
Chapter 4

Materialized View Selection by
Evolutionary Algorithm for Big
Data Query Processing

4.1 Introduction

Data warehouses traditionally support structured data because they are tied
with operational or transactional systems for analytical processing by financial
analysts and business lines for making decision on business strategies. However,
with the advent of Big data, the conventional data warehouse concept is now
changing because organizations are going for expanding and modifying the data
warehouse for relevance in Big data environment of huge volume of semi structured
or key-value paired [76] data in highly distributed computational framework.

A computing paradigm called MapReduce have been introduced in Big
data [16]. In MapReduce model of Big data systems, computation tasks are bro-
ken up into units that can be distributed around a cluster of commodity hardware
and server class hardware for providing cost-effective processing with scalability.
The MapReduce system was designed and is best suited for handling big and semi
structured data such that each split of the data for MapReduce computation is
from a single big table or file instead of large number of small files. This is because
in Distributed File System (DFS) based Big data processing such as Hadoop Dis-
tributed File System (HDFS), the block size is kept as at least 64MB (or multiple
of that), as in this frame work of processing, a very large number of distributed
commodity memory is available and smaller file size of less than the block size
imposes unnecessary overhead. The technologies used in Big data warehousing
organizes data into tables as a mean for providing structure to data stored in DFS
and supporting row-level update like delete, update etc. on big column oriented
table of key-value type storage. These technologies support collection data type
columns STRUCT, MAP and ARRAY sacrificing normal form for higher process-
ing throughput [18]. Again, as these technologies support collection data type,

75

Chapter 4. Materialized View Selection by Evolutionary Algorithm for
Big Data Query Processing

therefore they are designed with very limited indexing capabilities. Hence, in Big
data systems, for analytical processing queries, the use of indexes and keys in the
relations are very limited. And therefore, common or shared sub-expression results
of frequent queries may be utilized as materialized views without the need of de-
signing a common optimized query execution plan based on indexes and relations
for the considered set of queries.

4.1.1 Materialized views and materialized queries in Big
data

Big data analysis by Distributed File System (DFS) is a cost-effective framework
that binds very large data sets in a cluster of computers into a pool for distributed
processing [77]. The imposed programming model termed as MapReduce breaks-
up computation tasks into smaller jobs for distributing them around the data
created by splitting large amount of data into a cluster of commodity computer
hardware for distributed processing [17, 77]. The distributed file system (DFS)
used in Big data by Apache [78] is termed as Hadoop Distributed File System
(HDFS) [17, 79]. For Data Warehousing applications in HDFS, Hadoop [79] pro-
vides a technology called Hive and an SQL like language called HiveQL [80]. In
Big data the total MapReduce cost against generating responses of a set of queries
depends on MapReduce splits. MapReduce costs are thus involved in creation of
temporary views while processing queries. To make query responses faster, if these
temporary views are saved for future query processing, MapReduce cost is also
to be incurred for updating the views. The problem of view selection for materi-
alizing is that - a set of views, generated while processing a set of queries are to
be selected for materializing, so that if this set is materialized or saved, the to-
tal query MapReduce cost and MapReduce cost for maintaining the materialized
views are minimum.

Julian Hyde in [19] proposes an extension to materialized views called
Discardable, In-Memory Materialized Query - DIMMQ for Hadoop. DIMMQ pro-
poses that the resultant data-set of some frequent queries reside in the memory of
one or more nodes in the cluster. Discardable means that the system can remove
the in-memory materialized queries when they are not used for a long time. Here
it is proposed that some sub-queries may be saved in the memory of hardware
cluster with mapping to their resultant data in disk. But even here the MapRe-
duce overheads for job submission and job scheduling remains along with the
maintenance cost for refreshing the mapping between in-memory queries and the
disk data. Therefore whether it is materialized views or in-memory materialized
queries, a sub-set from the candidate set of views or queries are to be selected for
materializing such that all related costs are minimized.

76

4.1. Introduction

4.1.2 View selection for materializing in Big data

In Big data framework, a query is executed by accessing data spread over a cluster
of hardware storage or data-nodes as distributed file system (DFS) [79] by MapRe-
duce jobs. Therefore the query processing cost is not just the cost of accessing
rows of base tables stored in disk. The DFS overhead of distributing data into
data-nodes, mapping and tracking of processing, and then reducing the results
also are involved. As every complex query may have several sub-queries with mul-
tiple number of aggregation functions, therefore either these sub-queries may be
materialized in memory of hardware cluster with mapping to their resultant data
in disk or the intermediate result of sub-queries may be materialized in disk as
materialized views. Thus by materializing these intermediate views, the MapRe-
duce cost of repeated processing of these sub-queries can be avoided. But the DFS
overhead cost for materializing these views and refreshing them periodically are
still to be incurred. The materialization of temporary views also needs space in
the hardware cluster. Therefore a system may be designed to recommend a set
of intermediate views so that if they are materialized, the total query processing
cost savings for the selected set of frequent queries is maximized with minimized
materialized view refreshing cost and space cost. Therefore the materialized view
selection problem is defined as an optimization problem.

If, the number of queries considered as frequent queries increases, then the
number of candidate views or sub-queries for materializing also increases. Different
query processing costs and other associated costs for different combination of views
are independent of the total number of views selected. Thus the solution space
increases exponentially with increased number of queries and underlying views
considered.

4.1.3 Contribution

In this chapter, design of a system is proposed for finding solution set of views for
materializing to optimize query processing cost, materialized view maintenance
cost, and storage for materialized views from views generated while processing a
set of queries on Big data warehousing. The problem is defined as a multi-objective
optimization problem for finding non-dominated solution set of views using Multi-
objective Differential Evolution algorithm and Non-dominated Sorting Genetic
Algorithm-NSGA-II [32]. Here, forma analysis based multi-objective DE for bi-
nary encoded data, termed as MODE-BE, presented in Chapter 3 is modified and
implemented for selecting views for materializing in Big data framework based
data warehouse by promoting diversity in solution vector space. In NSGA-II the
diversity of large number of solutions are promoted by computing crowding dis-
tances between solutions in objective function value space. The NSGA-II is also
implemented on this problem to analyze performances between NSGA-II based
systems and MODE-BE based recommendation systems for materialized view se-
lection in Big data management.

77

Chapter 4. Materialized View Selection by Evolutionary Algorithm for
Big Data Query Processing

The problem of selecting views for materializing in Big data warehous-
ing is defined in Section 4.2. In Section 4.3, materialized view selection in Big
data framework has been defined as a multi-objective optimization problem. An
improved version of Multi-objective Differential Evolution algorithm with Binary
Encoded solution representation for materialized view selection, MODE-BE, and
implementation of Non-dominated sorting Genetic Algorithm, NSGA-II, in ma-
terialized view selection for Big Data warehousing are presented in Section 4.4.
In Section 4.5, the experimentation process of implementation of algorithms and
the test data used in the experimentation are presented along with an analysis on
obtained results. Finally in Section 4.6 concluding discussion and perspectives are
presented.

4.2 The Problem of Selecting Views for Materi-

alizing in Big data Framework

To make query response faster, a set of views are to be selected for materializing to
minimize total query response cost of a set of frequent data warehouse queries with
optimum maintenance cost or updating cost of the materialized views. Hive uses
the advantage of Big data framework’s scale out and robust capabilities for data
storage and processing on large number of commodity hardware. HiveQL enables
to do ad-hoc query processing, summarization and data analysis on massive data
easily [80]. The DFS and MapReduce paradigm are used for working with massive
data for storage and analysis at Internet scale which is otherwise unmanageable
by conventional data processing with database management system. HiveQL [80]
query processing on Hadoop version 1 often had to submit number of MapReduce
jobs to complete a query processing. With Hadoop-2 and Tez platform the cost of
job submission and scheduling is minimized by removing the restriction that the
jobs are to be done only by Map and Reduce for all kind of processing [20]. But
in general, for Big data, processing standard is by MapReduce [79]. Though Map
tasks write intermediate output to the local disks, input to a single Reduce task is
normally the output from all Map tasks. The Map outputs are transferred across
the network to the node running Reduce tasks and the merged output is to be
passed to the user-defined Reduce functions. Thus the intermediate MapReduce
result sets are needed to be stored in DFS and thereby the MapReduce jobs in the
system degrades the system performance. Also submitting jobs and scheduling
them across the DFS adds extra costs [20].

4.2.1 The cost model and problem definition

The cost model to be used for handling materialized view selection problem for Big
data system is different from cost models used in approaches used for conventional
Client-Server architecture with RDBMS based data warehousing. The main reason
behind this is that, in conventional RDBMS based system the data access pattern
is mainly dominated by ”seeks” and ”seek time”, whereas in Big data DFS or in

78

4.2. The Problem of Selecting Views for Materializing in Big data
Framework

similar distributed framework, the data access pattern is mainly dominated by
data transfer rate and MapReduce costs. The MapReduce paradigm is designed
to analyze massive amount of data in batch fashion unlike the traditional RDBMS
where data-set has been indexed to deliver low-latency seek and update time [77].
As for increased size of data, a bigger sized commodity hardware cluster may be
used, therefore the performance of MapReduce functions are independent of size
of the data or rows to be accessed.

The MapReduce overheads are composed of data transfer cost of transfer-
ring data into number of data nodes across the DFS cluster, running job trackers
and task trackers, creation of Mapppers and Reducers and substantial overheads
in job submission and scheduling. In Big data management DFS, block size and
split size are fixed. Therefore, in Big data/MapReduce framework, a small number
of large files are better than large number of small files [17]. This means that in
case of Big data based data warehousing smaller number of bigger views are to be
preferred for materializing. This criterion is not applicable in case of traditional
RDBMS based data warehouse’s materialized views. The different costs and ben-
efits that are to be optimized for materializing views to enhance query processing
in Big data warehousing are formally defined below.

4.2.1.1 Query processing cost

The total query processing cost of a set of frequent queries may be considered as
the total MapReduce overheads for executing the set of queries. If the results of
some sub-queries and aggregate functions used in these queries are materialized
or saved, then in subsequent execution of the queries, MapReduce overheads of
executing these sub-queries or views are saved. If a set of sub-queries of a set of
frequent queries are processed and composed as views and materialized in Big data
DFS, the query processing cost of the set of considered queries may be defined as
Definition 19.

Definition 19. For a set of n number of frequent queries Q ={q1, q2, · · · , qn} on
a data warehouse, where V is the set of m intermediate views generated by Q, if
V ′ ⊆ V is the set of views V ′ ={v1, v2, · · · , vp} that are materialized, the total Big
data query processing cost can be defined by the following expression.

CQ
V ′ = CQ

∅ −
p∑
i=1

Mvi (4.1)

where CQ
∅ =

∑n
i=1Mqi is the total query processing MapReduce cost of Q without

materializing any view, and
∑p

i=1Mvi is the MapReduce cost of processing V ′.

4.2.1.2 Materialized view maintenance cost

In analytical processing on DFS based Big data warehouse, there are generally
very few occurrences of updating operations. But whenever there is a change in

79

Chapter 4. Materialized View Selection by Evolutionary Algorithm for
Big Data Query Processing

the base data, the materialized views are to be updated. In case of in-memory
query materialization, frequent refreshment is needed as in this case infrequent
queries are to be discarded after each fixed period of time [19]. Materialized view
maintenance means re-processing the aggregate functions and/or corresponding
sub-queries and then updating the views in disks or solid state drives1. Thus
there will be another set of DFS overheads. The materialized view maintenance
cost may be defined as follows.

Definition 20. For a set of materialized views V ′ ={v1, v2, · · · , vp} for processing
a set of queries Q, the materialized view maintenance cost may be expressed as

U(V ′) =

p∑
i=1

Uvi (4.2)

where Uvi, i = 1, 2 · · · , p , are the maintenance MapReduce overheads for the set
of materialized views vi ∈ V ′, i = 1, 2 · · · p.

4.2.1.3 Number of views to be materialized and storage space require-
ments

The storage space requirements for p number of materialized views V ′ (|V ′| = p),
can be defined as Definition 21 below. In Big data systems, smaller number of
bigger tables are preferred (as discussed in Section 4.2.1). That is, |V ′| = p is to
be minimized with maximized size of the tables.

Definition 21. If Avi is the storage space required by ith materialized view, then
the total space required for materializing p number of views is

AV ′ =

p∑
i=1

Avi (4.3)

4.2.1.4 The materialized view selection problem

Considering the definitions 19, 20 and 21, the view selection for materializing in
Big data based data warehousing can be stated as Definition 22 below.

Definition 22. The view selection for materializing in Big data frame-
work data warehousing for a given set of n frequent data warehouse queries
Q ={q1, q2, · · · , qn}, where V is a set of m views generated while processing Q,
a set of views V ′ ={v1, v2, · · · , vp}, V ′ ⊆ V i.e. p ≤ m, is to be selected such that
it minimizes

1. CQ
V ′ defined by Equation 4.1,

1Here in addition to select, join, project and aggregation functions, MapReduce overhead due
to update is incurred.

80

4.3. View Selection in Big data Systems as Multi-Objective Optimization
Problem

2. U(V ′) defined by Equation 4.2 and

3. |V ′| = p with constraint on minimum value of AV ′ defined by Equation 4.3.

In next section we define materialized view selection as a multi-objective
optimization problem and present a discussion on applying Multi-Objective Evo-
lutionary Algorithm (MOEA) for solving this problem.

4.3 View Selection in Big data Systems as Multi-

Objective Optimization Problem

From the above definitions 19,20, 21 and problem statement in Section 4.2.1.4,
for a given set of views, say V , the view selection problem is to find the set V ′,
V ′ ⊆ V , to minimize -

Y = F(V ′) ≡ (CQ
V ′ , U(V ′), |V ′|) (4.4)

such that the constraint on amount of space, AV ′ , for materializing V ′ is as spec-
ified by user.

4.3.1 Simple problem representation

Deb et al. in [60] suggest few important features that must be present in an
multi-objective optimization problem for solving by randomized and evolutionary
algorithm. According to [60], very importantly the problem should be easy to
construct with known dimensions. In our problem definition it is assumed that a
set of frequently processed queries are known and thereby the frequent temporary
views or sub-queries and aggregate functions triggered on the data warehouse can
be derived or known. In our definition this known set of views are defined as V ,
where the cardinality of V is m, i.e |V | = m, and the cardinality of selected views
for materializing V ′, |V ′| = p. As p ≤ m, a solution vector may be defined as a
string of bits of length m where each of the m dimension may be represented as a
decision variable that may be either selected or not selected for materializing.

In our representation of the problem and solution, we have labeled each of
the candidate views with a serial number starting from 1 to m for m dimensions
of each solution vector. In solution string, the first bit represents the candidate
view labeled as the first view, the second bit represents the view labeled as second
view and so on. If a view is not selected then the corresponding bit i.e., the
corresponding dimension in the candidate solution vector is set as 0 and otherwise,
if the view is selected for materializing, its corresponding bit is set as 1.

For two solution strings, say S0 and S1 of length m, if CQ
S0

and CQ
S1

are
the total query processing costs for a set of frequent query Q having m num-

81

Chapter 4. Materialized View Selection by Evolutionary Algorithm for
Big Data Query Processing

ber of candidate views for materializing, U(S0) and U(S1) are the correspond-
ing maintenance cost of the views if materialized, and if num(S0) and num(S1)
are number of views selected in solution S0 and S1, then iff CQ

S0
≤ CQ

S1
and

U(S0) ≤ U(S1) and num(S0) ≤ num(S1), then if CQ
S0
< CQ

S1
or U(S0) < U(S1)

or num(S0) < num(S1), then the solution S0 dominates solution S1 which is ex-
pressed as S0 ≺ S1. If S0 does not dominate S1 and S1 also does not dominate
S0, expressed as S0 6≺ S1 and S1 6≺ S0, then S0 and S1 are two non-dominating
solutions of the problem.

Definition 23. The materialized view selection problem is the problem of finding
the set of non-dominating solutions which is an approximation to the true Pareto
front of the problem defined by Equation 4.4.

4.3.2 Scalability

In [60], it has been suggested that the test problem for applying multi-objective
optimization problem should be scalable. In our representation of the problem,
the solution vectors are of dimension m, where m is the total number of can-
didate views. As each decision variable is expressed as a single dimension of a
solution vector, the solution vector representation is linearly scalable with number
of dimensions i.e., value of the variable m. For m number of decision variables
of a solution vector, the size of the solution vector space will be 2m. Thus with
increasing dimension in decision vector space, the solution vector space increases
exponentially. Due to this, stochastic, randomized or evolutionary algorithms are
suitable for handling this problem.

4.3.3 Well defined objectives

For defining a problem as multi-objective optimization problem and solving it by
evolutionary or randomized algorithm, most importantly the objectives should
be distinct and well defined. In our problem definitions and by Equation 4.4,
three objectives are clearly defined. With these three objectives a clearly visible
Pareto-front or Pareto-optimal surface may be plotted for getting a clear idea of
performance by a multi-objective optimization technique applied on this problem.

In Equation 4.1 and Equation 4.2, Mvi and Uvi for ith view vi and Mqi

for ith query are independent variables. |V ′| cannot determine CQ
V ′ and U(V ′),

and CQ
V ′ cannot determine |V ′| and U(V ′). Similarly U(V ′) cannot determine |V ′|

and CQ
V ′ . Therefore, multi-objective optimization can be designed to introduce

controllable hindrance to getting trapped in local optimum.

82

4.4. Multi-Objective Evolutionary Algorithm for View Selection to
Materialize in Big data

4.4 Multi-Objective Evolutionary Algorithm for

View Selection to Materialize in Big data

It has been observed from our discussion presented in Chapter 3 that multi-
objective Evolutionary Algorithms (MOEAs) are suitable for applying in material-
ized view selection problem. In solution representation for handling this problem,
solution vectors have been defined as a string of bits. The single objective DE for
binary encoded data as presented by Gong et al. in [31] has been customized and
implemented for multi-objective optimization to handle materialized view selec-
tion problem for conventional data warehousing in Chapter 3. In basic MODE-BE,
as implemented earlier in Chapter 3 for materialized view selection in conventional
data warehousing, it has been observed that when the initial population, NP , is
very large, there arises a memory issue because - before mutation, cross-over and
selection are performed for all the NP solution vectors, the number of offspring
solution vectors some times becomes too large to be handled. In basic MODE-BE,
to control the population size in intermediate generations, the most elite solutions
that maintain diversity in the population are retained discarding the other solution
vector after the mutation, cross-over and selection are done for all NP solution
vectors. In this improved version of MODE-BE for materialized view selection
in Big data management framework, a threshold value is used to determine the
maximum size of the population in intermediate generations such that whenever
the offspring population size of a generation after mutation, cross-over and selec-
tion becomes more than this threshold value, the most elite solutions in terms of
their Pareto rank and diversity measure in the population are retained for next
generation discarding the rest of the offspring population generated. Selecting
appropriate set of views for materializing out of a large number of solutions in
the first Pareto front which may be positioned very closely in objective function
space, is another issue in case of very large value of NP . Therefore in the proposed
version of MODE-BE, a filtering criterion on maximum dissimilarity values among
solutions is proposed based on the Three Sigma Rule [81]. The NSGA-II proposed
by Deb et al. in [32] also has been implemented for comparative performance
analysis between MODE-BE and NSGA-II in selecting views.

4.4.1 Multi-objective DE with binary encoded solutions
for Big data view selection

For selecting materialized views for conventional data warehousing, the mutant
vectors in multi-objective DE with binary encoded data generated by forma basis
as discussed in [66,67] has been used in Chapter 3. In this work forma basis based
multi-objective DE for binary encoded data (MODE-BE) has been used to design
Algorithm 6 for selecting views to materialize in Big data framework based data
warehousing.

In DE/rand/1/bin version of DE, the mutant vector for next generation

83

Chapter 4. Materialized View Selection by Evolutionary Algorithm for
Big Data Query Processing

Algorithm 6: View selection for materializing by Multi-objective Differen-
tial Evolution using Binary Encoded Data in Big data based data warehouse.

Require: NP , gmax, F , CR, D, CQ
∅ , Mvi=1,··· ,m , Uvi=1,··· ,m , Avi=1,··· ,m , Γ ,

MinSpace
Ensure: A set of non-dominated solutions.
1: Generate NP random vectors x1, x2, · · · , xNP of dimension D that satisfy

the MinSpace constraint
2: N ← NP
3: g ← 1
4: repeat
5: for i = 1 to N do
6: select xi and xr1 , xr2 , xr3 , such that xi 6= xr1 6= xr2 6= xr3
7: for j = 1 to D do
8: vj,i ← DΨj

(xr1 , round(F.DΨj
(xr2 , xr3)))

9: where round(F.DΨj
(xr2,g, xr3,g)) =

1, if random[0, 1] < F ∧ (DΨj
(xr2,g, xr3,g) = 1)

0, otherwise

DΨj
(xr2 , xr3) =

{
0, if xj,r2 = xj,r3
1, otherwise

10: j ← j + 1
11: end for
12: randi = random[1, D]
13: for j = 1 to D do

14: uj,i ←

{
vj,i, if(random[0, 1] ≤ CR) or j = randi

xj,i, otherwise
15: j ← j + 1
16: end for
17: if space(ui) ≥MinSpace then
18: Evaluate query processing cost CQ

xi
and CQ

ui
, materialized view

maintenance cost U(xi), U(ui) and number of non-zero elements in ui, xi
19: if ui ≺ xi then
20: xi ← ui
21: else
22: if xi 6≺ ui then
23: NP ← NP + 1
24: xNP ← ui
25: end if
26: end if
27: end if
28: if NP ≥ ΓN then
29: i← N + 1
30: else
31: i← i+ 1
32: end if
33: end for
34: if NP > N then

84

4.4. Multi-Objective Evolutionary Algorithm for View Selection to
Materialize in Big data

Algorithm 7: View selection for materializing by Multi-objective Differen-
tial Evolution using Binary Encoded Data in Big data based data warehouse-
(continued from previous page).

35: Compute and assign Pareto rank to each of the population vectors
xi=1,···NP

36: Compute maximum distance of each solution vector to other solution
vectors of the population, Maxi

37: Sort vectors x1, x2, · · · , xNP in ascending order of Pareto-rank and
descending order of Maxi

38: NP ← N
39: end if
40: g ← g + 1
41: until (g < gmax)
42: Remove all dominated solutions from the population list x1, x2, · · · , xNP
43: Return The final set of solution population

g + 1 for each target vector xi,g, i = 1, 2, · · · , NP , is generated as equation 4.5.

vi,g+1 = xr1,g + F.(xr2,g − xr3,g) (4.5)

where r1, r2, r3 ∈{1, 2, · · · , NP}, r1 6= r2 6= r3, F is a real constant factor ∈[0, 1]
and F > 0. By using forma basis [66, 67], Gong et al. in [31] expressed mutant
vector defined by Equation 4.5 for binary encoded solution vector as Equation 4.6.

vj,i,g+1 = DΨj
(xr1,g, F.DΨj

(xr2,g, xr3,g)) (4.6)

Where, xr2,g and xr3,g are considered as two strings of bits of length D and each
jth dimension difference between xr2,g and xr3,g, DΨj

(xr2,g, xr3,g) is represented by
using formae basis [31] Ψj as Equation 4.7.

DΨj
(x,y) =

{
0, if xj = yj

1, otherwise
(4.7)

To interpret the scaled difference F.DΨj
(xr2,g, xr3,g) of jth dimension rounded to

1 or 0, Equation 4.8 is used.

F.DΨj
(xr2,g, xr3,g) =

{
1, if random[0, 1] < F ∧ (DΨj

(xr2,g, xr3,g) = 1)

0, otherwise
(4.8)

In Algorithm 6, a set of initial solutions x1, x2, · · · , xNP are generated for a
given set of frequent queries Q that satisfy the space constraint. In each generation
of a evolutionary process g, against each solution vector xi, i = 1, 2, · · · , NP , a
mutant vector vi,g+1 is generated as expressed by Equation 4.6 (and Equation 4.8).
Then trial vector ui,g+1 is formed by crossover. To adapt the problem of view
selection to materialize in Big data, the query processing cost, the materialized
view maintenance cost and the number of views in solution sets of the considered
frequent queries Q, for each solution vector xi,g and trial vector ui,g+1 are computed

85

Chapter 4. Materialized View Selection by Evolutionary Algorithm for
Big Data Query Processing

by using equations (4.1),(4.2) and by counting number of selected views in xi,g and
ui,g+1. If ui,g+1 ≺ xi,g, then xi,g+1 is set as ui,g+1, else if xi,g ≺ ui,g+1, then ui,g+1

is discarded. Otherwise, in case ui,g+1 6≺ xi,g and xi,g 6≺ ui,g+1, ui,g+1 is appended
to the population for next generation g + 1. Thus the population may go on
increasing. To control the population growth in each generation of DE, when the
population size touches a limit, i.e when NP becomes ΓN , N being the initial
population size (i.e initial NP), and Γ being a positive real constant, a technique
is used to filter out NP elite solution population that maintains diversity in the
solution population as discussed in Section 4.4.1.1. This evolutionary process is
continued till it reaches a maximum number of generations specified, say gmax. The
dominated solutions in the final population are then removed from the archive to
return the non-dominated solutions of the problem.

4.4.1.1 Promoting elitism and diversity in solution population

For elitism and diversity in solution population, though the Pareto ranking has
been used as suggested by Deb et al. in [32], the diversity of solutions are main-
tained in solution space unlike it is done by using Crowding distance in objective
function space for NSGA-II. The diversity in solution space is preferred here for
wide coverage of representations of views in the solution set which has already
been discussed in Chapter 3. The Pareto ranking and diversity preservation used
in this version of MODE-BE are as stated below.
Pareto ranking: To control the population size by keeping the diversity in so-
lution population in the intermediate generations of DE in this approach, the
diversity of solutions in solution space is promoted with necessary elitism. When
the population size NP in a generation becomes ΓN , where N is the initial value
of NP in that generation, the solutions of intermediate generations are ranked
according to their Pareto dominance levels as discussed in [32]. The solution pop-
ulation is then sorted in ascending order of their Pareto ranks so that the most
elite solutions from the list may be kept in the population for next generation. To
ensure finding out the most elite NP solutions, Deb et al. [32] suggests Γ = 2.
Diversity in solution space: For each i − th solution of the population, the
maximum distance to other solution vectors in the population Maxi is measured.
Since the solution vectors are represented as a string of bits and a particular bit
as 1 or 0 does not mean any preference over each other, the Simple Matching
Co-efficient (SMC) distance measure [72] is used for measuring distance between
two solutions. The solution population sorted in ascending order of their Pareto
ranks are then sorted again on descending order of their maximum distances to
other solutions in the population. From the doubly sorted solution population, the
top NP solutions are retained as next generation population. Here, to promote
diversity of solutions, density in solution space is used instead of using crowding
density measured by crowding distance of solutions in objective function value
space.

86

4.4. Multi-Objective Evolutionary Algorithm for View Selection to
Materialize in Big data

4.4.1.2 Filtering Representative Solutions from Non-dominated Solu-
tions Obtained

From large number of non-dominated solutions yielded by multi-objective opti-
mization, finding significant representation set is useful for decision makers [82].
In selecting views for materialization in data warehouse, degree of diversity in
solutions is important as solutions having larger representations from candidate
views are preferable. Therefore, for filtering significant solutions from the obtained
solutions, farthest distance approach may be incorporated. In our implementa-
tion, first the SMC based maximum distance from every solution vector Si of n
number of non dominated solutions to other solution vectors in the population,
Maxi, i = 1, 2, · · · , n, is computed. Then the mean µMax and standard deviation
σMax of Maxi, i = 1, 2, · · · , n, are computed. In the empirical sciences and in
statistics the ”three sigma rule of thumb” expresses a conventional heuristic that
in a normal distribution, 68.27% of values lie within mean (µ) and one standard
deviation(σ) i.e within µ ± σ, 95.45% values lie within mean and two standard
deviation i.e within µ± 2σ and 99.73% values lie within mean and three standard
deviation i.e within µ± 3σ. Based on this ”three sigma rule of thumb” popularly
referred as ”68-95-99.7 rule”, for narrowing down the options of considering non
dominated solutions, a solution Si is discarded if Maxi < (µMax + C.σMax),
where C is a real constant that may be specified as positive, negative or zero,
depending on number of solutions we want to filter out from the population, pre-
serving diversity in solution space.

4.4.2 Implementing NSGA-II for view selection

In [26], two implementations of multi-objective GA for materialized view selection
have been presented. These two approaches used non-elitist multi-objective evo-
lutionary algorithms for selecting views under storage space constraint. Deb et
al. in [32] presented that elitism can speed-up the performances of the GA signif-
icantly and also can help retaining good solutions generated during intermediate
generations. In multi-objective GAs for ensuring diversity in solution population,
the concept of sharing parameter σshare in objective space is used. But a parame-
ter less diversity preservation mechanism is better. To address this issue NSGA-II
was suggested [32].

To adapt NSGA-II for selecting views to materialize in Big data warehous-
ing with distributed file system framework, I used the cost model and problem
definition as discussed in Section 4.2 and 4.3.

Here, first a random solution population Ψ1,Ψ2, · · · ,ΨNP are created us-
ing the same solution representation as used in MODE-BE. For generating ith
random solution, initially all decision variables of Ψi are set as 0. A random in-
teger in the range [0,D] is generated for deciding how many dimensions of Ψi is
to be set as 1. This random number is the cardinality of the set of views selected
V ′ in Ψi, expressed as |V ′| = p in Definition 22. Randomly these p number of

87

Chapter 4. Materialized View Selection by Evolutionary Algorithm for
Big Data Query Processing

decision variables are set as 1 for the vector Ψi. As discussed in Section 4.2, in
Big data framework based data warehousing (like Hive), smaller number of larger
sized views are to be selected for materializing. Therefore, the solution vector Ψi

is added to the list of initial population only if the total size of the set of p number
of views of the set V ′ satisfies the minimum space criteria specified and Ψi is not
already present in the solution population.

In subsequent generations, the usual binary tournament selection, recom-
bination and mutation operators are applied to the NP solutions to create off-
spring. In each generation, against a selected solution from the NP solutions,
one offspring is generated. For finding domination or non-domination between
two solutions, say Ψi and Ψj, where V ′i is the set of non-zero dimensions of Ψi

and V ′j is the set of non-zero dimensions of Ψj, the three objective functions (1)

the query processing costs CQ
V ′i

, CQ
V ′j

, (2) maintenance costs U(V ′i), and U(V ′j) and

(3) |V ′i |, |V ′j | are evaluated. If the generated offspring dominates the selected
solution vector, then the new offspring replaces the selected vector. Otherwise
, if the newly generated offspring does not dominate the solution vector and if
the selected solution also does not dominate the offspring, the offspring vector is
added to the population. Thus a new offspring population of size N is created.
Whenever N becomes 2NP , the solution population in the list are ranked in their
non-domination levels. The ranked solution population are sorted in ascending
order of their non-domination ranks. The crowding distance among the solutions
are then computed in objective function space and sorted in descending order of
their crowding distances. The solutions are sorted in ascending order of ranks
for providing higher priority for keeping the solutions of lower domination ranks
in next generation, so that the most elite solutions are retained in subsequent
generations. The solution population are sorted in descending order of objective
function based crowding distances to preserve diversity among solution population
in each generation.

4.4.2.1 Run time complexity of NSGA-II

The basic operations of NSGA-II based application’s worst case complexities as
presented in [32] are - (1) for non-dominated sorting is O(M(2N)2), (2) for crowd-
ing distance assignments is O(M(2N)log(2N)) and (3) for sorting on crowding
distances is O(2Nlog(2N)). Here, M is the number of objectives and N is the
number of solution population. Thus the over all complexity is dominated by
O(M(2N)2). As our problem is defined with 3 objectives therefore it becomes
O(3(2N)2). Thus the overall complexity is O(N2).

4.5 Experimentation and Observations

For experimental analysis, Multi-Objective DE for Binary Encoded solutions,
MODE-BE, and NSGA-II as a recommending system, taking input from log-files

88

4.5. Experimentation and Observations

Figure 4-1: Test-bed for selecting non-dominated solution sets of materialized
views

generated on processing HiveQL instructions, has been implemented. The rec-
ommended solution sets generated by both the implementations are analyzed. A
set of HiveQL queries has been synthesized for triggering on data warehouse in a
single node implementation of experimental HDFS. This set of queries considered
as the set of frequent queries and are broken-up into some sub-queries or views
which are considered as candidate views for our experimentation.

4.5.1 Experimental setup

In this experimental setup, Hortonworks Data Platform (HDP) version 2.0.6 has
been used with Hortonworks Sandbox version 2.0 VMware for 64 bit CentOS
operating system workstation 6.5-7.x virtual machine [83]. This is a single node
implementation for experimenting HDFS. Hadoop version 2.2.0 and Hive version
0.12.0 of Apache [80] are used here, which let us manage data, perform ad-hoc
queries and perform analysis of data warehouse in Hadoop cluster. For executing
HiveQL queries, an HDP interactive interface to HiveTM named Beeswax provided
by HDP has been used. Using Beeswax we can type in HiveQL queries and have
Hive evaluate them for us using a series of MapReduce jobs.

A block diagram of my test-bed is presented in Fig. 4-1. Though generally
”Big data” means database of Tera byte/Peta byte size, HDP is designed for
single node implementation for experimenting HDFS with smaller sized databases.
In this experimentation Lahman Baseball Database of American Major League
Baseball statistics from 1871 through 2011 [84] have been used as suggested by

89

Chapter 4. Materialized View Selection by Evolutionary Algorithm for
Big Data Query Processing

HDP 2.0.6 for experimenting with Hadoop version 2.2.0.

For generating different cost function values for experimentation, few
HiveQL queries on Lahman baseball database have been synthesized as listed
below.

List of HiveQL test queries:

Q1. select a.yearid, a.playerid, b.average, c.totgs from batting data a join (select
yearid, playerid, avg(r) as average from batting data group by yearid , play-
erid) b on a.playerid=b.playerid and a.yearid=b.yearid join (select yearid,
playerid, sum(gs) as totgs from appearances data group by yearid, playerid)
c on a.playerid=c.playerid and a.yearid=c.yearid ;

Q2. select a.yearid, a.playerid, b.average, c.tot batting from batting data a join
(select yearid, playerid, avg(r) as average from batting data group by yearid,
playerid) b on a.playerid=b.playerid and a.yearid=b.yearid left outer join
(select yearid, playerid, sum(g batting) as tot batting from appearances data
group by yearid, playerid) c on a.playerid=c.playerid and a.yearid=c.yearid
;

Q3. select a.yearid, a.playerid, b.wild pitches, c.tot glf from fielding data a join
(select yearid, playerid, sum(wp) as wild pitches from fielding data group by
yearid, playerid) b on a.yearid=b.yearid and a.playerid=b.playerid left outer
join (select yearid, playerid, sum(glf) as tot glf from fielding of group by
yearid, playerid) c on a.yearid=c.yearid and a.playerid=c.playerid ;

Q4. select a.yearid, a.teamid, a.playerid, b.average, c.wild pitches from ap-
pearances data a left outer join (select yearid, playerid, teamid, avg(r)
as average from batting data group by yearid, teamid, playerid) b on
a.playerid=b.playerid and a.yearid=b.yearid and a.teamid=b.teamid left
outer join (select yearid, playerid, sum(wp) as wild pitches from fielding data
group by yearid, playerid) c on a.yearid=c.yearid and a.playerid=c.playerid ;

Q5. select a.lahmanid, a.playerid, a.hofid, b.yearid, b.totgs, c.totvotes from mas-
ter data a left outer join (select yearid, playerid, sum(gs) as totgs from appear-
ances data group by yearid, playerid) b on a.playerid=b.playerid left outer
join (select hofid, yearid, sum(votes) as totvotes from hall of fame group by
hofid, yearid) c on a.hofid=c.hofid and b.yearid=c.yearid;

Q6. select a.playerid, b.playedin, a.teamid, c.winner from appearances data a
join (select playerid, count(*) as playedin from appearances data group
by playerid) b on a.playerid=b.playerid left outer join (select teamid-
winner, count(*) as winner from series post group by teamidwinner) c on
a.teamid=c.teamidwinner ;

Q7. select a.playerid, b.total played, c.tot fielding, d.tot pitching from appear-
ances data a join (select playerid, sum(g all) as total played from appear-
ances data group by playerid) b on a.playerid=b.playerid left outer join (se-
lect playerid, sum(g) as tot fielding from fielding data group by playerid) c on

90

4.5. Experimentation and Observations

a.playerid=c.playerid left outer join (select playerid, sum(g) as tot pitching
from pitching post group by playerid) d on a.playerid=d.playerid ;

Q8. select a.yearid, a.teamid, a.lgid, a.playerid, b.playedin, c.winner from ap-
pearances data a join (select yearid, teamid, lgid, playerid, count(*) as
playedin from appearances data group by yearid, teamid, lgid, playerid
) b on a.yearid=b.yearid and a.teamid=b.teamid and a.lgid=b.lgid and
a.playerid=b.playerid left outer join (select teamidwinner , count(*) as win-
ner from series post group by teamidwinner) c on a.teamid=c.teamidwinner
;

Q9. select a.yearid, a.teamid, a.playerid, b.average, c.max runs from appear-
ances data a left outer join (select yearid, playerid, teamid, avg(r)
as average from batting data group by yearid, teamid, playerid) b on
a.playerid=b.playerid and a.yearid=b.yearid and a.teamid=b.teamid left
outer join (select playerid , max(r) as max runs from batting data group
by playerid) c on a.playerid=c.playerid;

Q10. select a.playerid, a.namefirst, a.namelast, b.max runs, c.min runs from mas-
ter data a join (select playerid , max(r) as max runs from batting data group
by playerid) b on a.playerid=b.playerid join (select playerid, min(r) as
min runs from batting data group by playerid) c on a.playerid=c.playerid
;

Q11. select a.playerid, a.hofid, b.runs allowed, c.tot votes from master data a left
outer join (select playerid, sum(r) as runs allowed from pitching post group by
playerid) b on a.playerid=b.playerid left outer join (select hofid, sum(votes)
as tot votes from hall of fame group by hofid) c on a.hofid=c.hofid ;

Q12. select a.playerid, b.tot leftfielding, c.namefirst, c.namelast from fielding post
a left outer join (select playerid, sum(g lf) as tot leftfielding from appear-
ances data group by playerid) b on a.playerid=b.playerid join (select play-
erid, namefirst, namelast from master data) c on a.playerid=c.playerid ;

Q13. select a.playerid, b.tot innouts, c.namefirst, c.namelast from fielding post
a join (select playerid, sum(innouts) as tot innouts from fielding post
group by playerid) b on a.playerid=b.playerid join master data c on
a.playerid=c.playerid ;

Q14. select a.hofid, a.yearid, a.category, b.namefirst, b.namelast, c.batting from
hall of fame a join master data b on a.hofid=b.hofid join (select playerid,
sum(g batting) as batting from appearances data group by playerid) c on
b.playerid=c.playerid;

Q15. select a.playerid, a.bats, b.tot runs, b.tot hits from master data a left outer
join (select playerid, sum(r) as tot runs, sum(h) as tot hits from batting post
group by playerid) b on a.playerid=b.playerid ;

Q16. select a.playerid, b.tot runs, c.tot hits, c.bats, c.namefirst, c.namelast from
batting post a join (select playerid, sum(r) as tot runs, sum(h) as tot hits
from batting post group by playerid) b on a.playerid=b.playerid join mas-
ter data c on a.playerid=c.playerid ;

91

Chapter 4. Materialized View Selection by Evolutionary Algorithm for
Big Data Query Processing

Q17. select a.playerid, b.tot games, b.errors, c.throws, c.namefirst, c.namelast from
fielding post a join (select playerid, sum(g) as tot games, sum(e) as errors
from fielding post group by playerid) b on a.playerid=b.playerid join mas-
ter data c on a.playerid=c.playerid ;

Q18. select a.playerid, a.glf, a.gcf, a.grf, b.tot games, c.tot outfielding from field-
ing of a join (select playerid, sum(g) as tot games from fielding post group
by playerid) b on a.playerid=b.playerid left outer join (select playerid,
sum(g of) as tot outfielding from appearances data group by playerid) c on
a.playerid=c.playerid ;

Q19. select a.playerid, a.stint, a.yearid, a.teamid, a.lgid, b.r, b.h from batting data
a join (select * from batting post where r>0) b on a.playerid=b.playerid and
a.yearid=b.yearid and a.teamid=b.teamid and a.lgid=b.lgid ;

Q20. select a.playerid, a.yearid, a.teamid, a.lgid, b.g, b.r, b.h, b.rbi from ap-
pearances data a join (select * from batting post where r>0) b on
a.playerid=b.playerid and a.yearid=b.yearid and a.teamid=b.teamid and
a.lgid=b.lgid ;

The constituent views and aggregation functions that are to be consid-
ered as candidate views for materializing are extracted from these queries by a
semantic analysis process. The queries and their constituent views are presented
in Table 4.1. The queries and constituent views are triggered to HDP to get query
processing costs, view processing costs and maintenance costs in terms of MapRe-
duce CPU time along with the space requirements for the views. The HDP and
Beeswax interface generates responses as well as log-files against HiveQL com-
mands. These log-files contain all MapReduce split details and associated CPU
costs along with the MapReduce jobs creation details. Different costs against
these queries and views are extracted from log-files and stored in a database. The
extracted costs of our queries in one instance of execution are presented in Ta-
ble 4.2 and 4.3. The materialized view selection process takes input from this
database for recommending optimum sets of views for materializing. All the se-
lected frequent queries and candidate views are indexed and labeled to represent
the solution vectors such that if the first dimension of the solution vector is 1, the
first view is selected for materializing and if the second dimension of the solution
vector is 0, the view labeled as second view is not to be selected for materializing
and so on. This representation is used in many materialized view selection tech-
niques [8,9,14,25]. The extracted costs of our queries in one instance of execution
as we present in Table 4.2 and 4.3 are used as input to our multi-objective EA
based view selection recommendation system.

4.5.2 Parameters used

In Differential Evolution (DE) algorithm based applications the main control pa-
rameters are the mutation scaling factor F , the solution population size NP and
the cross-over parameter CR. In [28] it has been suggested that the value of NP

92

4.5. Experimentation and Observations

Figure 4-2: Processing MapReduce cost (in Seconds) by NSGA-II and MODE-
BE generated non-dominated solutions.

Figure 4-3: Materialized view maintenance MapReduce cost (in Seconds) by
NSGA-II and MODE-BE generated non-dominated solutions.

Figure 4-4: Number of views in solution sets for materializing.

93

Chapter 4. Materialized View Selection by Evolutionary Algorithm for
Big Data Query Processing

Figure 4-5: Space requirements by solution sets of views for materializing.

Figure 4-6: Objective functions’ values by MODE-BE generated non-dominating
solutions.

Figure 4-7: Objective functions’ values by NSGA-II generated non-dominating
solutions.

94

4.5. Experimentation and Observations

Table 4.1: Considered frequent HiveQL queries and constituent views

HiveQL queries Constituent views

Q1 v1,v2

Q2 v1,v3

Q3 v4,v5

Q4 v4,v6

Q5 v2,v7

Q6 v8,v9

Q7 v10,v11,v12

Q8 v9,v13

Q9 v6,v14

Q10 v14,v15

Q11 v16,v17

Q12 v18,v19

Q13 v20

Q14 v21

Q15 v22

Q16 v22

Q17 v23

Q18 v23,v24

Q19 v25

Q20 v25

should be around 5 to 10 times the dimensionality of the problem. Therefore, for
25 candidate views, we may set values of NP between 125 to 250. In DE, a good
choice of F is 0.5. The value of CR indicates number of inheritance by the mutant
vector. According to [27, 73], for population size NP between 3 to 8 times of the
dimensionality of the problem, the mutation scaling factor F=0.6 and cross-over
ratio CR between 0.3 to 0.9 are good choices. In our multi-objective DE for binary
represented decision variables (MODE-BE) we used the following parameters -

• the population size, NP=125,

• number of generations=50,

• selection scheme=DE/rand/1/bin,

• F=0.5,

• binary cross-over probability CR=0.3.

To compare the performance of MODE-BE and NSGA-II in materialized
view selection problem for HDFS based data warehousing, we used following pa-
rameters with NSGA-II based system.

• the population size, NP=125,

95

Chapter 4. Materialized View Selection by Evolutionary Algorithm for
Big Data Query Processing

Table 4.2: Query responding MapReduce costs of selected queries

HiveQL queries HDFS MapReduce
cost (in Seconds)

Q1 45.05
Q2 37.62
Q3 37.35
Q4 42.59
Q5 25.51
Q6 24
Q7 25.48
Q8 38.87
Q9 29.77
Q10 18.29
Q11 22.57
Q12 14.15
Q13 12.68
Q14 29.27
Q15 13.83
Q16 20.56
Q17 22.04
Q18 21.82
Q19 2.39
Q20 2.31

96

4.5. Experimentation and Observations

Table 4.3: Processing and maintenance MapReduce costs and space requirements
of candidate views

Candidate Processing Maintenance Space
view MapReduce cost (in Seconds) MapReduce cost (in Seconds) (in MB)

v1 11.52 4.023 2.2
v2 16.34 4.234 2.236
v3 19.43 4.034 2.151
v4 14.16 2.652 2.2
v5 8.37 6.051 0.267
v6 13.85 13.042 2.9
v7 6.84 11.521 0.0956
v8 11.74 3.231 0.296
v9 7.75 6.455 0.001
v10 15.71 5.823 0.316
v11 16.98 10.034 0.313
v12 6.02 5.034 0.0252
v13 20.12 4.611 3.252
v14 11.05 6.810 0.3
v15 13.76 5.430 0.294
v16 6.61 4.517 0.026
v17 10.73 2.220 0.021
v18 10.11 4.315 0.297
v19 1.84 5.412 0.519
v20 7.28 3.021 0.061
v21 16.38 5.011 0.314
v22 8.07 9.025 0.075
v23 6.99 7.25 0.07
v24 11.58 9.312 0.299
v25 2.3 5.812 0.487

97

Chapter 4. Materialized View Selection by Evolutionary Algorithm for
Big Data Query Processing

• number of generations=50,

• Size of mating pool=125,

• tournament size=2,

• individual cross-over probability=1,

• individual mutation probability=1.

Two other problem specific parameters - maximum number of views that
may be selected and minimum size of storage space to be used are also to be
specified as well. These two parameters are mainly dependent on size of memory
block size and split size of the HDFS. Generally HDFS block-size and split-size
are of 64MB or 128MB. Therefore, as small files may use unnecessary MapReduce
split and overhead, Hadoop works better with smaller number of larger files [17].

4.5.3 Results and observations

In my experimentation with the above mentioned experimental setup, parameters
and data, it has been observed that,

• the NSGA-II based system converges more quickly than MODE-BE based
recommendation system. But, as for preserving diversity among solutions in
MODE-BE, distances among solutions in their solution vector space are used
instead of crowding-distance in objective function space, the standard devi-
ation between solutions generated by MODE-BE is 5.203402 whereas that
of NSGA-II is 3.120897. The diversity in solution vector space is preferred
because diversity preservation on objective function values may lead to loss
of some significantly distinct solutions on the basis of constituent selected
views in them. This may obviously happen because a scalar valued function
with different vector parameters may result same scalar value.

• In our experimentation it can be observed that MODE-BE generates 37.04%
more number of solutions than NSGA-II based system. More number of so-
lutions with comparable quality of solutions may be useful for selecting most
appropriate solutions depending on user application requirements. For fil-
tering significant solutions from the obtained solutions, distances in solution
vector space for each solution to all other solutions yielded may be computed
and then based on the mean (µ) distances and their standard deviation (σ),
filtration criteria may be applied [25].

• From the query processing costs in terms of MapReduce time, as plotted in
Figure 4-2, it can be observed that solutions generated by MODE-BE are
more costly in case of query processing and responding than of NSGA-II gen-
erated solutions. But, the MapReduce time for maintaining the materialized
views are less in case of MODE-BE.

98

4.6. Discussion

• From Figure 4-4 and 4-5 it can be observed that MODE-BE results are
slightly better based on the Hadoop framework’s basic criterion that lesser
number of bigger views or tables are to be considered for materializing. For
our experimental data presented here, we found that the minimum size of
storage space requirement is slightly more in case of MODE-BE.

• Again, by applying Mann-Whitney U test on both MODE-BE and NSGA-II
generated solutions at 5% level of significance, i.e at α = 0.05, we cannot
reject the null hypothesis that the solution vectors generated by both the
systems are from the same population.

4.6 Discussion

I have presented here my study on view selection techniques for materializing in
distributed commodity hardware file system data warehousing. The main con-
tribution here is establishing the view selection for materializing problem in dis-
tributed commodity hardware file system as a multi-objective optimization prob-
lem and study of performances by multi-objective Differential Evolution algorithm
and NSGA-II for solving this problem. As it is an NP-hard problem, I used multi-
objective evolutionary algorithm based approach for designing a recommendation
system for selecting views for materializing.

A prototype of view selection framework has been designed that uses log-
files generated by single node implementation of HDFS based data warehousing
framework and Hive 0.12.0 queries. As the approach is a generic one, it may be
implemented easily for any kind of similar framework that uses distributed cluster
of commodity hardware.

Though, in this experimental framework, the cost functions, number of
views in different solution sets and space costs of each individual solutions are
computed by the recommending system, the semantic analysis process for ex-
tracting and composing candidate views is yet to be developed. At present the
candidate views are fed to the HDP by an offline process for computing different
associated costs.

The present popular version of HiveTM does not support materialized
views. The work presented here leads towards efficient Big data query processing
by materializing selected views recommended by the system in cluster of dis-
tributed commodity hardware file system. There may be alternative technologies
for implementing the materialized view selection and/or selection of response of
queries for in-memory materialization like Discardable In-Memory Materialized
Query (DIMMQ), Spark’s Resilient Distributed Data-set (RDD)[19] etc.. We be-
lieve that community like Hadoop may find many more such technologies and will
suggest bench-mark framework for unbiased evaluation of different techniques for
efficient Big data query processing.

In this chapter the solution quality of multi-objective DE and NSGA-II in

99

Chapter 4. Materialized View Selection by Evolutionary Algorithm for
Big Data Query Processing

view selection for materializing in Big data DFS framework have been analyzed
based on the cost function values by the yielded solutions. The performances
of non-deterministic multi-objective optimization techniques may be studied in
different ways. In next chapter another widely used stochastic method for hard
optimization problems called Simulated Annealing (SA) has been customized for
solving this problem and comparative performances of MODE-BE, NSGA-II and
multi-objective SA have been reported while applying in this problem based on
measures on how the obtained solutions converge towards estimated true Pareto
front, number of obtained solutions that are not dominated by solutions generated
by other algorithms and distribution of solutions on the found Pareto front.

100

