering the total
query response time under constraints of disk-space and view maintenance costs.
An AND-OR view graph for a set of queries can be represented by integrating
or merging expression AND-OR DAGs. The nodes in the final AND-OR view
graph represent candidate views for materialization. Two other parameters are
also used to compute the cost of views. They are query frequencies fv of views
of the query workload of the data warehouse, and update frequencies gv, which is
the sum of the updating frequencies of all the base relations used for derivation of
the view. For an AND-OR view graph G, the view selection problem is to select
a set of views M , which is a subset of the nodes in G, that minimizes the total
query response time and maintenance cost of M under the constraint that the
total space occupied by M is less than A. It is formally explained below.

Let Q(v,M) denote the cost of answering the query v using the set of
materialized views M in the view graph G and UC(v,M) be the maintenance
cost for the view v when the set of views M is materialized. Given an AND-
OR view graph G for queries q1, q2, · · · , qk and a quantity A, the view selection
problem is to select a set of views or nodes M = {v1, v2, · · · , vm}, that minimizes
τ(G,M) in Equation 2.1, where under the constraint

∑
v∈M Av ≤ A, Av is the

space occupied by the view v, fq is query frequency and gv is update frequency of

30



2.3. Existing View Selection Techniques

view v.

τ(G,M) =
k∑
i=1

fqi .Q(qi,M) +
m∑
i=1

gvi .UC(vi,M) (2.1)

Any AND-OR view graph can be converted into an equivalent query view graph.
A query view graphs G is a bipartite graph (Q, v, ζ, E), where Q is the set of
queries to be supported and ζ is a subset of all views V . An edge (q, σ) is in the
set of edges E iff the query q can be answered using the views in the set σ and
the cost associated with the edge is the cost of answering q using σ.

In AND-OR Greedy algorithm at every stage a connected sub-graph H
of Fζ is picked such that its corresponding set of views VH offers the maximum
benefit per unit space at that stage. The sets of views VH is then added to the
set of views M already selected in the previous stage. The algorithm stops and
returns M when the constraint value of M exceeds A.

Advantages: In [36], proofs are presented to show that this algorithm is
guaranteed to provide a solution that is fairly close to the optimal solution. The
heuristic (in [36]) is extended to the general AND-OR view graphs.

Limitations: The evaluation of the algorithm in terms of the quality
of solutions is not provided. The AND-OR View Graph based greedy algorithm
considers few frequent queries with some shared views. In case of a large number
of complex queries with large number of shared views and queries, with different
query processing plan may result in different optimum configurations. Therefore,
instead of computing costs and benefits of materializing the views of different
segments of the bigraph, a common view processing plan may be more suitable.

2.3.1.4 Optimal query execution plan and heuristic algorithm

This approach presents an algorithm for constructing Multiple View Processing
Plans (MVPP) graph and an algorithm to select views for materializing using
the MVPP graph [7]. To generate an MVPP graph, individual optimal query
processing plans are merged. The algorithm for generating the MVPP graph is
as follows. First, for every individual optimal plan, if there is a join operation
involved, push the select and project operations up along the tree; and then, for
two such modified optimal query plans, first find the common sub expressions
for the join operations if they share the same source relations, and then merge
them. Ultimately the goal is to push down all the select, project and aggregate
operations as deep as possible in the tree.

If view v is materialized, the total cost involved in a query plan is defined as
in Equation 2.2. Here q ∈ R is the set of queries, r ∈ L is the set of base relations,
fq is the frequency of executing queries and fu is the frequency of updating base
relations. For each v ∈ M , Cq

a(v) and Cr
m(v) are the cost of access for query q

31



Chapter 2. Materialized View Selection in Data Warehouses: Approaches,
Issues and Challenges

using view v and cost of maintenance of view v based on changes to base relation
r, respectively. The problem is to find a set M so that if the members of M are
materialized, the value of Ctotal will be the smallest among all the feasible sets of
materialized views.

Ctotal(v) =
∑
q∈R

fq.C
q
a(v) +

∑
r∈L

fu.C
r
m(v) (2.2)

Let M be a set for keeping views selected for materialization, initialized as empty.
D(v) returns the set of ancestors of view or node v and weight of a node w(v) is
defined by Equation 2.3. Here Ov denotes the set of global queries which use view
v, and Iv denotes the base relations which are used to produce v. Sv is the set of
nodes (both leaf and intermediate) which are used to produce v and LV is the list
of nodes based on descending order of w(v). Whenever a new node is considered
for materialization, the saving it brings in is calculated after accessing all the
queries involved, subtracting the cost for maintaining this node as expressed in
Equation 2.4.

w(v) =
∑
q∈Ov

fq.C
q
a(v)−

∑
r∈Iv

fu(r).C
r
m(v) (2.3)

Cs =
∑
q∈Ov

{fq.(Cq
a(v)−

∑
u∈sv∩M

Cq
a(u))} −

∑
r∈Iv

{fu(r).Cr
m(v)} (2.4)

The algorithm for selecting views to materialize is given in Algorithm 2. The
algorithm is used to determine a set of views (M) for materialization where the
sum cost of processing all the queries and maintaining all the views is the smallest
possible.

Advantages: A query can have multiple execution plans. In this algo-
rithm, for a set of query execution plans the sharing of different views are mapped
into MVPP graphs providing a clear and simple representation. This heuristic al-
gorithm provides a near optimal solution using 0-1 integer programming. Yang et
al. in [7] presented that the heuristic algorithm for generating multiple MVPP is
just of complexity O(n). Therefore, for finding any reasonable solution of selecting
views, this model may be used.

Limitations: Though this model is just good for selecting reasonable
solutions, but for optimal MVPP selection and thereby to select a set of views with
optimum costs, the complexity of 0-1 integer programming approach is of O(2n).
Therefore, when there is a huge query-workload, the MVPP graph becomes very
complicated and the cost of generating the MVPP graph becomes very high. In
fact, all heuristic methods are effective for this problem when the number of views
is relatively small [9].

32



2.3. Existing View Selection Techniques

Algorithm 2: View selection using optimal query plan

Require: An MVPP graph
Ensure: A set of views M for materializing
1: Compute the weights of nodes
2: Create list LV for all the nodes (with positive value of weights) based on the

descending order of their weights.
3: repeat
4: Pick up one view v from LV
5: Generate Ov , Iv and Sv
6: Compute Cs
7: if Cs > 0 then
8: Insert v into M and remove v from LV
9: else
10: v and all the nodes are removed that are listed after v and are in the

sub-tree rooted at v
11: end if
12: until LV is empty
13: for v ∈M do
14: if D(v) ⊂M then
15: remove v from M
16: end if
17: end for
18: Return set of views M

2.3.2 Stochastic algorithmic approaches

Stochastic algorithms are based on the logic that it is sometimes beneficial if
randomness is deliberately introduced into a search process as a mean for speeding
convergence and making the algorithm less sensitive to modeling errors. As the
problem at hand is NP-hard, several heuristic and stochastic optimization methods
have been proposed [8, 9, 37, 39–41,46,47].

2.3.2.1 Simulated Annealing (SA) algorithm based approach

Derakhshan et al. in [8, 9] introduce a set of approaches for materialized view
selection based on Simulated Annealing (SA) in conjunction with the use of MVPP
graph. Given an MVPP graph, they attempt to find the best set of intermediate
nodes (views) that can answer all queries with minimal cost. The set of views of
the MVPP graph are labeled and represented as a binary string of 1s and 0s to
represent views that will and will not be materialized, respectively. The nodes
in the MVPP graph are numbered starting at the base relation moving left to
right, and continued up to the rightmost node at the top of the graph. Nodes are
thus numbered or labeled 0 to m − 1, (where m is the number of intermediate
nodes). A mapping array of size m − 1 is used, where each index in the array
corresponds to a graph node. An array element ’1’ denotes that the corresponding

33



Chapter 2. Materialized View Selection in Data Warehouses: Approaches,
Issues and Challenges

node in the graph is materialized and ’0’ if the node is not materialized. From
this matrix, different strings of 0s and 1s are obtained by perturbing the initial
string by changing every time one bit from ’1’ to ’0’ or ’0’ to ’1’. The simulated
annealing algorithm that is executed is given in Algorithm 3. The resultant s is
the solution configuration.

Algorithm 3: Simulated annealing for selection of views to materialize

Require: An MVPP graph with view labels and sizes, base relation sizes, base
relation updating frequencies, query frequencies, query response sizes

Ensure: A solution string of bits, S
1: Define: Initial temperature T , terminating temperature T ′, space constraint
C, maximum number of iteration Imax

2: Initialize a candidate solution string S such that it satisfies space constraint
C

3: repeat
4: for I = 1 to Imax do
5: S ′ ← perturb(S)
6: E = cost(S)
7: E ′ = cost(S ′)
8: if (E ′ < E) or (random() < e(E−E′)/T ) then
9: if S ′ satisfies the constraint C then
10: S ← S ′

11: end if
12: end if
13: end for
14: T = decrement(T )
15: until T > T ′

16: Return S

SA is considered a good tool for nonlinear optimization problems, but
a major disadvantage is that it is extremely slow at times and hence, parallel
versions of the algorithm have been developed. Derakhshan et al. in [9] use
Parallel Simulated Annealing (PSA) in the materialized view selection problem
by using MVPP graph as input. In SA, the solution quality is affected by the
numbers of time that the initial solution is perturbed. By performing simulated
annealing with multiple inputs over multiple computer nodes, PSA is able to
increase the quality of obtained sets of materialized views.

The view selection for materialization problem is usually formulated as a
single objective optimization problem. But, in [14] an attempt also has been made
to solve this problem using the Multi Objective Simulated Annealing (MOSA) and
Archived Multi-Objective Simulated Annealing (AMOSA) algorithms [30].

Yuhang et al. [48] present an algorithm that combines Clonal Selection Al-
gorithm (CSA) with SA algorithm. In this technique, during clonal selection for
mutation, it accepts non-optimal solutions also on certain probability to avoid pre-
mature convergence. Thus this version of SA based technique improves efficiency
of the algorithm and the quality of solution. This algorithm represents candidate

34



2.3. Existing View Selection Techniques

solution set as antigen of the antibody of CSA and first searches global optimal so-
lution from the initial population and brings in new antibody population through
perturbation of clones, variation and selection. According to antibody and anti-
gen affinity function on the basis of the SA metropolis criterion in the variation
process, the algorithm decides whether to accept the new antibody (candidate
solution) for subsequent steps of SA or not. This process is repeated till it reaches
the minimum temperature specified.In [48] it has been claimed that this hybrid
algorithm has more chance of escaping from local optimum and reaching the global
optimum compared to Genetic Algorithm (GA) and CSA.

Advantages: Experimental results as reported by [8] show that the cost of
selected views is considerably better than ones obtained by the previously reported
heuristics. By using SA, the cost of a selected set of materialized views comes down
by up to 70% [9] than the cost obtained by genetic and heuristic algorithms.
Also, in [9] experimental studies show that parallel simulated annealing provides
a significant improvement in the quality of the obtained set of materialized views
over existing heuristic and sequential simulated annealing algorithms.

Limitations: In [48], authors present that the hybrid algorithm combin-
ing CSA and the Metropolis rule of SA in view selection problem has quicker
convergence rate than GA. But when the solution space is smooth (e.g. gradient
descent), heuristic and simpler methods work much better than SA.

2.3.2.2 Genetic Algorithm (GA) based approach

As the views selection for materializing in data warehouse is an NP-hard problem,
Evolutionary Algorithms (EAs) such as GA is likely to provide efficient solu-
tions [37]. To obtain better solutions from a large number of views taking into
account view maintenance and query processing costs, GAs have been used [37–39].
In this approach, the AND-OR view graph notion is used for generating a string
of bits where the bit in position i (starting from the leftmost bit as position 1)
is 1, if the view i is selected for materializing and else 0. These strings of bits
are considered as a genome of the population [39]. That is, the sets of candidate
configurations (views and indexes) are referred to as genomes of the candidate
population. The GA uses a multi-directional search by maintaining a pool of can-
didate points in the search space. Information is exchanged among the candidate
points to guide the search process using the evolutionary concept i.e. fit candi-
dates survive while unfit candidates die. A fitness function, which evaluates the
superiority of a genome, is used in this process. The fitness function is used to
evaluate a genome with respect to query benefit, i.e., reduction in the query cost
due to materialization of query. Whenever a view is selected, the benefit not only
depends on the view itself but also on other views that are selected and corre-
sponding materialized view maintenance cost. Therefore, a penalty value is used
as a part of the fitness function to consider the other constraints of the problem
and objective. Penalty is applied in three different ways when calculating the
fitness. (i) Subtract mode that Calculate the fitness by subtracting the penalty
value from the query benefit. Since the fitness value cannot assume a negative

35



Chapter 2. Materialized View Selection in Data Warehouses: Approaches,
Issues and Challenges

value, fitness is set to 0 when the result of the calculation becomes negative, (ii)
Divide mode that divides the query benefit by the penalty value in an effort to
reduce the query benefit. When the penalty value is less than 1, the division is
not performed to prevent the fitness from increasing and (iii) Subtract and divide
mode that combines the two methods (i) and (ii). If the query benefit is larger
than the penalty value, subtract mode is used. If the penalty value is larger than
the query benefit, divide mode is used. The penalty value is calculated using a
penalty function. The cost model used is as defined in Equation 2.1. For crossover
operation, each genome is selected with a probability and the selected genomes
are paired. For each pair, a crossover point is randomly decided and information
exchanged among genomes. For the mutation operation, for all genomes, for each
bit in the genome, the bit is mutated (flipped) with a probability. The selection,
crossover, mutation and evaluation processes are repeated in a loop until the ter-
mination condition is satisfied. Thus after several generations, it is expected that
the resultant population is composed of superior genomes, i.e., superior combina-
tions of views for materialization. An example GA-based approach applied to the
Materialized View Selection problem is given by [39]. In [34] an EA is used by
representing the view selection problem as weighted materialized view selection
problem where both the amount and importance of data retrieved are considered.

Advantages: The GA uses a multi-directional search over a pool of can-
didate solution points in the search space. The multi-directional evolutionary
process allows the GA to efficiently search the space and find a point near the
global optimum [39]. In [39], it has been presented that their solution, in speeding
up materialized view selection, is better than the existing solutions in terms of
expected run-time behavior as well as the warehouse configuration obtained. It is
also claimed that this approach makes a dramatic improvement in time complex-
ity over existing heuristic search based models. According to [39], their algorithm
yields solution that lies within 10% of the optimal query benefit, exhibiting only
a linear increase in execution time.

Limitations: The drawback of GA is that mathematically there is no
validity proof for the solutions obtained. It also needs more function evaluations
than other linear methods. There is no guaranteed convergence to global minimum
and the convergence is usually slow.

2.3.2.3 Memetic Algorithmic (MA) model

The memetic algorithm (MA), first proposed by Moscato in [49], is similar to GAs
but the elements that form a chromosome are called memes, not genes. In MA, all
chromosomes and offspring are allowed to gain some experience, through a local
search, before being involved in the evolutionary process. In [40], the authors
use MA in the materialized view selection problem. The AND-OR view graph
representation is used for constructing the memes and the cost model is based on
Equation 2.1. A local optimizer is applied to each offspring before it is inserted
into the population. Thus a local search mechanism is used in addition to other
parameters of GA, i.e., population size, number of generations, crossover rate, and

36



2.3. Existing View Selection Techniques

mutation rate. To improve GAs by reducing slow convergence for each generation,
the MA presents a new and enhanced EA. Advantage: With the model suggested
by [40], by setting system parameter values as population size=20, maximum
number of generations=50, selection rate=0.85, cross-over ratio=0.8 and mutation
rate=0.5, if without loss of generality for the space constraint a random view
invoking frequency in the range [0,1] with 10% to 90% of the total size of all views
are considered, the MA outperforms most of the heuristic algorithms and GA in
all cases regardless of storage space [40].

Limitations: The basic difference between GA based model and MA
based model is that in MAs a local optimizer is applied to each offspring (of GA)
before it is inserted into the population to improve the performances of the GA.
This reduces the slow convergence for each generation [40]. However, the other
drawbacks of GA remain in MA based approach.

2.3.2.4 Particle Swarm Optimization (PSO) in selecting views

The PSO technique has also been used in the materialized view selection prob-
lem [41]. Sun and Wang in [41] show that PSO achieves much better performance
than heuristic algorithms and GAs. The mathematical model of the materialized
view selection problem is based on the AND-OR view graph as in Equation 2.1.
Like GA and MA, in PSO as presented in [41], each AND-OR view graph is en-
coded as a binary string where 0 indicates that the corresponding node (view or
query) is not materialized and 1 indicates that it is materialized. The binary
strings generated are considered the particles of the PSO algorithm. The fitness
function used is the cost function τ(G,M) as defined in Equation 2.1. Each parti-
cle knows its fitness value and at a particular stage the best fitness value is taken
as the personal best position. The particle with the best fitness value among all
particles at a specific iteration is denoted the global best fit position. A solution
configuration or a solution set of materialized views xi is changed to a new solu-
tion as expressed by Equation 2.5 using a velocity value vi(t+ 1). The velocity of
each particle is modified according to the Equation 2.5, where, t is the iteration
number, pi is ith particle’s personal best position, pgb is global best fit position,
xi(t) is the position of ith particle at iteration t, imax is the maximum number of
iterations and weight, wi = wmax − ((wmax − wmin)/imax) × i. c1 and c2 are two
constants preferably equal to 2 and r1 and r2 are random variables in the range
[0,1].

vi(t+ 1) = wivi(t) + c1r1(pi − xi(t)) + c2r2(pgb − xi(t)) (2.5)

The position of each particle is modified according to the Equation 2.6.

xi(t+ 1) = xi(t) + vi(t+ 1) (2.6)

If the global best fit value pgb does not improve or the iteration number has not
reached the limit, the process is repeated. The particle with the best fitness

37



Chapter 2. Materialized View Selection in Data Warehouses: Approaches,
Issues and Challenges

value pgb at the end is the best binary string that gives the best set of views for
materializing.

Advantage: The PSO with system parameters set as population size=50,
maximum iteration number=100, c1=c2=2, r1 and r2 as two random functions in
the range [0,1], with maximum velocity vmax=20 and minimum velocity vmin=2,
considering view random invoking frequencies in range [0,1] (for space constraints),
Sun and Wang in [41] presented that regardless of the storage space constraint, the
total maintenance cost of PSO based model is much lower than those of heuristic
algorithm and GA based models.

Limitations: Though the experimental results reported in [41] demon-
strate that the PSO algorithm to solve the materialized view selection problem in
designing data warehouse achieves much better performance than other heuristic
algorithms and GAs, the major drawback of PSO is premature convergence and
getting trapped in local optima [50].

2.3.2.5 Ant Colony Algorithm (ACA) for optimizing view selection

In [51–53], Ant Colony Algorithm (ACA) is used for optimal selection of views
for materializing in Data warehouse. In this approach for view selection problem,
an ant is defined as a set of views representing a solution to the problem. In
ACA based view selection optimization, for a specified number of iterations, each
ant moves in the solution space to find the local optimum. In the traversal along
the solution space, the numbers of time the solutions are visited by the ants are
used as parameter to a function to update a value representing the pheromone
updating process (or the pheromone evaporation controlling process) in ACA. The
route of subsequent ants is guided by the value of the pheromone function. This
function uses several parameters like pheromone level at a state, relative effect of
paths, expected effects of path and number of paths available for each of the ants
while updating the pheromone level in a path. This pheromone updating function
thus guides the ants to different solution search paths to avoid trapping in local
optimum. The mostly visited solution by the ants in an iteration is selected as
the best solution for that iteration. At the end, the global optimum solution is
selected out of all the local optimum solutions in different iterations.

Advantages: In [53], it is shown that using ACA it is easier to find an
optimum set of views for materializing in data warehouse, compared to GA. With
32 candidate views, 10 numbers of ants, the convergence trend of query cost of
ACA is found to be better than GA based view selection technique with respect to
number of iterations. Under different space limitations (of ACA), the total query
cost of materialized views by both GA and ACA are found almost same [53].

Limitations: The solutions by ACA approach for view selection problem
used in [51, 52] and [53] largely depend on the parameters such as the defined
pheromone (constant) in each path at the beginning, defined value of relative and
expected effects of paths, and the constant number of ant tracks defined.

38



2.3. Existing View Selection Techniques

2.3.3 Data mining based approaches

Data mining techniques have also been used to handle the view selection for mate-
rialization problem [10–13]. In [12], a density-based view materialization algorithm
is discussed using data cube lattice structure, view size, access frequency of the
views, and support (frequency). In [10,11] and [13], clustering techniques are used
to cluster similar queries by analyzing the query workload of the warehouse. For
each cluster of queries, the candidate set of queries for materialization is decided.
Then by a merging process on different query clusters, a configuration of candidate
views is built. From the candidate views the final view configuration is created
with a greedy algorithm.

2.3.3.1 Clustering for materialized view selection

Aouiche et al. [10] present a clustering approach based materialized view selection
technique. Later in 2009, this technique was extended for selecting relevant config-
uration of indexes and views for materializing [11]. Workloads in data warehouse
are sets of generalized projection-selection-join queries. In this technique, from
the workload, the attributes that are present in ”where” and ”group by” clauses
of each query are extracted along with aggregation operators and join conditions
of different joins and tables . These attributes are termed representative attribute.
Each query is represented as a row of 1s and 0s in a two dimensional matrix such
that each cell is set to 1 if that representative attribute is present in the query
and else 0. Thus, we get a two dimensional matrix where queries are rows and
attributes are columns. The matrix is called representative attribute matrix of
the workload queries. The associations between the join attributes and queries
are kept in another associated matrix. Using the representative attribute matrix
of workload queries, the queries are clustered into a number of clusters of similar
queries. Simple Hamming distance based similarity and dissimilarity functions are
used for constructing the clusters. For each cluster of queries, a set of most shared
views is selected and a merging process is used to merge some of these views to
generate a new configuration for a candidate set of views for materializing. In
the view merging process, views are selected for merging to one view when the
accessing cost and space cost of the new (merged) view is less than the costs if
they are not merged. This merging process reduces the number of views in each
set of candidate configuration of views and indexes for materializing. A greedy
algorithm evaluates the benefits of materializing the candidate sets of views by
computing the access cost and storage cost and select the optimum set of views
for materializing.

Advantages: Clustering and merging of views to generate new sets of
candidate views for materializing reduces the number of views that are to be sup-
plied to the greedy algorithm for selecting the optimum set of views and thereby
it reduces complexity. In [11], presented by experimenting with an ad-hoc bench
mark data warehouse that, the selection of views by clustering based model signif-
icantly improve query execution time considering availability of storage space for
materializing views. Though it is obvious that increased number of materialized

39



Chapter 2. Materialized View Selection in Data Warehouses: Approaches,
Issues and Challenges

views by not considering storage space limitation means lesser query processing
time, the study shows that the average gain in performance is 68.9% when 35.4%
of available storage space is used. The gain in performance is 94.9% when 100%
of available storage space is used.

Limitations: Simple Hamming distance based similarity and dissimilar-
ity measures, as used in [10], may lead to generation of less diverged candidate
solutions. One big issue in clustering based optimization techniques is that the
solution quality depends on the size or quality of clusters, and which depend on
clustering parameters and the clustering algorithm used.

2.3.3.2 Association Rule Mining and Clustering in materialized view
selection

Das et al., in 2005, present a density-based clustering for view materialization that
uses association rule mining for selecting views for materializing in average run-
time complexity O(nlogn) [12]. The algorithm uses data cube lattice, view size,
access frequency of the views and support (frequency) of the views in selecting the
views to be materialized. Clusters of views are formed in this algorithm by com-
puting a benefit function on candidate views of a specified workload assuming that
the views are organized in the form of a lattice. For each cluster of views, the core
subset of frequent views is selected by association rule mining for materialization.

Kumar et al. in [13] propose another approach that attempts to identify
frequent information that is accessed by past queries on a data warehouse, us-
ing clustering and association rule mining techniques. In this technique authors
attempt to form clusters of subject areas of past queries using a density based
clustering algorithm known as OPTICS (Ordering Points to Identify Clustering
Structure) [54]. Overlapping of database relations among queries are used in eval-
uating similarity or dissimilarity while constructing clusters. A frequent set of
views for each cluster of subject areas is then determined by using association rule
mining. The identified frequent sets of views against different subject areas are
considered for materializing to serve future queries on respective subject areas.

Advantage: Association rule mining based view selection techniques are
used in identifying frequent database relations or views that may be materialized
for quick response to future queries in respective subject areas. The study in [10]
shows that just for 0.05% storage space occupation by selected views can obtain
22.95% of the query results without further processing. Thus, even for small
storage space availability for materializing views, this strategy helps building views
for materializing that cover large number of queries.

Limitations: Some infrequent relations or views may also have impor-
tance in some query processing scenarios. These relations may not be considered
in association rule mining based strategy for view selection. Dynamic clustering is
yet to be implemented in this problem. Another limitation of this strategy is that
the solution quality by association rule mining largely depends on the support and

40



2.3. Existing View Selection Techniques

confidence thresholds used.

Table 2.2: Stochastic algorithm based materialized view selection techniques and
associated issues.

Techniques
used

Years Experimental
framework
and data set
used

Associated is-
sues

Genetic
Algorithm
(GA) [39]

2001 Randomly
generated
data and
synthesized
queries

No guaran-
teed con-
vergence to
global min-
imum and
no proof of
validity.

Simulated
Annealing
(SA) [8]

2006 TPC-D [55]
benchmark
data ware-
house

Convergence
is slower
than other
versions of
SA in mate-
rialized view
selection.

Multi-
objective
GA [26]

2006 World hydro
logical data
and four syn-
thetic data
sets

No validity
proof on
solutions
obtained.

Parallel Simu-
lated Anneal-
ing(PSA) [9]

2008 Data ware-
house gener-
ated from real
life produc-
tion database,
TPC-D

Dependency
on initial tem-
perature and
iterations. It
is designed
for view selec-
tion problem
as single
objective
optimization
problem.

Particle
Swarm Op-
timization
(PSO) [41]

2009 TPC-D
benchmark
data ware-
house

Premature
convergence
and getting
trapped in
local op-
tima [50].

41



Chapter 2. Materialized View Selection in Data Warehouses: Approaches,
Issues and Challenges

Table 2.2: Stochastic algorithm based materialized view selection techniques and
associated issues.

Techniques
used

Years Experimental
framework
and data set
used

Associated is-
sues

Memetic
Algorithm
(MA) [40]

2009 TPC-D
benchmark
data ware-
house

More number
of functional
evaluations
and no proof
of conver-
gence.

Ant colony
algorithm
(ACA) [53]

2010 Randomly
generated
data ware-
house

Largely de-
pend on
parameters.

Clonal selec-
tion based
SA [48]

2010 TPC-D
benchmark
data ware-
house

Number of
functional
evaluations
and parame-
ter selection.

Multi-
objective
SA [14]

2012 TPC-H
benchmark
data ware-
house [15]

Filtration of
significant so-
lutions based
on diver-
sity, elitism
etc. are not
mentioned.

2.4 A Brief Discussion on Existing Approaches

Based on our study and analysis, we observe that deterministic and heuristic
algorithms for the view selection problem are often not truly scalable i.e., these
methods are effective only with a small number of views. Since it is an NP-hard
problem, several randomized and EAs have been introduced. However, they have
limitations as well.

GA-based approaches are able to perform better in multi-directional search
over a set of candidate views in the search space. Information exchange occurs
among candidate solutions to lead the search to regions of search space where good
candidates survive while bad candidates die. Thus, GA approaches that operate
in a multi-dimensional fashion can provide effective search performance and find
a solution near a global optimum in the view selection problem. However, the SA
approach generates solutions with (view maintenance and query processing) costs

42



2.4. A Brief Discussion on Existing Approaches

Figure 2-5: Relative costs of Heuristic, Evolutionary and Simulated Annealing
algorithm in view selection using query processing plan graph representation.

Figure 2-6: Comparison of GA, PSO and MA based view materialization
models with respect to total query processing costs vs. space used by

materialized views.

up to 70% less than the GA and other heuristic approaches in this problem [8,
9]. Another major limitation of the evolutionary approach is that it is hard to
acquire good initial solutions, and therefore in the view selection problem, GA-
based approaches converge slowly. It has been observed from results presented in
surveyed literature that, SA [8] out performs Heuristic algorithmic approach [7]
and EA (with heuristic view processing plan selection) approach [38] in case of
query processing plan based view selection models as presented in Figure 2-5.

PSO and MA-based approaches may achieve better performance than GAs
in the view selection for materializing in data warehouse [40, 41] as presented by
a graph in Figure 2-6.

In data mining approaches, the basic assumption is that the queries of
the same cluster can be answered competently by the same set of materialized
views. Therefore, all queries are not necessarily analyzed for generating candidate

43



Chapter 2. Materialized View Selection in Data Warehouses: Approaches,
Issues and Challenges

views. This reduces the number of candidate views. By changing the clustering
parameters, the number of clusters can be controlled. Clustering is performed
using some kind of similarity thresholds among queries. Thus the cluster quality
depends on parameters. Hence the candidate views themselves are quasi-optimal
and due to this the final selection of views may not be the most optimum. However,
unlike the other methods, the data mining approaches generate a representative
attribute matrix of workload queries, which is simple for building and browsing.

2.4.1 Issues and challenges

The following issues and research challenges with implications to implementations
in case of different approaches in handling the view selection problem for materi-
alizing in data warehouses have been identified.

i. Scalability: Deterministic search for solution using heuristics in the view
selection problem decreases the solution space. But when the size of the data
warehouse is very large, scalability is a big issue due to exponential complexity.
Though some heuristic algorithms have been designed with reduced time com-
plexity, they are yet to be tested on very large databases and a large number
of complex queries. Evolutionary approaches like GA, determine a solution to
be the fittest depending on predefined numbers of generations and iterations.
Defining a scalable generation number, iterations per generation and penalty
functions are the main problems with EA. EA and other heuristic algorithms
in the view selection problem use AND-OR view graph of queries as input.
Application development for analysis of a large number of complex queries for
AND-OR view graph generation is yet to be done. Soft-computing approaches
in the view selection problem use clustering and associative rule mining on a
query-view matrix. The quality of the quasi-optimum solutions discovered by
these techniques depends on the quality of clusters and/or cluster sizes and
thereby they depend on pre-defined clustering parameters. Measures needed
in association rule mining like support and confidence, largely depend on the
size of the database or the matrix used.

ii. Data structure: Heuristic view materialization techniques use the lattice
representation of views. This makes it a non-polynomial complexity problem.
Methods suggested to convert the conventional heuristic view selection tech-
niques to polynomial complexity need a lot of pre-computation [6]. Heuristic
techniques in the view selection problem use query processing plan graphs or
AND-OR view graphs. Though most studies on the applicability of heuristic
algorithms talk about the superior performance of the algorithms in handling
the problem, detailed analysis on the data structure is lacking. The query-
view matrix representation as used in clustering and associative rule mining
techniques is only specific to clustering algorithms and parameters used.

iii. Cost model: The HRU-greedy algorithm and the PGA for the view selection
problem compute benefit of materializing a set of views by computing the total
query processing cost and the cost savings by the selected views heuristically.

44



2.5. Discussion

The query processing cost is the number of rows that are to be accessed by
aggregating functions used in the lattice representation of a data warehouse.
Query frequencies and materialized view maintenance costs are not considered.
Some other heuristic and randomized algorithmic approaches consider query
frequency and view updating frequency as shown in Equation 2.1 or 2.2 in
their cost model for computing benefits of candidate solutions. In multi-
objective optimization based solution models, where query processing costs
and materialized view maintenance costs are the objectives for optimization,
extending the degree of diversity among selected solution population from
a large number of solutions generated in intermediate iterations are related
issues. The data mining based model aims to minimize the execution cost
of a set of workload queries under storage space constraint. The quality of
solutions of these models largely dependent on the support threshold used.
Estimation of appropriate support threshold and fulfilling the completeness
criteria are additional research issues in minimizing the query execution costs
by data-mining based approaches.

iv. Parameter selection: Solution quality for heuristic algorithms, including
EAs, largely depends on the number of iterations or the number of genera-
tions specified. In SA approaches, the solution quality depends on parameters
such as the initial temperature, the final temperature and the rate of temper-
ature decrements. To use data mining in the view selection for materializing
problem, algorithms are to be designed in such a way that they perform consis-
tently with varied clustering parameters and associative rule mining measures
like support and confidence levels. When using multi-objective optimization
techniques in the view selection problem, selecting filtering parameters for
increasing the degree of diversity among a large number of Pareto-optimum
solutions is an open issue.

2.5 Discussion

In this survey, we have analyzed various techniques used in view selection for
materialization in data warehousing. By analyzing the problem representations,
data structures, algorithms and parameter selections in different models proposed
so far, we have identified and reported the associated issues and challenges in
addressing this NP-hard problem. It is expected that by addressing these issues
and challenges, the complexity of the view selection problem can be reduced and
scalability is achieved.

For critical analysis of different techniques in any area, researchers and
practitioners need a common protocol for performing experiments using standard
data sets and standard benchmarking. Although it is a difficult task to introduce
one common framework or a single generalized software environment for com-
parison of all techniques, it will be very beneficial to move toward the use of a
common data-set and benchmarking for evaluation. For extensive analysis of dif-
ferent approaches, it is expected that Transaction processing Performance Council

45



Chapter 2. Materialized View Selection in Data Warehouses: Approaches,
Issues and Challenges

(TPC) will come-up with voluminous benchmark data-set [55], with a standard
framework for experimentally evaluating these techniques for view selection for
materialization problem.

It has been observed that the view selection problem for materializing in
data warehouses is so far mostly handled by converting it into a single objective
optimization problem of minimizing the summed up cost function values of differ-
ent associated costs. But there are trade-offs to be considered among the costs.
To address this, in next chapter the view selection problem is defined as multi-
objective optimization problem for minimizing total analytical query processing
cost of data warehouse by selecting a set of views for materializing within lim-
ited available memory space with minimized maintenance cost of the materialized
views.

46




