
Chapter 3

Multi-Objective Differential
Evolution Algorithm for Selecting
Views to Materialize

3.1 Introduction

The problem of data warehouse view selection for materialization has been estab-
lished to be NP-hard [3,4,21,22,33]. Therefore, various stochastic or evolutionary
algorithms and data mining based approaches have been proposed with differ-
ent data structures and representations or notions. Most of these efforts treat
this problem as single objective optimization problem. While the basic Multi-
Objective Evolutionary Algorithm (MOEA) known as Multi-Objective Genetic
Algorithm (MOGA) has been successfully used in view selection problem for con-
ventional data warehousing [26] for its ability to find multiple Pareto-optimal
solutions in one single run, extensive work by applying other modern effective and
robust multi-objective optimization techniques are yet to be explored well.

3.1.1 Motivation

In [38], it has been explained that this problem is best suited for applying ran-
domized algorithms. While applying basic Multi-Objective Evolutionary Algo-
rithms (MOEAs) like the Multi-Objective Genetic Algorithm (MOGA) and Niched
Pareto Genetic Algorithm (NPGA) in view selection problem, experiments on both
real and synthetic data sets with varying distributions show that these non-elitist
MOEAs are very competitive against the leading greedy algorithms [26]. Al-
though basic MOEAs are able to find multiple Pareto-optimal solutions in one
single run [32], elitism by preserving diversity in intermediate generations is still
not considered.

The Differential Evolution (DE) algorithm introduced by Storn and

47

Chapter 3. Multi-Objective Differential Evolution Algorithm for Selecting
Views to Materialize

Table 3.1: Performances of multi-objective DE and NSGA-II with respect to
DTLZ test problems.

Test Problems Algorithms Performances
compared to NSGA-II
2 objectives 3 objectives

DTLZ1 DEMONS−II no significant difference better
GDE3 better better

DTLZ2 DEMONS−II no significant difference no significant difference
GDE3 not evaluated not evaluated

DTLZ3 DEMONS−II better better
GDE3 not evaluated not evaluated

DTLZ4 DEMONS−II better no significant difference
GDE3 better better

DTLZ5 DEMONS−II no significant difference no significant difference
GDE3 not evaluated not evaluated

DTLZ6 DEMONS−II better better
GDE3 not evaluated not evaluated

DTLZ7 DEMONS−II no significant difference no significant difference
GDE3 not evaluated not evaluated

Price [28] outperforms GAs on many numerical single objective optimization
problem [27]. The original DE designed for single objective optimization has
been recently developed for multi-objective optimization in different approaches
that use non-dominated sorting of Pareto-ranks and crowding distance for
elitism [27, 56–59]. While evaluating with the set of 9 test problems termed as
DTLZ proposed by Deb et al. in [60] for testing and comparing performances
between different MOEAs, Kukkonen et al. in [59] found that the generalized DE
algorithm for multi-objective optimization (GDE3) with certain parameters on
bi-objective and tri-objective test problems, DTLZ1 and DTLZ4 performs better
than the NSGA-II proposed by Deb et al. in [32]. Another multi-objective DE
named DEMO, that uses NSGA-II like elitist diversity preservation in solution,
shows comparable performances with respect to NSGA-II in case of DTLZ1 to
DTLZ7, when tested for 2,3 and 4 objectives [27]. From the performance evalua-
tion results of two popular versions of DE presented by [27] and [59], for 2 and 3
objectives, compared to elitist GA (NSGA-II) for DTLZ1 to DTLZ7 is summarized
in Table 3.1.

3.1.2 Contribution

In this chapter I present my attempt to find sets of views, from views generated
while processing a set of complex frequent queries, so that if the select set of views
are materialized, then the total query processing cost and the total materialized
view maintenance cost is optimum in limited availability of space for materializing.
For optimizing total query processing cost and maintenance cost of a select set of
complex queries in a specific period, I use availability of space for materializing,

48

3.2. The View Selection for Materializing as a Multi-objective
Optimization Problem

query frequencies during the period, and data warehouse updating frequencies in
the period as parameters. The problem is defined as a multi-objective optimization
problem and an attempt has been made to solve the problem using Multi-objective
Differential Evolution algorithm. An initial version of this work can be found
in [25]. The DE algorithm is a powerful stochastic real-parameter optimizer for
non-linear and non-differentiable continuous space function [28]. Gong et al. in [31]
present the use of forma analysis to exploit usage of DE for discrete optimization
problem. Here, I attempt to use formae analysis as presented in [31] to implement
multi-objective DE in selecting views for materializing in data warehouse using
MVPP graph framework [7].

In Section 3.2 the view selection problem for materializing in data ware-
house is defined as a multi-objective optimization problem using a cost model
representing query processing plan of a set of frequent queries represented by Di-
rected Acyclic Graph (DAG). Section 3.3 describes the design of a Multi-objective
DE for binary encoded solution representation using algebra of GA and formae
analysis for materialized view selection. In Section 3.4 the experimentation and
evaluation are presented with a discussion and analysis of obtained results. Finally
concluding remarks and ensuing works are presented in Section 3.5.

3.2 The View Selection for Materializing as a

Multi-objective Optimization Problem

In data warehouses, a view consists of the result of an aggregation function on some
other views or base tables of the warehouse produced while generating responses
to queries. Thus, views are dependent on the contents of other views and base
tables. To make query response faster, optimization is critical in selecting some
or all of these views for materializing in the data warehouse. The goal is to find
a set of views for materializing to obtain an optimum query response cost in
terms of response time or the total number of rows to be processed, an optimum
maintenance cost or updating cost of the materialized views, with optimum space
requirement for materializing the views. Generally in real life data warehousing,
it is feasible to reserve a specific amount of memory for materializing the selected
views. Therefore, the view selection for materializing problem is to select some or
all of the views that are generated frequently while processing queries on a data
warehouse, such that, the space requirement to materialize the selected views is
less than or equal to the space reserved for that, and if the selected views are
materialized, the total query processing cost and materialized view maintenance
cost becomes minimum.

While processing a set of n frequent queries Q ={q1, q2, · · · , qn} on a data
warehouse, if it generates m intermediate views V ={v1, v2, · · · , vm}, the mate-
rialized view selection problem is to select an optimum set of views M ⊆ V for
materializing within a given available space A (for materializing), such that, if the
set M is materialized and AM is the space requirement for materializing the set
of views M , it minimizes CQ

M , the total cost of answering query Q when M is

49

Chapter 3. Multi-Objective Differential Evolution Algorithm for Selecting
Views to Materialize

materialized, and U(M), the maintenance cost of M due to updating of the base
tables used by queries Q, with the constraint AM ≤ A.

3.2.1 DAG representation of multiple query processing
plan

The view selection for materializing in data warehouse may be represented by a
Directed Acyclic Graph (DAG) that considers a set of frequent (OLAP) queries
on a data warehouse on a specific period and assuming that the overall query
processing efficiency will be maintained if the intermediate views generated, in the
middle of processing these queries, are considered for materializing. The Query
Processing Plan DAG framework to represent the view selection problem was
originally defined by Yang et al. in [7] as Multiple View Processing Plan (MVPP)
framework. The DAG in this framework represents a query processing strategy
on a data warehouse. The leaf nodes of the DAG correspond to the base relations
and the root nodes represent the responses of queries.

Definition 8. Query processing tree for a query q is a DAG, Tq = (V,A), where,

• V is the set of vertices representing intermediate select, join and project
sub-expressions of the query q,

• A is the set of arcs {a1, a2, · · · , an}, such that each arc ai ∈ A, either

– connects a vertex ui ∈ V to vi ∈ V , directing ui to vi, if vi returns a
number of rows of a database relation by processing rows of database
relation at ui,

– or connects a leaf node or base relation bj ∈ Bq to vi ∈ V , directing bj
to vi, where Bq are the base tables used by q such that the processing at
vi needs the data in bj,

– or it is connecting a vertex vi ∈ V to the root node representing the
final response of the query q [7].

Definition 9. An MVPP Directed Acyclic Graph (DAG) G is a graph gener-
ated by merging query processing trees Tqi , i = 1, · · · , n, for a set of queries
Q ={q1, q2, · · · , qn} on a data warehouse considered, whenever sub-graphs of the
query processing trees are shared [7].

To generate the MVPP DAG framework, all the considered frequent
queries are analyzed and all the independent selection, projection, join and base
relations are identified to represent as vertices of the DAG as defined in Defini-
tion 8 and 9. The nodes of the DAG are then labeled in a specific order. By
considering the frequencies of the queries and updating frequencies of the base
tables, sizes of the resultant sub-expressions represented as vertices of the graph
are evaluated. For every query, there may be several plans of execution. There-
fore every query may have an execution plan which is the optimum in terms of

50

3.2. The View Selection for Materializing as a Multi-objective
Optimization Problem

Figure 3-1: An example MVPP graph using TPC-H benchmark data warehouse

rows to be accessed. But simple merging of these optimal query execution plans
or optimal query processing trees may not lead to an optimum common multiple
multiple execution plan as there may be several select, project, join and aggrega-
tion that are shared among the queries in different ways. For designing an MVPP
DAG for using as input to materialized view selection algorithm, Yang et al. in [7]
suggest that, first optimal query processing plan for each of the considered queries
are to be designed individually by pulling up all select, project and aggregation
and pushing down the join because join operations are the most expensive op-
erations in query processing. Then the individual query trees are merged into a
single query execution plan termed as MVPP DAG by pushing down and pulling
up the select, project, aggregation and join operations such that the shared join
operations are merged as early as possible.

An MVPP DAG may be constructed as depicted in Figure 3-1. The view
selection problem using MVPP DAG framework is to select a set of nodes to ma-
terialize with space constraint for materializing the views from an MVPP DAG,
excluding the leaf and root nodes of the DAG, to minimize the total query pro-
cessing cost and materialized view updating cost.

3.2.2 The cost model

The query processing cost for a query is the total size of data that are to be accessed
to generate the result or response. A query may have several sub-expressions
as select, join and project relations. Each of these sub-expressions return some
amount of data by reading other sub-expressions or base relations. Thus query
processing cost of a query is the total amount of data that are to be accessed from
each of the sub-expressions and base tables. When a particular node or view of
an MVPP graph is materialized, the queries that access this view do not have

51

Chapter 3. Multi-Objective Differential Evolution Algorithm for Selecting
Views to Materialize

to access the other nodes used to generate this particular materialized node or
view. For example, in an MVPP DAG as in Figure 3-1 where M stands for
millions of rows and K stands for thousand rows, let v2 is the result of a select
operation by accessing 26.26 millions of rows from Part table returning 26.26
thousand rows of data. If v2 is materialized, then for processing q1, q2 and q3, the
26.26K rows of v2 are to be accessed 55 (20+10+25) times instead of accessing
the Part table of data size 26.26M for 55 times. But during the period in which
query frequencies 20, 10 and 15 are considered for the selected queries, if the
base tables are updated 2 times, then v2 is to be reconstructed by accessing the
Part table of 26.26M rows 2 times. Thus the total benefit of materializing v2 is
55× (26.26M + 26.26K)− (55× 26.26K + 2× 26.26M).

Thus, for each query in the MVPP DAG considered, first the total amount
of data that are to be read are computed by considering the materialized views.
The result is then multiplied by the frequency of the corresponding query to get
the query processing cost for the query of the MVPP DAG. The summation of
query processing cost of all the queries of the MVPP DAG by considering a set of
materialized views is the query processing cost of the MVPP DAG.

The query processing cost QG(M) for a set of materialized views M , of an
MVPP DAG G is expressed as Equation 3.1 by Yang et al. in [7], where, V is the
set of vertices of G and M ⊆ V , R is the set of root nodes of G, fq is the access
frequency of query q ∈ R, and Cq

a(v) is the query processing cost of query q by
accessing vertices v ∈ V when M is materialized.

QG(M) =
∑
q∈R

fq(C
q
a(v)) (3.1)

The maintenance cost of materialized views is the cost of re-constructing
the materialized views when the base tables are updated. Suppose a view v is
generated by reading views v1 and v2 and to generate views v1 and v2, base tables
b1 and b2 are to be accessed. If the view v is materialized, then whenever b1 and
b2 are updated, the materialized view v is to be reconstructed by accessing the
records of v1, v2, b1 and b2. This accessing cost is termed as view maintenance
cost. During a specific period, if the base tables are updated n number of times,
then the materialized view maintenance cost is multiplied by n to compute the
total maintenance cost of the materialized view v during that period. When a set
of views M ={v1, v2, · · · , vn}, M ⊆ V , of an MVPP DAG G is materialized where
V is the set of vertices of G, then the summation of all the maintenance cost for
materialized views v1, v2, · · · , vn is the maintenance cost of the MVPP DAG G.

The materialized view maintenance cost of an MVPP DAG G is expressed
as Equation 3.2 below by Yang et al. in [7].

UG(M) =
∑
m∈M

fm(Cm
u (r)) (3.2)

where, V is the set of vertices of G representing views, M ⊆ V is the set of
views materialized, fm is the maintenance frequency of materialized view m ∈M ,

52

3.2. The View Selection for Materializing as a Multi-objective
Optimization Problem

Cm
u (r) is the cost of updating materialized view m ∈M by accessing the vertices

r, r ⊂ V .

Example 7. Considering the MVPP DAG in Figure 3-1 as G, Let M1 ={v2} and
M2 ={v10, v14} are two solutions of the materialized view selection problem. Then
for M1 the total query processing cost of MVPP DAG G is
QG(M1) = 20× (0.034 + 0.02626 + 0.000051 + 0.000005 + 112.8 + 0.688 + 1.43 +
0.001+0.00265+0.000095+0.000475)+10×(0.004977+0.0109+0.02626+8.255+
112.8+0.0659+1.43+0.0001+0.00265)+25×(0.0906+0.2603+0.02626+54.71+
112.8 + 0.034 + 1.43)
=7658.5M ,
the maintenance cost UG(M1) = 2× 26.26M =52.52 M ,
the space requirement for materializing M1, AM1 = 0.02626M
Similarly,
QG(M2) = 20× (0.034 + 0.02626 + 26.26 + 0.000051 + 0.000005 + 0.688 + 1.43 +
0.001+0.00265+0.000095+0.000475)+10×(0.004977+0.0109+0.02626+26.26+
8.255) + 25× (0.090624 + 0.260352)
=923.17M
UG(M2) = 2×(112.8+0.065985+1.43+0.000106+0.00265)+2×(26.26+0.02626+
54.717 + 112.8 + 0.034 + 1.43) = 619.2M
AM2 = (8.255 + 0.260352) = 8.515M .

3.2.3 Multi-objective optimization

Multi-objective optimization is simultaneous optimization (i.e, maximization or
minimization) of a set of objective functions on some parameter vectors. In single
objective optimization there is only one global optimum value of the objective
function and therefore there may be just one optimum solution. But in case of
multi-objective optimization there is a set of solutions that are equally acceptable
because when one solution yields the best value for one objective function, it may
not produce the best result for the other objective functions of the problem.

For two solutions of a multi-objective optimization problem, when a par-
ticular solution yields objective function values that are not worse compared to
the objective function values produced by the other solution but better for at least
one objective function of the problem, then it is said that the first solution dom-
inates the second solution. In case of multi-objective optimization, the problem
is to find the solutions that are not dominated by any other solutions for the set
of objective functions of the problem. The non dominated set of solutions of the
entire solution search space is called the global Pareto optimal solutions of the
multi-objective optimization problem. In case of Pareto optimal solutions, when
one objective function value increases other objective function values decrease.
Therefore, as simultaneous optimization of all objective functions is usually not
possible, the graphical representation of the Pareto optimal solutions or points
in objective function space is concave (for minimization) or convex (for maxi-
mization). The curve (for bi-objective optimization) or surface (for three or more
objectives) describing the tradeoffs in objective function value space by the Pareto

53

Chapter 3. Multi-Objective Differential Evolution Algorithm for Selecting
Views to Materialize

optimal solutions are called the Pareto front.

Formally the multi-objective optimization problem may be defined by fol-
lowing definitions.

Definition 10. For a set of vectors S and M number of real valued objective
functions fi, i = 1, 2, · · · ,M, fi : S → R; multi-objective optimization is to find
the parameter vectors x∗ ∈ S of D dimensions {x∗1, x∗2, · · · , x∗D} for fi, such that
fi(x∗) is simultaneously maximized or minimized for i = 1, 2, · · · ,M.

Definition 11. For M objective real valued minimization problem fi : S→ R, i =
1, 2, · · ·M a solution u ∈ S is said to dominate v ∈ S, if ∀i ∈ 1, 2, · · · ,M, fi(u) ≤
fi(v) and ∃i ∈ 1, 2, · · · ,M, such that fi(u) < fi(v). This domination relation u
dominates v is denoted by u ≺ v.

Definition 12. For objective functions fi, i = 1, 2, · · · ,M of a multi-objective
optimization problem defined by the Definition 10, solutions such as x∗ ∈ S are
called Pareto optimal solutions if @x ∈ S such that x ≺ x∗. The set P = {x∗ ∈
S : x∗ is Pareto optimal} is called the Pareto optimal set of the multi-objective
optimization problem.

Definition 13. For objective functions fi, i = 1, 2, · · · ,M, fi : S→ R of a multi-
objective optimization problem where fi are components of a vector function F , the
curve or surface produced by graphical representation of F (P) : = {F (x∗) : x∗ ∈
P} is called the Pareto front of the multi-objective optimization problem.

For two solution vectors u and v for a set of objective functions of an
optimization problem, if u does not dominate v and v also does not dominate u,
expressed as u 6≺ v and v 6≺ u, then u and v are called non-dominated solutions.
Multi-Objective Evolutionary Algorithms (MOEAs) and other multi-objective
stochastic algorithms like multi-Objective Simulated Annealing algorithms can
yield set of mutually non-dominated solutions which are only an approximation or
estimation of the true Pareto front of P. The estimated Pareto front is popularly
denoted by F [61]. These multi-Objective optimization techniques are designed
to find an estimated Pareto front F asymptotic to the true Pareto front for P.

3.2.4 The view selection problem as multi-objective opti-
mization problem representation

Using equation 3.1 and 3.2, if V is the set of vertices of MVPP DAG G, and M
is the set of views that are materialized, i.e. M ⊆ V , then under the constraint∑

v∈M Av ≤ A, where Av denotes the space required for materializing the view v
and A is the total space available for materializing the views; the view selection
problem is to find M to:

Minimize,Y = F(M) ≡ (QG(M), UG(M)) (3.3)

54

3.2. The View Selection for Materializing as a Multi-objective
Optimization Problem

If S0 and S1 are two solutions of the Equation 3.3 under the constraint∑
v∈M Av ≤ A then S0 dominates S1, expressed as S0 ≺ S1, if and only if both

the following logical conditions 3.4, 3.5 are satisfied.

(QG(S0) ≤ QG(S1)) and (UG(S0) ≤ UG(S1)) (3.4)

(QG(S0) < QG(S1)) or (UG(S0) < UG(S1)) (3.5)

If S0 6≺ S1 and S1 6≺ S0, where 6≺ denotes does not dominate, then S0 and S1 are
said to be non-dominating solutions. The view selection for materializing in data
warehouse is the problem of finding out a set of non-dominating solutions, which is
an approximation to the true Pareto front of the problem defined by Equation 3.3.

In Example 7, for input MVPP DAG G in Figure 3-1, both the solutions
M1 ={v2} and M2 ={v10, v14} are two non-dominating solutions for the objective
functions 3.1, 3.2 of the minimization problem 3.3, considering that the available
storage space for materializing is more than the space required for saving 8.515
millions of rows.

3.2.5 Solution representation

Using the notations used in the algebra of Genetic Algorithms [62], for B , {
0, 1 } being the set of all truth values and Bm denoting the set of binary strings
of length m, a solution S of the view selection problem may be represented such
that S ∈ Bm. This representation of solutions are found to be suitable for meta
heuristic non deterministic multi-objective optimization like multi-objective Evo-
lutionary Algorithms and Simulated Annealing algorithms [9,62–64]. To represent
solutions of MVPP DAG framework as suggested by Yang et al. in [7], all views
represented as vertices in an MVPP DAG are labeled and indexed. The solutions
are represented as a string of 1s and 0s such that if a particular view is selected for
materialization, then the corresponding bit in the solution string is represented as
1 and else 0. For m number of views of an MVPP DAG considered for selection,
the views are indexed from 0 to m − 1. The solution strings of length m are
represented such that if ith view vi is selected for materialization then the ith bit
of the solution string is set to 1 and else it is set as 0.

55

Chapter 3. Multi-Objective Differential Evolution Algorithm for Selecting
Views to Materialize

3.3 Multi-objective Differential Evolution Algo-

rithm for Selecting Views to Materialize in

Data Warehouse

3.3.1 The Differential Evolution (DE) algorithm

The DE algorithm is a stochastic parallel direct search method for global opti-
mization problems over continuous space using NP D-dimensional vectors xi,g,
i = 1, 2, · · · , NP , representing NP as the population size for generation g of an
evolutionary system [28].

DE generates a new solution vector by adding the weighted difference
between two population vector to another population vector of the NP population
which is called mutation. The resultant vector is called mutant vector. Then
some parameters of the mutant vector are exchanged with parameters of another
predetermined vector of the population called target vector to yield a new vector
called trial vector. This exchange of parameters is called cross over. If the fitness or
cost function values generated by the trial vector is more preferable (or better) than
the target vector, the trial vector replaces the target vector for next generation
and this replacement of vector in the solution population is called selection. In
each generation, each of the population vector is to be treated as the target vector
once for selection operation.

But there are different variants of DE. The notation used to specify differ-
ent variants of DE is DE/x/y/z. In this notation x specifies that the vector to be
mutated is whether random or the best so far in the population. The y specifies
the number of difference vectors used. The z specifies the cross over scheme.

In original DE, it is specified that the size of the population, NP , is un-
changed during the optimization. But it has been observed that in case of applying
DE for multi-objective optimization, the population size may grow in each gener-
ation and is to be controlled by maintaining the original basic characteristics of
the population.

For mutation, in one variant of DE, known as DE/rand/1/bin, new popula-
tion vectors are generated by finding the weighted difference between two random
population and then by adding it to a third random population vectors of the
NP population. In DE/rand/1/bin, ”rand” indicates that the donor vector se-
lected to compute the mutation values is chosen at random. ”1” is the number of
pairs of solutions chosen to compute the mutation differential and ”bin” indicates
that binomial recombination is used. The other mostly used similar variants of
DE are DE/rand/1/exp, DE/best/1/bin and DE/best/1/exp. There are few other
versions of DE like DE/current-to-rand/1, DE/current-to-best/1 and DE/current-
to-rand/1/bin which use arithmetic and arithmetic-discrete recombination [65].

In DE/rand/1/bin version of DE, the mutant vector for next generation

56

3.3. Multi-objective Differential Evolution Algorithm for Selecting Views
to Materialize in Data Warehouse

g + 1 for each target vector xi,g, i = 1, 2, · · · , NP , is generated as Equation 3.6.

vi,g+1 = xr1,g + F.(xr2,g − xr3,g) (3.6)

where r1, r2, r3 ∈{1, 2, · · · , NP}, r1 6= r2 6= r3, F is a real constant factor ∈[0, 1]
and F > 0. Here F is used to scale the influence of the randomly selected popu-
lation vectors xr2,g, xr3,g while calculating the mutation value.

The mutant vector’s parameters are then mixed with the target vector
to yield a vector called trial vector. The crossover is introduced here to increase
the diversity of the perturbed vectors. The trial vector is formed by crossover as
expressed by Equation 3.7 and 3.8.

ui,g+1 = (u1,i,g+1, u2,i,g+1, · · · , uD,i,g+1) (3.7)

uj,i,g+1 =


vj,i,g+1, if (randR(j) ≤ CR) or j = randI(i)

xj,i,g, if (randR(j) > CR) or j 6= randI(i)

j = 1, 2, · · · , D
(3.8)

In Equation 3.8 randR(j) is the jth evaluation ∈ [0, 1] of a uniform random
number generator. The CR ∈ [0, 1] is a real constant termed as crossover constant.
The CR controls the influence of the parent in their next generation of offspring.
If a higher value of CR is taken there will be less influence of the parent in the
offspring vectors. The randI(i) is a random index ∈ 1, 2, · · · , D.

In selection operation of DE, if the trial vector ui,g+1 yields a lesser cost
function value than xi,g, then xi,g+1 is set to ui,g+1 and otherwise xi,g+1 is set as
xi,g. The process is continued till a pre-defined maximum value of g, say, gmax is
reached. The best solution from the population in the final generation is selected
as optimum solution.

3.3.2 Differential Evolution algorithm adapted with bi-
nary encoded data

The DE introduced by Storn and Price in [28] was originally designed for global
optimization problem over continuous spaces using solution population of real vec-
tors. Gong et al. in [31] used forma analysis [66,67] to derive discrete DE operators
for discrete optimization problem. For a population vector Ψ = {ψ1, ψ2, · · · , ψD}
of D dimensions, each decision variable ψi may be considered as a single dimen-
sion which may have either 0 or 1 as it’s value. Thus Ψ may be represented as
a string of bits, where each bit represents a particular dimension to represent a
solution population vector as binary encoded data. To compute mutant vector in
DE, difference between two random vectors of a population, say, xr2,g and xr3,g is
to be amplified by a real amplification factor F and it is to be added to another

57

Chapter 3. Multi-Objective Differential Evolution Algorithm for Selecting
Views to Materialize

random vector xr1,g of the population. In binary encoded representation, xr2,g and
xr3,g are two vectors having binary parameters as dimensions. But as F is a real
number, the resultant vector F.(xr2,g − xr3,g) of Equation 3.6 will be converted
into a real vector and the mutant becomes incompatible with the binary string
representation of the problem. Gong et al. in [31] used forma analysis [62, 68] to
generate mutant vector of DE as a binary string.

Radcliffe et al. in [62, 66–68] defined forma analysis based on Algebra of
GA to capture and express domain specific knowledge for performance of evo-
lutionary algorithms. For enumerative solution search by GAs, the concept of
equivalence relations over the solution search space S is introduced in forma anal-
ysis. A relation, ∼ in algebra of GA is a property between every pair of members
or solutions of S which is either true or false. A relation, ∼ is called an equivalence
relation when the relation is reflexive, symmetric and transitive. The equivalence
relations of search space S partitions S into disjoint classes termed as equivalence
classes. For example, in a human population, the eye colour may be an equiva-
lence relation and the sets of people in the population with the various eye colours
like blue eyed people, brown eyed people, black-eyed people etc. are different
equivalence classes. Radcliffe in [66] used the term forma with it’s plural formae
to refer to an equivalence class.

Definition 14. Equivalence relation: For B , { 0, 1 } being the set of all truth
values and Bn denoting the set of binary strings of length n, equivalence relation
ψ is a function over the S

ψ : S × S −→ B (3.9)

iff ∀x ∈ S : ψ(x, x) = 1, ∀x, y ∈ S : ψ(x, y) = 1 =⇒ ψ(y, x) = 1, and ∀x, y, z ∈
S : ψ(x, y) = ψ(y, z) = 1 =⇒ ψ(x, z) = 1.

E(S) is used to denote the set of all equivalence relations over a given set
S. For a given equivalence relation ψ ∈ E(S), Ξψ is used to denote the set of
formae or equivalence classes induced by ψ. Thus for a set of equivalence relations
Ψ ⊂ E(S) where Ψ ={ ψ1, ψ2, · · · , ψ|Ψ| }, ΞΨ is the vector of formae for Ψ.

Definition 15. Intersection of equivalence relations: For B , { 0, 1 } being
the set of all truth values, and equivalence relations ψ, φ ∈ E(S), the intersection
ψ ∩ φ : S × S −→ B is defined by

(ψ ∩ φ)(x, y) , ψ(x, y) ∧ φ(x, y) (3.10)

where ∧ denotes logical ”and” (and , denotes defined to be equal to).

Thus, two solutions are equivalent under the intersection of a pair of equiv-
alence relations if they are equivalent under each of the pair.

Definition 16. Span: For a set of equivalence relations E ⊂ E(S), the span of
E is the set of all equivalence relations that can be constructed by intersection of
any subset of E.

58

3.3. Multi-objective Differential Evolution Algorithm for Selecting Views
to Materialize in Data Warehouse

Definition 17. Independent set of equivalence relations: A set of equiv-
alence relations E ⊂ E(S) is said to be independent if there is no member in E
that can be constructed by intersection of other members of E.

Definition 18. Basis: If the set of equivalence relations E is a subset of another
set of equivalence relationsΨ, i.e E ⊂ Ψ and Ψ ⊂ E(S), then E is said to constitute
a basis for Ψ, if and only if E spans Ψ and E is independent.

These concepts of forma analysis can be used to derive operators to manip-
ulate a given set of equivalence relations. An operator’s behavior may be specified
in terms of a basis. Thus by combining the basis with domain independent oper-
ators a given set of equivalence relations may be explicitly manipulated.

Tuson in [69] designed an operator template for changing k parameters of
a forma with basis Ψ as Equation 3.11 below, where DΨ denotes the set of different
parameters between equivalence relations using basis Ψ .

Ok(x, k,Ψ) = {y ∈ S||DΨ(x, y)| = k} (3.11)

For representing the binary-string solutions of D dimensions, so that they can be
manipulated by forma analysis, Gong et al. in [31] defined the basis as:

ψi(X, Y) =

{
1, if xi = yi;

0, otherwise
(3.12)

Gong et al. [31] defined formae basis [67] based DE mutation operator
template Mde as Equation 3.13 below.

Mde(x1, x2, x3, F,Ψi) = {m ∈ S|DΨi
(x1,m) = k ∧ k = F ×DΨi

(x2, x3)} (3.13)

where x1 represents the base vector selected from the population, x2 and x3 are
the vectors of the population to produce the difference, m represents the mutant
vector and Ψi represents the basis constructed for the i-th dimension.

Now let for the basis given by Equation 3.12 for binary string represen-
tation Ψ ={ψ1, ψ2, · · · , ψD }, where each bit is considered as decision variable of
single dimension, the distance between two solutions are computed by the binary
distance between the bits i.e either 1 or 0. If xr2,g and xr3,g are considered as
two strings of bits of length D, each jth dimension difference between xr2,g and
xr3,g, DΨj

(xr2,g, xr3,g) can be represented using the formae basis for Ψj defined in
Equation 3.12 as Equation 3.14 below.

DΨj
(x,y) =

{
0, if xj = yj

1, otherwise
(3.14)

This makes the jth bit of the vector difference between (xr2,g, xr3,g), represented
as DΨj

(xr2,g, xr3,g), to either 1 or 0. But, in DE, F is a real number in the
range [0, 1]. Hence, F.DΨj

(xr2,g, xr3,g) will be real value F or 0. Therefore, to

59

Chapter 3. Multi-Objective Differential Evolution Algorithm for Selecting
Views to Materialize

interpret the scaled difference F.DΨj
(xr2,g, xr3,g) of jth dimension rounded to 1

or 0, for applying mutation operator template defined in Equation 3.13, following
Equation 3.15 may be used to randomly decide whether it is to be rounded to 1
or 0.

F.DΨj
(xr2,g, xr3,g) =

{
1, if random[0, 1] < F ∧ (DΨj

(xr2,g, xr3,g) = 1)

0, otherwise
(3.15)

The mutant vector vi,g+1, using expressions 3.14 and 3.15 is thereby generated as:

vj,i,g+1 = DΨj
(xr2,g, F.DΨj

(xr2,g, xr3,g)) (3.16)

This type of mutation operation is termed as restricted-change mutation [31].

The DE cross-over operation, as expressed by Equation 3.8, manipulates
population vector in a discrete form. Therefore, the DE crossover operator is
directly usable for discrete or binary encoded data.

3.3.3 Multi-objective DE

Simultaneous optimization of several objectives is not usually possible to attain.
Therefore, in multi-objective optimization, a set of globally non-dominating so-
lutions are to be determined. To solve multi-objective optimization problem by
using DE algorithm, initially Pareto-dominance based approach was used where
a trial solution vector is constructed for each member xi, i = 1, 2, · · · , NP , of the
NP candidate solution population by mutation and crossover operation on three
other randomly selected different solution vectors xr1 , xr2 and xr3 of the solution
population. The trial vector is selected to replace xi for next generation popula-
tion if the trial solution vector dominates the parent. Otherwise the trial vector is
discarded [70]. In recent popular multi-objective DE techniques [27,58,59,71], the
trial vector replaces the parent when it dominates the parent, and the trial vector
is discarded in case the parent dominates the trial solution vector. But when the
parent does not dominate the candidate and the candidate also does not dominate
the parent, the candidate solution or the trial vector is added to the solution pop-
ulation without considering whether any other solution other than the parent in
the solution population dominates the candidate or the candidate dominates any
other solution of the population. This is done to increase diversity in the solution
population of intermediate generations and thereby to avoid getting trapped in
local optimum. To control the increasing population size in intermediate genera-
tions different techniques have been used as discussed in the Section 3.3.4. The
DE runs for a specified number of generations and at the end of the evolutionary
process, the non-dominated solutions are filtered out.

60

3.3. Multi-objective Differential Evolution Algorithm for Selecting Views
to Materialize in Data Warehouse

Algorithm 4: Multi-objective DE using Binary Encoded Data for selecting
views to materialize in data warehouse

Require: NP , gmax, F , CR, D, MVPP DAG G, constraints
Ensure: A set of non-dominated solutions
1: Generate NP random vectors x1, x2, · · · , xNP of dimension D that satisfy

the specified constraints
2: N ← NP
3: g ← 1
4: repeat
5: for i = 1 to N do
6: select xi and xr1 , xr2 , xr3 , such that xi 6= xr1 6= xr2 6= xr3
7: for j = 1 to D do
8: vj,i ← DΨj

(xr1 , round(F.DΨj
(xr2 , xr3)))

9: where round(F.DΨj
(xr2,g, xr3,g)) =

1, if random[0, 1] < F ∧ (DΨj
(xr2,g, xr3,g) = 1)

0, otherwise

DΨj
(xr2 , xr3) =

{
0, if xj,r2 = xj,r3
1, otherwise

10: j ← j + 1
11: end for
12: randi = random[1, D]
13: for j = 1 to D do

14: uj,i ←

{
vj,i, if(random[0, 1] ≤ CR) or j = randi

xj,i, otherwise
15: j ← j + 1
16: end for
17: if ui satisfies the constraints then
18: Evaluate query processing cost and materialized view maintenance

cost of G for ui, xi
19: if ui ≺ xi then
20: xi ← ui
21: else
22: if xi 6≺ ui then
23: NP ← NP + 1
24: Append ui to the population
25: end if
26: end if
27: end if
28: i← i+ 1
29: end for
30: if NP > N then
31: Keep the elite N members from NP population in the list and discard

the rest
32: NP ← N
33: end if
34: g ← g + 1
35: until g < gmax
36: Return Non-dominated solutions from the final population list

61

Chapter 3. Multi-Objective Differential Evolution Algorithm for Selecting
Views to Materialize

3.3.4 Multi-objective DE with binary encoded data for
view selection : MODE-BE

For using binary encoded data in multi-objective DE, while generating the mutant
vector, the forma basis may be used as discussed in the Section 3.3.2. In solution
representation of the problem of data warehouse view selection for materializing,
each solution have been defined as a string of bits.To adapt the solution represen-
tation with multi-objective DE, each population vector of the evolutionary system
is considered as the solution string of bits where each bit represents a decision vari-
able of a population vector. Thus a set of NP initial solutions x1, x2, · · · , xNP that
satisfy the space constraint are generated for a given MVPP DAG G. Using this
population of size NP , in each generation of an evolutionary process g, against
each solution vector xi, i = 1, 2, · · · , NP , a mutant vector vi,g+1 is to be generated.
In solution representation presented in 3.2.5, each bit is in single dimension that
may have value either 1 or 0 depending on whether a particular view is selected
or not. Therefore, restricted-change mutation operation [31] may be applied for
this solution representation. Thus the mutant vector vi,g+1 is generated as ex-
pressed in Equations 3.15 and 3.16. The trial vector ui,g+1 is formed by crossover
as expressed by Equations 3.7 and 3.8.

To adapt the problem of view selection to materialize in data warehouse,
the query processing cost and materialized view maintenance cost of the given
MVPP DAG G, QG(xi,g), QG(ui,g+1) and UG(xi,g), UG(ui,g+1) are computed using
Equations 3.1 and 3.2. If ui,g+1 ≺ xi,g then xi,g+1 is set as ui,g+1, else if xi,g ≺ ui,g+1

then ui,g+1 is discarded. Otherwise, in case ui,g+1 6≺ xi,g and xi,g 6≺ ui,g+1, ui,g+1 is
appended to the population for next generation g+1. Thus the population may go
on increasing. To control the population growth in each generation of DE, when
the population size touches a limit, NP elite solution population that maintains
diversity in the solution population are filtered out as discussed in Section 3.3.4.1.
This evolutionary process is continued till it reaches a maximum number of gen-
eration specified, say gmax. The dominated solutions in the final population are
then deleted to return the non-dominated solutions of the problem. This ver-
sion of multi-objective DE using binary encoded solution population is henceforth
referred as MODE-BE.

3.3.4.1 Promoting elitism and diversity in solution population

To control the population size by keeping the diversity in solution population in
intermediate generations of DE, different techniques are used. In [56], the fast
non-dominated sorting and ranking selection scheme of NSGA-II [32] is incorpo-
rated. In Pareto based multi-objective DE suggested by Xue et al. in [57] Pareto
based evaluation and selection is done using NSGA-II algorithm. In both the tech-
niques, the individuals within each rank of Pareto-front that reside in the least
crowded regions are given more priority for including into the population for fur-
ther iterations. In NSGA-II, a crowding distance metric [32] in objective function
space is calculated to determine the crowding density of the solutions of a partic-

62

3.3. Multi-objective Differential Evolution Algorithm for Selecting Views
to Materialize in Data Warehouse

ular Pareto rank. To allow individuals in lower rank to enter the next generation,
giving importance in keeping diversity among ranks, Xue et al. [57] use another
parameter to specify how close the solution is in its surrounding solutions’ objec-
tive functions space. This parameter is used for fitness ranking among solutions
in terms of objective functions to select the best population from both parents
and offspring. There are few other techniques which also use crowding distance
in objective functions space and Pareto ranking among solutions (as suggested by
NSGA-II) to select solution population for subsequent generations [58, 59].

Algorithm 5: Selecting elite N solutions by NSGA-II based non-dominated
sorting and SMC based diversity in solution space in Multi-objective DE
using Binary Encoded Data

Require: NP , Solution population x1, x2, · · ·xNP , N (N < NP)
Ensure: Elite N solution population
1: Do non-dominated sorting of the population x1, x2, · · · xNP and assign each

solution population vector with corresponding Pareto-front
2: For each xi, i = 1, 2, · · · , NP compute maximum SMC distance to other

solutions in the solution population Maxi and assign it to xi
3: Sort the NP solution population in ascending order of their Pareto-front and

descending order of Maxi
4: Return The top N solution population from the sorted list.

In the problem of selecting views to materialize in data warehouse, di-
versity among non-dominating solutions in terms of their constituent views are
preferable as in that case the set of solutions may get representations from a
larger number of views of the MVPP graph. Therefore, in our approach, di-
versity in solution space is promoted with necessary elitism. The solutions of
intermediate generations are ranked according to their Pareto dominance levels
as discussed in [32]. For each solution of the population, the maximum distance
to other solution vectors in the population is measured by Simple Matching Co-
efficient (SMC) distance measure [72]. The SMC distance measure is used because
the representation of a bit as 1 or 0 does not mean any preference over each other
in the solution string representation. The solution population is then first sorted
in ascending order of their Pareto fronts and then on descending order of their
maximum distances to other solutions in the population. From the doubly sorted
solution population, the top NP solutions are selected as next generation pop-
ulation. Thus the density in solution space is used instead of crowding distance
in objective function value space to promote diversity considering that: if S is a
vector and f(S) is a scalar valued function on S, then for vectors Si, Sj, Sk and
Sl, where Si 6= Sj 6= Sk 6= Sl, if |f(Si) − f(Sj)| > |f(Sk) − f(Sl)|, then it does
not imply that ||Si| − |Sj|| > ||Sk| − |Sl||. This is also evident in our experimental
results as presented in Figure 3-5.

63

Chapter 3. Multi-Objective Differential Evolution Algorithm for Selecting
Views to Materialize

3.3.5 Complexity analysis

In each generation of DE a loop over NP is conducted that contains a loop over
the dimensions D of the population vector. That is, the mutation and crossover
operations are to be performed for each dimension for each population vector.
Therefore, the number of operations in DE/rand/1/bin is proportional to the
total number of basic loops executed till it reaches the termination criteria. As
the algorithm stops after a specified number of generations, gmax, the run time
complexity is O(NP.D.gmax) [73]. As the solution space of the problem increases
exponentially with the dimensions of the problem, the space complexity usually
increases with the size of the problem. However, the space complexity of DE is
relatively low compared to some other competitive optimizer [73].

In multi-objective DE for M objectives, to control the population sizes
in intermediate generations within N , first non-dominated sorting is done as sug-
gested in NSGA-II. The overall complexity of this non-dominated sorting for M
objectives is O(MN2) [32]. Secondly, for computing SMC based maximum neigh-
borhood distances of each of the N solutions, complexity is O(N2). Then for two
independent sorting of at most N solutions, complexity is O(2NlogN). Thus these
three processing are governed by non-dominated sorting complexity O(MN2).
Therefore, the overall complexity may be expressed as O(gmax(N.D +MN2)) i.e.
O(gmax(N(D + MN))). For a series of experiments, dimension D and objectives
M (i.e M = 2 in this application with one constraint for space) are held constant.
Thus the overall approximate run time complexity is O(gmax.N

2).

3.3.6 Convergence

The DE algorithm is a non-deterministic global optimization algorithm. Therefore
it has weaker convergence theory than deterministic global optimizers like Simplex
algorithm for linear programming, Branch-and-Bound algorithm for mixed integer
linear programs, polynomial integer programs etc.. Though in general cases how
many iterations a deterministic global optimizer will take to converge to global op-
timality is not known, in certain cases a deterministic global optimizer converges to
global optimum within a certain number of steps. But in case of non-deterministic
global multi-objective optimizers the proofs of convergence are basically only to
prove that a particular algorithm converges (asymptotically) to global optimum
solutions with probability 1 [63, 64, 74]. The proof of convergence to Pareto opti-
mality with probability one is only to indicate that - if the algorithm runs for a
very long time (leading to infinity if the search space is infinite) it will eventually
search the entire space and return the global optimum. Though this proof is not
very useful, yet, in my literary search I found that it is the only theoretical proof
available that may be applicable for multi-objective Differential Evolution algo-
rithm using elitism. One such proof of convergence forwarded by Villalobos-Arias
et al. in [63] is briefly discussed below proving that meta-heuristic multi-objective
optimization algorithm converges when elitism is adopted.

64

3.3. Multi-objective Differential Evolution Algorithm for Selecting Views
to Materialize in Data Warehouse

If the function of a multi-objective optimization evolutionary algorithm is
modeled as Markov chain {Xk : k ≥ 0} where each solution is a string of bits of
length l and S is the set of all such possible population vectors, then let i ∈ S be
a state of the algorithm having a set of population such that i can be represented
as i = (i1, i2, · · · , in) of n possible entries of solutions and transition probabilities
from one state to another use uniform mutation rule. Now for the Markov chain,
let the transition probability is given by P(Xk+1 = j|Xk = i). The algorithm is
said to be converging to the Pareto optimal set P with probability 1 if :

P({Xk} ⊂ P)→ 1 as k →∞. (3.17)

In case of elitist multi-objective evolutionary algorithms, after each iteration
an elitism operation is applied to the population that accepts a new state if
there is an element in the population that are improved as a better solution
in the elite set. This state change of elite sets for elitism is represented as
î = (ie; i) = (ie1, i

e
2, · · · , ier; i1, i2, · · · , in), where ie1, i

e
2, · · · , ier are the elite mem-

bers of that state where r ≤ n and the number of Pareto optimal solutions of the
problem is more than or equal to r, i.e, |P| ≥ r. In such cases where elitism is
used, in expression 3.17 Xk can be replaced by Xe

k and therefore if Xk = i, we
may express Xe

k = ie.

Villalobos-Arias et al. in [63] defined two states of the population in
intermediate generations of these algorithms as inessential state denoted by I and
essential state denoted by E. A state of resultant solution population of these
algorithms i is called inessential state if there exists a state j such that if i leads
to j, expressed as i→ j, but j does not lead to i, i.e j 9 i. Otherwise the state i
is called an essential state. It is also defined that S = E ∪ I. It has been proved
that -

P(Xk ∈ I)→ 0 as k →∞. (3.18)

This also shows that the states of which elite set contains elements that are not
Pareto optimal are inessential state.

The elitist multi-objective evolutionary algorithms are designed in such
a way that if there is a state (ie; i) in which the elite set ies1, · · · , iesk contains
elements that are not Pareto optimal then there is a state (je; j) of solutions in a
later generation such that all Pareto optimal points of the elite set ie are in je and
replaces the other non Pareto optimal points of ie with corresponding jes1, · · · , jesk
and thereby all elements of je becomes Pareto optimal. Villalobos-Arias et al. [63]
also show that (ie, i) can pass to the state (ie, j) with probability greater than
zero. Therefore, elitism operation can be applied to pass from (ie, j) to (je, j), i.e,
it implies that î→ ĵ. But if all the elements in the elite set of a state are Pareto
optimal, then any other state that contains non Pareto optimal population in its
elite set is not accepted. Therefore, ĵ 9 î and hence î is an inessential state.
Thus by expressions 3.17 and 3.18, P({Xe

k} ⊂ P) = P(Xk ∈ E) = 1 − P(Xk ∈
I) → 1 − 0 = 1 as k → ∞. This proves that if elitism is used, multi-objective
evolutionary algorithm converges.

65

Chapter 3. Multi-Objective Differential Evolution Algorithm for Selecting
Views to Materialize

3.3.6.1 Convergence of MODE-BE generated solutions in view selec-
tion

Deb et al. in [32] suggest a convergence metric denoted by γ for measuring the
extent of convergence by an algorithm to a known set of Pareto optimal solutions.
In real life situations non-deterministic multi-objective optimization techniques
are applied on those problems where the Pareto optimal solutions are not known.
Therefore, this metric, γ can not be used for any arbitrary problem. But the testing
of a multi-objective optimization algorithm is generally conducted on problems
having a known set of Pareto optimal solutions or with finite solution space. In
convergence measure γ, a set of uniformly spaced solution from the known set
of Pareto optimal solutions are considered and then the Euclidean distances from
each solution yielded by the algorithm (to be tested) to all the selected solutions in
the true Pareto front are measured. For each solution obtained by the algorithm,
the minimum Euclidean distance to points on the true Pareto front are computed.
The average of these minimum Euclidean distances is used as the convergence
metric γ for the algorithm. The smaller the value of the metric γ means the better
the convergence towards the true Pareto front. In case all obtained solutions
lie exactly on the chosen solutions of the Pareto front, the value of γ becomes
zero. Therefore, even when all solutions converge to the true Pareto front, the
convergence metric may not have a zero value because all solutions may not lie
exactly on the chosen points of the front.

Table 3.2: Convergence metric γ of solutions produced by NSGA-II and MODE-
BE in different test problems.

Binary coded NSGA-II (γ) MODE-BE (γ)
ZDT1 ZDT2 ZDT3 ZDT4 View View

selection selection
0.000894 0.000824 0.043411 3.227636 0.071569735 0.05316552

It has been observed that in case of meta-heuristic multi-objective opti-
mization where transition probabilities from one state of solution population to
another state use uniform mutation rule, the algorithm converges only if elitism is
used. For experimenting with MODE-BE, the convergence metric γ for solutions
generated by MODE-BE are computed with respect to the set of Pareto optimal
solutions generated by NSGA-II [29] on our experimental data that have been pre-
sented in Section 3.4. The convergence metric γ found to be 0.05316552 when the
minimum Euclidean distances in objective function space between each solution
yielded by MODE-BE and already obtained Pareto optimal solutions by NSGA-II
are normalized (see Table 3.5) for view selection problem for materializing in data
warehouses. In our experimentation on view selection problem with Binary-coded
NSGA-II, the convergence metric γ is found to be 0.071569735. The value of γ by
Binary-coded NSGA-II for test problems ZDT1, ZDT2, ZDT3, ZDT4 and ZDT6
suggested by Zitzler et al. in [75] are found to be 0.000894, 0.000824, 0.043411,
3.227636 and 7.806798 respectively by Deb et al. [32]. With the convergence met-
ric γ of 0.05316552 for selecting view for materializing by MODE-BE is therefore
considered to be acceptable as asymptotic to the true Pareto front.

66

3.4. Experimentation and Observations

3.4 Experimentation and Observations

In this Section I report my experimentation and analysis of solutions by imple-
menting MODE-BE for generating non-dominated solution sets of views for ma-
terializing in data warehouses.

3.4.1 The test-bed used

The effectiveness of multi-objective DE using binary encoded data in handling the
problem of view selection for materializing in data warehouses, is studied using
TPC-H [15] benchmark data warehouse. The TPC-H schema is built and loaded
in Oracle10g RDBMS for experimentation. The TPC-H benchmark queries are
generated using qgen utility of TPC-H framework and three queries are selected
and reconstructed with minor changes for constructing a test MVPP DAG which
go well with our application. The query access frequencies of the selected queries
in a specific period on the data warehouse are assumed as 20, 10 and 30 for first,
second and third query respectively. During the considered period, it is assumed
that the base tables were updated two times. Number of rows in the considered
base tables of TPC-H framework are presented in Table 3.3. The sizes of candidate
views for selecting are computed using EXPLAIN PLAN utility of Oracle10g, and
are presented in Table 3.4. In our experimentation, to make the cost computation
process simpler, it has been assumed that the space requirement of each row of
the candidate views are equal because the differences in space requirement for
different rows of different relations are comparatively very small considering the
space availability for materializing the views in a data warehouse.

3.4.2 Control parameters

The three main control parameters of DE algorithm are: the mutation scaling
factor F , the crossover constant CR and the population size NP . Storn and Price
in [28] mention that the value for NP could be chosen around 10 ×D, where D
is the dimension of the problem. In our experimentation it is observed that when
NP is chosen to be in between 100 to 250 the results are found better for analysis.
The results presented in this chapter are based on 242 random initial solution
population that produces the best convergence values most of the times in a series
of experimentation. In [28], Storn and Price suggest effective range of F between
0.4 and 1. The crossover control parameter CR controls how many parameters are
expected to change in a solution vector. Low value of CR means a small number
of parameters are to be changed in each generation, whereas high value of CR
i.e. near 1 means the mutant vector inherits most of the dimensions [73]. In our
experimentation, significant results are found when CR is chosen as 0.6 and F is
chosen to be 0.5. The number of iterations gmax in DE is fixed depending upon the
complexity of the objective functions. In an instance of experimentation, result of
which is discussed in the next sub-section, the gmax value is set as 40.

67

Chapter 3. Multi-Objective Differential Evolution Algorithm for Selecting
Views to Materialize

Table 3.3: Base tables used in our
experimental MVPP

Table Size (in rows)

Parts 26260520
Partsupp 112800000
Supplier 1430000
Nation 2650
Region 475

Table 3.4: Views generated in our
experimental MVPP

View Size (in rows)

v1 34020
v2 26260
v3 51
v4 5
v5 688000
v6 1005
v7 95
v8 4977
v9 10920
v10 8254740
v11 65985
v12 106
v13 90624
v14 260352
v15 54717984
v16 34000

3.4.3 Observations

In a particular instance of experimentation using the MVPP DAG presented in
Figure 3-1 using data presented in Table 3.3 and 3.4 to select a set of views, we
put a space constraint for materializing as maximum 80000 rows only. Initially 242
non-duplicate solutions were generated which satisfy the space constraint. In Fig-
ure 3-2 the distribution of the initial random solution population generated for the
instance of experimentation is presented in objective function space. The MODE-
BE is applied on this initial set of solutions for 40 iterations, i.e. gmax = 40, with
other parameters set as discussed in the Section 3.4.2. By applying maximum dis-
similarity based measure in solution space for filtering significant non-dominated
solutions produced by MODE-BE, it has been observed that the non-dominated
solutions generated by MODE-BE are with less total cost function values than
that of NSGA-II yielded solutions for the same set of data for 40 iterations. It
has been observed in Figure 3-3 that the solutions yielded by both NSGA-II and
multi-objective DE algorithms are distributed in similar curve in the objective
function space. The convergence metric γ of the MODE-BE yielded solutions
are presented in Table 3.5. The γ is found to be 0.05316552 when the minimum
Euclidean distances in objective function space between each solution yielded by
MODE-BE and already obtained Pareto optimal solutions by NSGA-II are used
for view selection problem for materializing in data warehouses. The convergence
metric γ in case of NSGA-II yielded solutions in this experimentation is found
to be 0.071569735. Therefore, MODE-BE may be stated as better converging
towards Pareto front than NSGA-II in materialized view selection.

In the considered instance of experimentation with multi-objective DE,

68

3.4. Experimentation and Observations

Figure 3-2: Randomly generated 242 solutions

Figure 3-3: Distribution of costs by obtained non-dominated solutions after 40
iterations

69

Chapter 3. Multi-Objective Differential Evolution Algorithm for Selecting
Views to Materialize

Figure 3-4: Distribution of significant representative solutions in objective space

the mean of maximum SMC measure based distances of each non-dominated solu-
tion with respect to other non-dominated solutions is found to be 0.46305. When
the solutions having maximum distance to all other solutions in the population
less than that of the mean of the maximum distances of all non-dominated so-
lutions to other non-dominated solutions in the population are discarded, ap-
proximately half of the total non-dominated solutions were filtered out. An-
other observation is that there are many non-dominated solutions either in high
crowding density region of objective function space or have the same objective
function values but are distributed distantly in their vector space (Figure 3-5).
For example, three non-dominated solutions generated in our experimentation
{v1, v2, v9, v12}, {v1, v2, v7, v8} and {v1, v2, v4, v7, v9, v12} yield same objective func-
tion values, i.e., the overall query processing cost and materialized view mainte-
nance cost of 4234819870 rows and 632619684 rows respectively within the spec-
ified space requirement constraint. In such kind of situations for maintaining
diversity in objective function space instead of solution space, other criteria like
minimum space requirement or maximum number of views in the solution set can
be used for breaking ties. Thus if only crowding density in objective function
space is used for filtering out representative solutions, some otherwise significant
solutions in selecting views for materializing in data warehouse may be lost.

3.5 Discussion

An approach for selecting views for materializing in data warehouse using multi-
objective differential evolution algorithm using binary encoded representation of
solutions has been presented. The DE algorithm is basically used for real param-
eter optimization. Though Gong et al. in [31] present the use of forma analysis to
exploit usage of DE for discrete optimization problem, it has not been used so far
for multi-objective optimization problem. We have implemented forma analysis
based multi-objective DE for selecting views to materialize in data warehouse for

70

3.5. Discussion

Figure 3-5: Objective function values of non-dominating solutions

efficient OLAP query processing. It has been observed that the solution quality
of MODE-BE generated solutions in this problem are somewhat better than that
of NSGA-II with respect to convergence property and total cost function values.

The basic assumption in our approach in selecting views to materialize
in data warehouse is that the frequent OLAP queries and the intermediate views
generated while processing the queries on a data warehouse in a specific period
of time will resemble with future frequent OLAP query processing on the data
warehouse. Generally in multi-objective optimization, decision maker selects one
or more non-dominating solutions from a set of large number of non-dominating
solutions by using suitable criteria for their application. In our experimentation it
has been observed that there may be multiple number of non-dominating solutions
very close in their objective function space but are different in their vector space
(Figure 3-5). In such cases solutions containing larger number of views may be
preferred as there is a chance that it may cater well the efficient processing of
future queries. The use of space requirement in materialized views may be defined
as another objective function for this problem as discussed in [26]. In our approach
we used space requirement for materializing the selected views as a constraint but
it is explained that it may be used as a selecting criterion while selecting solutions
from multiple number of non-dominated solutions. We propose to use number
of views in the solution sets and space requirement in materializing the selected
views as objective functions in our ensuing work.

Though there are several approaches for handling the view selection prob-
lem as multi-objective optimization problem [14, 26], the problem is not yet han-
dled by using multi-objective DE algorithm. The approach suggested by Michael
Lawrence in [26] presented a multi-objective evolutionary algorithm for view se-
lection problem where the basic Genetic algorithm was used extensively. In this
work a comparative analysis of MODE-BE in materialized view selection with
NSGA-II algorithm based approach is presented. The solution quality and perfor-
mances with respect to other evolutionary algorithmic approaches like in [26] and

71

Chapter 3. Multi-Objective Differential Evolution Algorithm for Selecting
Views to Materialize

stochastic algorithmic approaches like simulated annealing algorithmic approach
suggested in [14] are having prospective scope of study. The approach presented
here is a scalable one in terms of number of queries and candidate views for ma-
terializing. But as analysis of solutions with very high dimensional vectors often
becomes too complex, and at present the input multiple query processing plan
used in this experimentation are generated off-line by a separate procedure only,
therefore a simple MVPP DAG found to be sufficient for comparative analysis
of view selection algorithm applied. Moreover it is expected that Transaction
processing Performance council (TPC) [15] will come-up with voluminous bench-
mark test data set for this kind of experimentation on data warehouse for future
research.

The problem and solution model reported in this chapter define views as
some derived functions or relations on some normalized relations or tables. This
model does not support databases with very little indexing capabilities as used
in recently developed Big data [76] framework based data warehousing. In next
chapter the view selection problem has been defined for Big data query processing
framework and our attempt of handling this problem by evolutionary algorithms
has been reported.

72

3.5. Discussion

Table 3.5: MODE-BE generated solutions and Convergence metric

Solution Query Materialized Normalized Convergence
processing view minimum metric
cost maintenance Eucliden γ
(rows to cost distance
be accessed) (rows to to Pareto

be accessed) optimum

0001000000000000 6947916700 225600000 0.002249476 0.05316552
0001001000010000 6947880700 225606250 0.002249476
0011010000000000 6905472100 229845600 1.000044766
0011000000010000 6905445600 229849760 0.006367362
1001001000000000 6379735480 282418122 0.006367362
1001000000010000 6379708980 282423422 0.006367362
0101000000010000 5503561600 383168420 0.002249476
0101011000000000 5503523700 383169560 0.006367362
0111001000000000 5461143500 387407580 0.006367362
0111011000010000 5461117000 387413070 4.47662E-05
1101001000010000 5460590780 387465502 0.006367362
0001000010010000 5459514090 523280522 0.002249476
0001010010000000 5459449690 523286962 0.011161634
0001010100010000 5459340490 523308802 0.012999601
0011001010000000 5417069490 527524982 0.026238337
0011001100000000 5416960290 527546822 0.026238337
1001000010000000 4891332870 580098644 0.026238337
1001001100010000 4891223670 580120484 0.026238337
0101001010000000 4277781190 628323552 0.002249476
0101011010010000 4277726290 628329042 0.011161634
0101001100000000 4277671990 628345392 0.002249476
0101010100000000 4277617090 628350882 0.012999601
0111000010000000 4235346090 632567062 0.026238337
0111001100010000 4235236890 632588902 0.026238337
1101000010010000 4234819870 632619684 0.098522132
1101000100010000 4234710670 632641524 0.026238337

73

Chapter 3. Multi-Objective Differential Evolution Algorithm for Selecting
Views to Materialize

74

