
Chapter 5

Multi-Objective Simulated
Annealing Algorithm in Big data
View Selection for Materializing

5.1 Introduction

The pioneering non-deterministic optimization based approach used in selecting
views for materialization in data warehouse was a Genetic Algorithmic (GA) ap-
proach by Zhang et al. [38]. Derakhshan et al. in [8] introduce an approach for
materialized view selection using Simulated Annealing (SA) with Multiple View
Processing Plan (MVPP) [7] of frequent data warehouse queries as input. This
approach was later modified by applying Parallel Simulated Annealing (PSA) [9].
In [14], Multi-Objective Simulated Annealing (MOSA) [61,85] and Archived Multi-
Objective Simulated Annealing (AMOSA) [86] are applied by us in materialized
view selection problem using MVPP based representation of the problem. This
chapter presents how multi-objective SA based techniques may be applied in select-
ing sub-query results or views in MapReduce based query processing framework.
A comparative performance analysis of this technique with respect to MODE-BE
and NSGA-II based techniques in view selection problem in this paradigm also
has been presented in this chapter.

5.1.1 Motivation

Derakhshan et al. in [8] showed that by using SA, the cost of a selected set of
materialized views is up to 70% less than the GA based technique in [37] and
heuristic algorithmic approach in [7] both of which use MVPP graph as input.
Derakhshan et al. in [9] present that PSA in conjunction with MVPP graph out-
performs heuristic method [7] and basic SA based technique [8] considering the
cost of obtained set of views. SA and GA are both stochastic methods widely used
for handling hard optimization problems. The key difference between SA and GA
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is that SA creates a new solution by modifying only one solution with a local
move in the solution space but GA creates solutions by combining two different
solutions from the solution population. Lahtinen et al. in [87] compare several
algorithms including SA and GA considering a tree cost minimization problem by
normalizing the execution time given to different algorithms and presented that in
same amount of execution time, SA consistently gave better solutions than GA.
In [88] it has been reported that though GA gives slightly better solutions than
SA, SA achieved its solutions much quicker.

5.1.2 SA for multi-objective optimization

Though SA has been applied in diverse type of single objective optimization prob-
lem, there have been very few attempts in extending it for multi-objective opti-
mization problem [30]. In [8,9], to handle the materialized view selection problem
as a single objective optimization problem for solving it by SA, query processing
cost, materialized view maintenance cost and space cost are combined. In funda-
mental SA of statistical mechanics, if δE(x′, x) is the associated energy difference
of newly generated solution state x′ and current solution state x in an annealing
process, x′ is accepted as next state or move in the process, if a random value
in the range [0,1] is less than e−δE(x′,x)/T , where T is the system temperature. In
higher temperature (T ), there will be higher probability that an inferior move will
be selected. In the annealing process, the temperature is decreased from high to
sufficiently low very gradually ensuring sufficient time at each temperature i.e to
explore more regions in solution space for better solution in each temperature by
large number of iterations. In single objective SA, δE(x′, x) is used as cost function
difference between two points in the solution space. It has been proved that in SA,
if annealed sufficiently slow, it converges to the global optimum [30]. To extend
SA for multi-objective optimization, few Pareto-dominance based Multi-Objective
SA (MOSA) techniques have been developed. In MOSA presented in [61, 85], ac-
ceptance criterion between the current solution and newly generated solution is
defined in terms of the difference between number of solutions dominated by them.
A new version of MOSA referred as Archived Multi-Objective SA (AMOSA) pre-
sented by Bandyopadhyay et al. in [30] incorporates a novel concept of amount
of dominance instead of number of solutions dominated, as acceptance criterion
to determine the acceptance of a newly generated solution. As multi-objective
optimization may yield a large number of Pareto optimum solutions, in AMOSA,
to limit the size of the Archive of non-dominated solutions with reduced loss of di-
versity, clustering is used. After obtaining the clusters, the solution whose average
distance to other members in the cluster of solutions is the minimum, is considered
as the representative member of each cluster. Then from each of the clusters the
representative solutions are added into the Archive for subsequent processing or
iterations.
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5.1.3 Contribution

In this work, the basic Archived Multi-Objective Simulated Annealing (AMOSA)
algorithm designed by Bandyopadhyay et al. in [30] is customized for applying in
materialized view selection problem in MapReduce based distributed file system
framework. This work is an extension of our earlier implementation of MOSA and
AMOSA for handling materialized view selection using MVPP graph in conven-
tional relational database management system [14].

In this implementation of AMOSA, the diversity of solutions are main-
tained in solution space by computing maximum dissimilarity value of each solu-
tion to other solutions in the archive while controlling the size of solution popula-
tion. The solutions are sorted in descending order of maximum dissimilarity values
of each solution and the top few solutions from the sorted list are picked up for
adding into the archive during the annealing process or iterations. In fundamental
AMOSA [30] the diversity of solutions are maintained in objective function space
by selecting representative solutions that are having minimum distances to other
solutions in each cluster in objective function space. As in the proposed version
the diversity of solutions are maintained in solution space, more diversity of solu-
tions with respect to constituent views may be achieved. The complexity of using
the proposed customized version of AMOSA for selecting views is less than the
original AMOSA because the run time complexity of single-linkage clustering is
more than that of computing the maximum distance computation of each solution
to other solutions in the archive.

A Hadoop version 2.2.0 based framework [83] is designed for generat-
ing log-files for synthesizing data regarding MapReduce costs of queries and con-
stituent views by triggering random Hive [80] queries. The AMOSA in this mate-
rialized view selection problem is designed for binary encoded data and therefore
the solutions are represented as binary strings. The performance of this version of
AMOSA for materialized view selection, referred as AMOSA-MVS, is compared
with NSGA-II [29] and multi-objective DE with binary encoded data, MODE-
BE [25], in terms of Convergence [32], Purity [30] and Spacing measures [89] of
respective obtained solutions in materialized view selection.

5.2 Dominance based Energy Functions in

Multi-Objective Simulated Annealing Algo-

rithm

In Simulated Annealing algorithm based optimization, a new solution x′, generated
by perturbing a current solution x, is accepted as a better proposal with probability

P = min(1, exp{−δE(x′, x)/T}) (5.1)
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where δE(x′, x) ≡ E(x′) − E(x), and E(x) and E(x′) are energy functions on
x and x′ respectively at system temperature parameter T to obtain optimum
solution state x that optimizes E(x) [90]. In single objective optimization, a new
proposal x′ can be either better or worse than x, depending on sign of δE(x′, x).
In case of multi-objective optimization however, x′ is preferably accepted if it is
not dominated by other solutions, because when x′ is better for one objective
function, it may be worse for other objective functions. Therefore to adapt SA for
multi-objective optimization, in initial works, objective functions are combined as
a composite objective by weighted sum of the objective functions as Equation 5.2
below.

E(x) =
M∑
i=1

wifi(x) (5.2)

But in case of multi-objective optimization where the true Pareto front, that is,
the complete set of non-dominated solutions of the problem is not known, relative
weight of the objectives can be decided by estimated Pareto front only. In such case
where the complete Pareto front is not known, there is no clear cut mechanism
to choose weight wi in advance [61]. In this weighted sum composite objective
function based SA process, non-dominated solutions found so far are appended
to an archive. This archive is used for finding other non dominated solutions by
subsequent iterations. Though proof of convergence can be provided for multi-
objective SA using scalar objective function with fixed weights as in Equation 5.2,
it is not clearly defined how proofs of convergence can be obtained with changing
weights for promoting exploration on the non-dominated front [61,85].

In multi-objective optimization, the objective is to find the set of all non-
dominating solutions based on some objective functions. Therefore, The domi-
nance relations among solutions obtained and generated can be used to determine
acceptability of a solution. In recent works [61, 85, 86] for adapting SA for multi-
objective optimization, relative dominance measure of non-dominated solution
front obtained so far on other solutions are used to define the energy function.

5.2.1 Energy function in terms of number of dominating
solutions

For a known Pareto front, if a particular solution x is on the front, then value of
energy function E(x) is 0. In other words when a solution is not dominated by
any solutions, energy function value is 0. When the distance of x from the true
Pareto front increases, a greater portion of the front will dominate x and therefore
solution x may be defined as having higher energy. If the energy function E(x)
for the SA process is defined using this concept, the weighting (wi) of objective
functions is not needed. Smith et al. in [61], therefore, presented a multi-objective
optimization technique using SA based on this energy function, which is termed
as Multi-objective Simulated Annealing (MOSA).

To define the energy function applying dominance by Pareto front, the
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Figure 5-1: Number of dominating solutions in estimated Pareto front

true Pareto front is to be known during the optimization process. But as the true
Pareto front is not available during the process, in MOSA [61] Smith et al. suggest
to define the energy function by currently available Pareto front termed as current
estimate of Pareto front. The current estimate of Pareto front F̃ is defined as the
union of currently available non dominated solution front F, the current solution
x and the newly generated solution x′ expressed as Equation 5.3 below.

F̃= F∪ {x} ∪ {x′} (5.3)

Now, if F̃x is the (set of) elements from (the set) F̃ that dominate x, and F̃x′ is the
elements from F̃ that dominate x′, then in MOSA, the energy difference between
the proposed and current solution, x′ and x, is defined as Equation 5.4.

δE(x′, x) =
(|F̃x′ | − |F̃x|)

|F̃|
(5.4)

In Equation 5.4, when the estimated front F̃ is a non dominating set, the energy
difference δE(x′, x) is zero. If x′ ≺ x then the current solution x and the new
proposed solution x′ are included in F̃ means δE(x′, x) < 0. The value of the

difference (|F̃x′ | − |F̃x|) is divided by |F̃| makes δE(x′, x) always less than unity
and this strengthens the probability function. Therefore, it is ensured that new
proposals moving in the estimated front towards the true Pareto front will be
always accepted [61]. This energy function (5.4) is built on the concept that
distant solutions from the true Pareto front are dominated by more number of
solutions, and hence less probability of getting accepted. But in some cases like
depicted in Figure 5-1 it is evident that - as the function is based on cardinality
of F̃, F̃x′ , F̃x and an estimated front only, solutions dominated by fewer elements
will be of lower energy, and hence they are more likely to be accepted. Thus
another advantage of this energy function is that sparsely populated regions of
the front also will be explored.

Smith et al. present empirical evidence of convergence by MOSA using
energy function expressed by Equation 5.4 in [61].
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Figure 5-2: Domination during initializing an archive of non dominated solutions.

5.2.2 Energy function in terms of amount of domination

Bandyopadhyay et al. propose amount of domination for computing the accep-
tance probability of solutions in AMOSA algorithm [30]. In multi-objective SA
process, initially there may be just one solution in the front. In this case, dom-
inance measured by number of dominating solutions in the archived front for
accepting newly generated solutions is not possible. In this case amount of dom-
ination for making decision on acceptance may be a better choice as seen in Fig-
ure 5-2. When -(i) current-point dominates new-point and k number of points
from the Archive also dominate the new-point, or (ii) current-point and new-point
are non-dominating to each other but new-point is dominated by k(k ≥ 1) points
in the front, or (iii) new-point dominates current-point but k(k ≥ 1) points in the
front dominate the new-point, then the amount of domination between the newly
generated (solution) point and the current (solution) point is applicable for using
as acceptance probability function instead of number of dominating points.

5.2.2.1 Amount of domination

In AMOSA, the concept of amount of domination is used for computing the ac-
ceptance probability of a new solution [30]. The amount of domination between
two elements is defined as the amount (or volume) of space between them in the
objective function space. For two solutions a and b of an optimization problem in
objective function space of three objectives f1, f2 and f3 may be depicted as the
shaded volume in Figure 5-3.

Using this concept, for given two solutions a and b, and M = number of
objectives, Bandyopadhyay et al. in [30] defined the amount of domination as
Equation 5.5.

∆doma,b =
M∏

i=1,fi(a)6=fi(b)

(|fi(a)− fi(b)|)
Ri

(5.5)

Where Ri is the range of the i-th objective. The value of Ri may not be known a
priori. In that case the solutions already obtained and kept in the Archive along
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Figure 5-3: Amount of domination

with the current and the new proposed solution may be used for computing it.
Thus in AMOSA ∆domx′,x is used for computing the probability of acceptance
between current solution x and the new proposal x′.

5.2.2.2 Accepting newly generated solutions

During the annealing process, at a system temperature T , a new solution or new
point is generated by perturbing a randomly selected solution from the already
obtained archive of non-dominating solutions termed as current point, and their
domination status are checked with respect to the Archive. In multi-objective SA
even if the new point is a dominated solution either by the current point or one
or more points from the Archive, the point is accepted as current point for next
iteration with probability within 0 and 1. Domination amount based probability
functions are used for selecting current point for next iteration. The AMOSA
in [30] suggests these probabilities as in Equation 5.6 and 5.8 below in respective
cases ensuring probability between 0 and 1.

When the current point dominates the new point and k(k ≥ 0) points of
the Archive dominate the new point, the new point is selected as the current point
with probability in Equation 5.6.

Probability =
1

1 + exp(∆domaverage ∗ T )
(5.6)

where

∆domaverage =
((
∑k

i=1 ∆domi,newpoint) + ∆domnewpoint,currentpoint)

k + 1
(5.7)

In case current point and new point are non dominating with respect to
each other but the new point is dominated by k(k ≥ 1) points in the Archive, then
the new point is selected as the current point with probability in Equation 5.6,
where ∆domaverage =

∑k
i=1(∆domi,newpoint)/k. Here the current point may or may

not be in the Archive.
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In above two cases there will be probability that a new point is accepted as
current point even though it is not in the non dominating Archive. If the current
point is not in the Archive and new point dominates the current point, then it
may also happen that k(k ≥ 1) points in the Archive dominate the new point.
In this case the minimum of the difference of domination amounts between the
new point and the dominating k points of the Archive, ∆dommin is computed.
The point out of the k dominating points from the Archive that corresponds
to the minimum dominance is selected as the current point with probability in
Equation 5.8. Otherwise the new point is selected as the current point.

Probability =
1

1 + exp(−∆dommin)
(5.8)

Thus, at the beginning of AMOSA process, one solution is selected as
current point from the set of already found Archive of non dominating solutions
at temperature T = Tmax. The value of T is reduced at a very slow rate till it
reaches Tmin in the process. At every epoch of T , for specified number of iterations,
a current point is selected randomly from the Archive and is perturbed to generate
a new solution as new point and checked it’s domination status with respect to
the current point and other solutions already kept in the Archive. Other than the
three types of domination status discussed above, there may be some other cases
as well. In these cases, as stated below, solutions are added to the non dominating
Archive.

When the new point is non dominating with respect to the current point
as well as other solutions in the Archive, the new point is selected as the current
point for next iteration and appended to the Archive. But if the new point is non
dominating with each other with respect to the current point and the new point
dominates k(k > 1) points in the Archive, the new point is selected as the current
point and added to the Archive, and the k dominated points of the Archive are
removed.

If the new point dominates the current point where the current point is
a member of the Archive and the new point is non dominating with respect to
other points in the Archive (except the current point), then the current point is
removed from the Archive. The new point is then accepted as the current point
and added to the Archive.

There may be a case that the new point dominates the current point and
the current point may or may not be in the Archive, but the new point also
dominates k(k ≥ 1) other points in the Archive. In this case, all the dominated
points in Archive are removed, and then, the new point is selected as the current
point and appended to the Archive.

While continuing the AMOSA process from T = Tmax to T = Tmin, where
T is reduced as T = αT , α being the cooling rate after every epoch of T , it may
happen that the size of the Archive may go on increasing. To keep the size of
the Archive within limit during the process, AMOSA suggests a clustering based
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Figure 5-4: Clustering to reduce solution population while minimizing objective
functions f1 and f2

technique.

5.2.2.3 Clustering for maintaining diversity of solutions in intermedi-
ate generations

In AMOSA, for controlling the number of solution population in the Archive en-
forcing diversity among the solutions, Bandyopadhyay et al. in [30] suggested
clustering of the solutions in the Archive and then selecting representative so-
lutions from each of these clusters. This may be illustrated by Figure 5-4 for
minimizing two objective functions f1 and f2. AMOSA uses two user defined pa-
rameters for controlling the size of solution population in the Archive. One is SL
for soft limit of population and the other one is HL for hard limit of population in
the Archive. At the beginning of the AMOSA process, γ×SL number of solutions
are randomly generated where γ > 1. Each of these random solutions are then
refined by perturbing for fixed number of times to get a solution that dominates
the previous one. Upon finding a solution that dominates the original solution, it
is added to a list. After continuing this for all γ×SL number of solutions, all the
dominated solutions are discarded and non dominating solutions are kept in an
Archive. If the size of this Archive is more than HL, then the solution population
in the Archive is clustered to select and keep only HL number of solutions in the
Archive. The main AMOSA process now starts with this Archive.

During the main AMOSA process, which starts with HL number of non
dominating solutions in the Archive, whenever the size of the Archive becomes SL
(SL¿HL), the solutions are clustered to make group of HL number of clusters. From
each of these HL number of clusters, the solution or point within each cluster whose
average distance to other member of the cluster is the minimum is considered as
the representative member of the cluster. These HL number of representative
solutions are selected and kept in the Archive discarding the other solutions. In
next iteration of the process, one solution from the Archive is picked up as current
point to continue the process as discussed above. In [30], Bandyopadhyay et al. use
Single linkage clustering algorithm [91] where every point of the population is first
linked to another point having the shortest distance between them to form clusters
and then the distance between any two clusters corresponding to the shortest link
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between them are grouped to form clusters. This clustering process goes on till it
reaches the number of clusters desired to obtain in the process. The complexity
of Single linkage clustering is found to be of O(SL2 × log(SL)) [30, 92].

5.3 Representation of the View Selection Prob-

lem for Applying AMOSA

In case of Big data DFS framework, the data warehouse is basically very few Key-
Value paired tables or semi-structured tables with or without primary key based
relations or indices where queries are triggered as shown in Figure 5-5 for process-
ing. These queries are composed of some sub-queries and aggregation functions.
For analytical processing some queries are triggered very frequently on this Big
data which share some sub-queries or sub-expressions and/or aggregation func-
tions that are considered as the candidate views for materializing to speedup
the total query processing for an application. In DFS the data access pattern
is mainly dominated by data transfer rate and MapReduce costs unlike RDBMS
based warehousing where the data access pattern is mainly dominated by seeks
and seek time. It has been presented (in Chapter 4) that if the results of some sub-
queries and aggregate functions used in these queries are materialized or saved,
then in subsequent execution of the queries, MapReduce overheads of executing
these sub-queries or views are not to be incurred. In DFS based Big data man-
agement, block size and split size are fixed. Therefore smaller number of bigger
views are preferred for materializing.

5.3.1 Representing view selection problem for Big data

The materialized view selection problem for Big data has been stated (in Chap-
ter 4) as - for a set of n number of frequent queries Q ={q1, q2, · · · , qn} on a data
warehouse, where V is the set of m intermediate views generated by Q, if V ′ ⊆ V
is the set of views V ′ ={v1, v2, · · · , vp} that are materialized, then if

∑p
i=1Mvi is

the MapReduce cost of processing V ′, CQ
∅ =

∑n
i=1Mqi is the total query process-

ing cost of Q without materializing, and Uvi , i = 1, 2 · · · , p are the maintenance
MapReduce overheads for the set of materialized views vi ∈ V ′, i = 1, 2 · · · p, the
following objective functions are to be minimized-

CQ
V ′ = CQ

∅ −
p∑
i=1

Mvi (5.9)

U(V ′) =

p∑
i=1

Uvi (5.10)
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Figure 5-5: Big data query responding

and

|V ′| = p (5.11)

with a constraint on the total space required for materializing p number of views
AV ′ =

∑p
i=1Avi , Avi being the storage space required by ith materialized view.

From the objective functions defined by Equations 5.9, 5.10 and 5.11, and
the associated space constraint, it is evident that the objective function values of
this optimization problem depend on the set of views selected from the candidate
set of views for materializing. Therefore for applying AMOSA, by using this notion
of the problem, a solution is to be represented as a set of views.

5.3.2 Solution representation

Perturbing an already obtained solution for generating a new solution for applying
AMOSA means removing one or more views from the current set of views, or
adding one or more views, or both adding and removing few views from a solution
set of views. Therefore, to make solution generation and perturbation easy, instead
of representing solutions as sets of different cardinality, they may be represented
as vectors with number of dimensions as the total number of candidate views and
each dimension value representing presence or absence of a view. Thus in this
vector representation of solution, a solution may be represented as a string of bits.
Perturbation can be performed by just changing one or more dimensions of the
vector, i.e just changing values of bits from 1 to 0 or 0 to 1. Selected number of
views as expressed by Equation 5.11, may be measured by counting the number
of dimensions where the corresponding bit in the string is 1.
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5.4 AMOSA for Materialized View Selection

The AMOSA as presented in [30] has been customized for handling the materi-
alized view selection problem and is referred hence forth as AMOSA for Materi-
alized View Selection (AMOSA-MVS). In AMOSA-MVS algorithm, the solution
vectors are represented as string of bits. The diversity of the solution population is
maintained in the solution space instead of the objective function space to yield a
limited number of non dominated solutions having maximum dissimilarity with re-
spect to combination of views selected. Instead of using Single-Linkage clustering
for controlling solution population by maintaining their diversity, AMOSA-MVS
uses dissimilarity based sorting of solutions which is discussed in Section 5.4.2.
The details of AMOSA-MVS is discussed in sub-sections of this section.

5.4.1 Initializing the archive of solutions

At the beginning of the process, a solution vector is randomly generated. Then
a list of γ × SL, (γ > 1) number of solutions are generated by changing random
number of dimensions of the initial solution vector. For doing this, a random
integer i is generated in the range [1, D], where D is the number of dimensions of
the solution vector. For i iterations, again a random integer j is generated in the
range [1, D] and the j-th dimension of the solution vector, i.e the j-th bit of the
solution vector, is changed from 0 to 1 or 1 to 0. This process of generating new
solutions continued till γ×SL number of different solution vectors are generated.
Each of these solutions are then perturbed again for a specific number of iterations
to generate a new solution vector that dominates the original solution. Whenever
during the iteration process a new dominating solution is found, the iteration stops
and the original solution is replaced by the newly generated dominating solution.
If a new dominating solution is not found even after the specified number of
iterations, the original solution remains in the list. Now from the final list of
solutions, all the dominated solutions are removed and all the non dominated
solutions are stored in an Archive. A hard limit, HL, is defined as the maximum
number of non-dominated and sufficiently different solutions that are to be yielded
by the algorithm at the end. Therefore, at the beginning of the annealing process,
the Archive size is restricted to HL. For doing this, the solutions in the Archive
are sorted on their dissimilarity measure with respect to other solutions in the
Archive and HL number of most dissimilar solutions are filtered out to keep in
the Archive as discussed in Section 5.4.2 below.

5.4.2 Enforcing diversity in solution space for restricting
the archive size

Any two solution vectors in the Archive may be very close in objective function
space whereas they may be far from each other in their solution vector space.
Therefore, if diversity among solution vectors of the Archive is enforced in objective
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Algorithm 8: Initialization of solution population Archive

Require: SL,HL,D,γ,iterations, space constraint, CQ
∅ , Mvi=1,··· ,m , Uvi=1,··· ,m ,

Avi=1,··· ,m

Ensure: Archive of maximum HL number of non dominated solutions
1: Curr Sol ← (Randomly generated string of D number of bits)
2: Archive Size = 0
3: while Archive Size < (γ × SL -1) do
4: New Sol ← perturb(Curr Sol)
5: if New Sol satisfies the space constraint and New Sol /∈ Archive then
6: Archive Size = Archive Size + 1
7: reallocate Archive for size Archive Size
8: Archive[Archive Size-1] ← New Sol
9: end if
10: end while
11: for i = 0 to (Archive Size-1) do
12: Curr Sol ← Archive[i]
13: for j = 1 to iterations do
14: New Sol ← perturb(Curr Sol)
15: if New Sol /∈ Archive then
16: compute CQ

New Sol, C
Q
Curr Sol, UNew Sol, UCurr Sol, |New Sol|,|Curr Sol|

17: if (New Sol ≺ Curr Sol) and (New Sol satisfies the space
constraint) then

18: Curr Sol ← New Sol
19: break
20: end if
21: end if
22: end for
23: Archive[i] ← Curr Sol
24: end for
25: for i = 0 to (Archive Size-1) do
26: Curr Sol ← Archive[i]
27: for j = 0 to (Archive Size-1) do
28: if i 6= j then
29: New Sol ← Archive[j]
30: Compute CQ

New Sol, C
Q
Curr Sol, UNew Sol, UCurr Sol, |New Sol|,|Curr Sol|

31: if (New Sol ≺ Curr Sol) then
32: Remove Curr Sol from Archive
33: Archive Size ← (Archive Size -1)
34: reallocate Archive for size Archive Size
35: break
36: end if
37: end if
38: end for
39: end for
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Algorithm 9: Initialization of solution population Archive - (continued)

40: if Archive Size > HL then
41: for i = 0 to (Archive Size-1) do
42: MaxDist[i] ← Maximum distance w.r.t Archive[i] and all other

solutions in Archive
43: end for
44: Sort Archive w.r.t corresponding MaxDist in descending order
45: keep only top HL solutions discarding others by re-allocating the Archive
46: Archive Size ← HL
47: end if
48: Return Archive

Figure 5-6: Restricting solution population in AMOSA-MVS

function space for reducing or restricting the solution population to HL number
of solutions, some solutions with a very different set of views may be lost in
the process. Therefore, in AMOSA-MVS the diversity of solution vectors are
maintained in solution space instead of objective function space while controlling
the solution population in the Archive.

For restricting the Archive size to HL by enforcing diversity in solution
space, the distance from each solution of the Archive to each of the other solu-
tions in the Archive are measured for finding the maximum distance value of each
solution in the Archive with respect to other solutions. Upon finding the maxi-
mum distance value of each solution, say Maxi for ith solution in the Archive, the
solution vectors are sorted in descending order of their maximum distance Maxi.
From the sorted list of solutions the top HL number of solutions are retained in
the Archive discarding the rest of the solutions as depicted in Figure 5-6 for two
dimensional solution vectors. During the main AMOSA process, the Archive size
is allowed to increase up to the limit SL, where SL > HL, and then the Archive
size is reduced to HL by this method. But during initialization time, as suggested
in [30], if the size of the initially generated and filtered Archive size is more than
HL, the size of the Archive is reduced by the said method even if the size is less
than SL.

5.4.3 The main process of AMOSA-MVS

From the initial Archive, a solution vector is randomly chosen as current point, say
it is denoted as current point, for the initial temperature T = Tmax. A new point,
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say it is denoted as new point, is generated by altering some of the dimensions of
the current point randomly. That is, a random number of views that are present
in the current solution vector are dropped and equal number of views that are
not selected in the current solution are added to generate a new solution vector
new point. In case of conventional RDBMS based data warehousing applications
the total query processing cost, materialized view maintenance cost and space cost
for the considered MVPP DAG are to be evaluated for both the solution vectors.
Similarly, in case of Big data warehousing with DFS processing framework, the
total query processing cost as in Equation 5.9, materialized view maintenance
cost as in Equation 5.10, number of views selected as defined by Equation 5.11
and total space requirement by the views selected are computed for both the
solutions. Thus by computing these cost functions, the domination status between
the current point and the new point is checked. Bandyopadhyay et al. applied 5.6
and 5.8 as probability functions to ensure probability within 0 and 1 for accepting
a dominated solution as a solution for keeping in next generation [30].

If the current point dominates the new point, expressed as current point
≺ new point, and k(k ≥ 0) number of solution vectors of the Archive dominate
the new point, then the new point is selected as current point with probability
defined by Equation 5.6. The average domination ∆domaverage is computed as
in Equation 5.7. For computing ∆domaverage, the amount of domination between
the two solution vectors current point and new point is computed as follows. For
three objectives of materialized view selection in case of DFS and MapReduce
frame work say, (i.) f1(current point) and f1(new point) are the objective func-
tions for total query processing cost of the current point and the new point, (ii.)
f2(current point) and f2(new point) are the objective functions for view mainte-
nance cost of solutions current point and new point and (iii.) f3(current point)
and f3(new point) are the objective functions for number of views selected in so-
lutions current point and new point respectively, the amount of domination may
be computed as :

∆domcurrent point,new point = (|f1(current point)− f1(new point)|)/R1

×(|f2(current point)− f2(new point)|)/R2

×(|f3(current point)− f3(new point)|)/R3,

where the ranges R1, R2 and R3 are the difference between maximum objec-
tive function values and minimum objective function values found for solutions
in the Archive as well as the current point and the new point for the respective
objective functions f1, f2 and f3. When k increases, ∆domaverage also increases,
because dominating points farther away from the current point means increase in
the amount of domination. Therefore Bandyopadhyay et al. in [30] suggest using
∆domaverage for the probability value in this case since dominating points farther
away from the current point also contribute to the probability.

If the current point and the new point are non dominating with respect to
each other but the new point is dominated by k(k ≥ 1) points of the Archive, then
the new point is selected as the current point with probability expressed by Equa-
tion 5.6. Here ∆domaverage =

∑k
i=1(∆domi,new point)/k. In case the current point
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and the new point are non dominating and the new point and the solutions in
the Archive are also non dominating with them, the new point is selected as the
current point and the solution is added to the Archive. The moment Archive size
becomes more than SL, the number of solutions in the Archive are reduced to HL
as discussed in Section 5.4.2. But in case the current point and the new point are
non dominating with respect to each other and the new point dominates k(k > 1)
solutions in the Archive, the new point is added to the Archive and selected as
current point and all the k dominated solutions in the Archive are removed.

In case the new point dominates the current point, and k(k ≥ 1) number
of solutions in the Archive dominate the new point, the solution in the Archive
which corresponds to the minimum difference of amount of domination between the
new point and the current point is selected as the current point with probability
expressed by Equation 5.8. In this case obviously the current point is not in the
Archive. If the probability is not equal to which is evaluated by Equation 5.8,
the new point is selected as the current point. But if the new point dominates
the current point and the new point neither dominates any other solutions in
the Archive nor any solution in the Archive dominates the new point, then the
new point is accepted as the current point and added to the Archive and if the
current point is in the Archive, (as it may happen here,) it is to be removed. Here,
if the current point was not in the Archive, number of solutions may become more
than SL after appending the new point. After appending If number of solutions in
the Archive becomes more than SL, then some of the solutions are removed from
the Archive maintaining diversity among the solutions as discussed in Section 5.4.2.
When the new point dominates the current point as well as k(k ≥ 1) number of
solutions in the Archive, all the k dominated solutions of the Archive are removed
and the new point is selected as current point for next iteration and added to the
Archive.

This process is executed for a specified number of iterations in each tem-
perature T . T is then reduced by a cooling rate α , i.e, T is decremented as
T = α×T . The process continues till it reaches a specified minimum temperature
Tmin. At Tmin, the process stops and the Archive contains the final set of non
dominated solutions.

5.4.4 Parameter selection

The parameters for SA based algorithms are selected based on their applications,
i.e, they depend on the dimensions, objectives and required performance level of
the problem. The parameters for AMOSA that are to be optimized are - initial
temperature Tmax, the terminating temperature of the annealing process Tmin,
cooling schedule α(0 < α < 1), and number of iterations in each temperature T .
By observing the performance analysis and suggestions in [61] and [30], the value of
α is chosen in the range [0.5, 0.9]. The maximum temperature Tmax, and minimum
temperature Tmin are preferred 200 and around 10−5 respectively for comparing
this algorithm’s performance with the performances of evolutionary algorithms
like NSGA-II with around 100 initial population or Archive size. The number
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Algorithm 10: Archived Multi-Objective Simulated Annealing for Materi-
alized View Selection (AMOSA-MVS)

Require: Tmax,Tmin, HL, SL, iterations, α, D, CQ
∅ , Mvi=1,··· ,m , Uvi=1,··· ,m ,

Avi=1,··· ,m , space constraint
Ensure: Archive of mutually non-dominated solutions
1: Initialize Archive as an array of maximum HL number of distinct solution

strings of D bits
2: Archive Size ← length of(Archive)
3: Curr Sol ← a randomly selected solution from the Archive
4: T ← Tmax
5: while T > Tmin do
6: for i = 0 to i < iterations do
7: repeat
8: New Sol ← perturb(Curr Sol)
9: until New Sol satisfies space constraint
10: Compute CQ

New Sol, C
Q
Curr Sol, UNew Sol, UCurr Sol,

number of views(New Sol), number of views(Curr Sol)
11: if (Curr Sol≺ New Sol) and (k(k ≥ 0) solutions in Archive ≺

New Sol) then
12: if random(0,1)< 1

1+exp(∆domaverage×T )
then

13: Curr Sol ← New Sol
14: end if
15: else if (Curr Sol ⊀ New Sol) and (New Sol ⊀ Curr Sol) then
16: if k(k ≥ 1) solutions in Archive ≺ New Sol then
17: if random(0,1)< 1

1+exp(∆domaverage×T )
then

18: Curr Sol ← New Sol
19: end if
20: else if New Sol ≺ k(k ≥ 1) solutions in Archive then
21: Curr Sol ← New Sol
22: Archive Size ← Archive Size + 1
23: re-allocate Archive for size Archive Size
24: Archive[(Archive Size-1)] ← Curr Sol
25: Remove all k dominated solutions from Archive by re-allocating
26: Archive Size ← Archive Size - k
27: else
28: Curr Sol ← New Sol
29: Archive Size ← Archive Size + 1
30: re-allocate Archive for size Archive Size
31: Archive[(Archive Size-1)] ← Curr Sol
32: if Archive Size > SL then
33: for i = 0 to (Archive Size-1) do
34: MaxDist[i]← Maximum distance w.r.t Archive[i] and all other

solutions in Archive
35: end for
36: Sort Archive w.r.t corresponding MaxDist in descending order
37: keep only top HL solutions discarding others by re-allocating the

Archive
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Algorithm 11: Continued- second page - Archived Multi-Objective Simu-
lated Annealing for Materialized View Selection (AMOSA-MVS).

38: Archive Size ← HL
39: end if
40: end if
41: else if New Sol ≺ Curr Sol then
42: if k(k ≥ 1) solutions in Archive ≺ New Sol then
43: if random(0,1)< 1

1+exp(−∆dommin)
then

44: Curr Sol ← solution in Archive corresponding to ∆dommin

45: else
46: Curr Sol ← New Sol
47: end if
48: else if New Sol ≺ k(k ≥ 1) solutions in Archive then
49: Curr Sol ← New Sol
50: Archive Size ← Archive Size-k
51: Remove k dominated solutions and re-allocate Archive
52: Archive Size ← Archive Size+1
53: re-allocate Archive for size Archive Size
54: Archive[(Archive Size-1)] ← Curr Sol
55: else
56: if Curr Sol ∈ Archive then
57: Archive Size ← Archive Size-1
58: Remove Curr Sol from Archive and re-allocate
59: end if
60: Archive Size ← Archive Size + 1
61: re-allocate Archive for size Archive Size
62: Curr Sol ← New Sol
63: Archive[(Archive Size-1)] ← Curr Sol
64: if Archive Size > SL then
65: for i = 0 to (Archive Size-1) do
66: MaxDist[i]← Maximum distance w.r.t Archive[i] and all other

solutions in Archive
67: end for
68: Sort Archive w.r.t corresponding MaxDist in descending order
69: keep only top HL solutions discarding others by re-allocating the

Archive
70: Archive Size ← HL
71: end if
72: end if
73: end if
74: end for
75: T=α× T
76: end while
77: if Archive Size > SL then
78: for i = 0 to (Archive Size-1) do
79: MaxDist[i]← Maximum distance w.r.t Archive[i] and all other

solutions in Archive
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Algorithm 12: Continued- third page - Archived Multi-Objective Simulated
Annealing for Materialized View Selection (AMOSA-MVS).

80: end for
81: Sort Archive w.r.t corresponding MaxDist in descending order
82: keep only top HL solutions discarding others by re-allocating the Archive
83: Archive Size ← HL
84: end if
85: Return Archive

of iterations in each temperature of 100 to 500 are good choice for analyzing
performances with other evolutionary algorithms and SA based algorithms because
similar parameter values have been used for comparing by other algorithms [27,30,
60, 61]. In popular evolutionary algorithms and multi-objective SA using binary
encoded solution vectors of three objectives optimization on standard test problem,
10 to 20 dimensions are mostly used [27, 30, 60, 61]. In case of view selection
problem, the number of dimensions or number of candidate views for selection
may be of much higher than these standard test problems. But the cost functions
or objective functions are of less complex than the standard test problems that
have been used in [27, 30, 60, 61]. Therefore, higher dimensional solution vectors
are used in this application for comparing performances among the algorithms, as
presented in Section 5.5.

5.4.5 Complexity analysis

The time complexities of different AMOSA-MVS processes are -

• Initializing the Archive at the beginning of the AMOSA process is O(SL).
Where SL is the maximum limit, termed as the soft limit, on maximum
number of solutions that may be present in the archive of solutions and HL
is the hard limit on number of solution population to which the number of
solutions are reduced when it becomes more than SL.

• To check the domination status between two solutions with M objectives is
O(M).

• Domination status checking process between a solution and all solutions
already in the Archive is O(M × SL).

• Computing maximum distance (Maxi) from each solution to other solutions
in the Archive is O(SL2).

• Sorting the solutions in the Archive on maximum distance values (Maxi) of
the solutions is O(SLlogSL).

The computation of maximum distance of each solution to other solutions in the
Archive and then the solutions are to be sorted on this maximum distance values
assigned to them in following 3 cases [30].
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Case 1. When non dominated solutions in the initial Archive is more than
HL.

Case 2. After each (SL−HL) number of iterations.

Case 3. At the end of the annealing process, if the size of the Archive becomes
more than HL.

Therefore maximum number of times the computation of maximum distance mea-
sure of each solution and sorting of solutions on maximum distance assigned to
each solution are to be done equals to (Total iterations/(SL−HL)) + 2. There-
fore the complexity of maximum distance measure computation and sorting of
solutions based on this is:

O((
Total iterations

(SL−HL)
)× (SL2 + SLlogSL)).

Thus the total complexity becomes

O((Total iterations)× (SL+M +M × SL)

+(
Total iterations

(SL−HL)
× (SL2 + SLlogSL))).

Let HL = N . Then for SL = β × HL, where β ≥ 2, SL = βN . Therefore, the
complexity can be expressed as

O((Total iterations)× (βN +M +M × βN +
1

βN −N
× (β2N2 + βNlogβN)))

= O((Total iterations)× (βN +M +M × βN +
βN

βN −N
× (βN + logβN)))

= O((Total iterations)× (βN +M +M × βN +
β

β − 1
× (βN + logβN)))

= O((Total iterations)× (N +M +M ×N + (N + logN)))

As N and M are less than MN , the overall complexity may be expressed as

O((Total iterations)× (MN + logN)) (5.12)

In materialized view selection problem for Big data warehouse with MapReduce
and DFS framework, three objectives are considered i.e M = 3. Therefore in this
application the overall complexity is

O((Total iterations)× (N + logN)) (5.13)

The complexity of NSGA-II and Multi-objective DE for Binary Encoded Solutions
for materialized view selection have been found to be O((Total iterations)N2).
The complexity of generalized AMOSA is O((Total iterations)×N×(M+logN)).
Therefore if Single-Linkage clustering based AMOSA presented in [30] is used for

120



5.4. AMOSA for Materialized View Selection

materialized view selection, the complexity will be O((Total iterations) × (N ×
logN)).

5.4.6 Convergence

Though there have been some convergence proofs for multi-objective evolutionary
algorithms [63, 93], in case of Simulated Annealing (SA) based non-deterministic
global multi-objective optimizers the proof of convergence is yet to be well devel-
oped. In [64], it has been proved that with a suitable choice of the acceptance
probabilities, SA for multi-objective optimization yields asymptotic convergence.
But this proof is based on transforming multi-objective optimization by combining
the objectives as a weighted sum of objectives and this composite objective is then
used as the energy to be minimized by scalar SA optimizer.

Table 5.1: Convergence (γ)

Number of Number of AMOSA-MVS MODE-BE NSGA-II
queries candidate views γ γ γ

109 51 0.6549 0.2229 0.2874
60 51 0.8877 0.2732 0.1235
50 51 0.5967 0.7592 0.1342
20 25 1.6296 0.5317 1.5023

Average 0.942225 0.44675 0.51185

The convergence measure γ presented in [32] is used for measuring the
extent of convergence by an algorithm to a known set of Pareto optimal solu-
tions. Smaller γ value means lesser distance from the true Pareto front. But the
non-deterministic multi-objective optimization techniques are applied on those
problems, where the true Pareto optimal solutions are not known. Therefore
the convergence measure γ may be computed with respect to a set of uniformly
spaced solutions from a set of Pareto optimal solutions obtained by other ac-
cepted algorithms for comparative analysis. In this case the measure γ reflects
the relative convergence quality only. While experimenting with the setup and
data sets presented in Section 5.5 and with algorithm specific parameters in Sub-
section 5.5.2.1 for AMOSA-MVS, MODE-BE and NSGA-II in selection of views
to materialize in data warehouse by binary encoded solution representation, the
convergence measure γ are evaluated as presented in Table 5.1. The convergence
measures presented in Table 5.1 are evaluated by considering the results where
the maximum number of solutions remain non dominated with respect to all non
dominated solutions obtained by other algorithms while executing the implemen-
tations for 20 times. It has been observed from Table 5.1 that the average value
of γ for AMOSA-MVS is 0.942225 with 0.5967 being the minimum and 1.6296
being the maximum, MODE-BE is 0.44675 with 0.2229 being the minimum and
0.7592 being the maximum and that of NSGA-II is 0.51185 with 0.1235 being
the minimum and 1.5023 being the maximum. The convergence measure γ by
Binary-coded NSGA-II for test problems ZDT3, ZDT4 and ZDT6 suggested by
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Zitzler et al. in [75] are found to be 0.043411, 3.227636 and 7.806798 respectively
by Deb et al. [32] where 30 bits of decision variables are used in solution strings of
these problems with two objective functions. By observing these empirical data,
the AMOSA-MVS in selecting views for materializing is accepted as asymptotic
to the true Pareto front.

5.5 Experimental Results and Performance

Analysis

The comparative performance of AMOSA-MVS with respect to MODE-BE and
NSGA-II has been reported in this section with experimental setup, test data sets,
parameters, performance comparison metrics and obtained results in following
sub-sections.

5.5.1 Experimental setup and test data sets

In this work, Hortonworks Data Platform (HDP) version 2.0.6 with Hortonworks
Sandbox version 2.0 VMware for 64 bit CentOS operating system workstation of
version 6.5-7.x virtual machine [83] have been used. Hadoop version 2.2.0 and Hive
version 0.12.0 of Apache [80] have been used for executing HiveQL queries to gen-
erate log files for extracting query processing, view processing, view maintenance
MapReduce CPU time and the size of candidate views for materializing. HiveQL
queries on Lahman baseball database [84] and associated intermediate views, as
presented in Chapter 4 have been used for our experimentation. Other than the
20 queries and 25 associated views presented in Chapter 4 and presented as data
set 4 in Section 5.5.1.1 below, which was implemented for a recommendation sys-
tem for selecting views to materialize using real-life situation log-file containing
different Map-Reduce and space costs against queries and views implemented in
real-life Lahman baseball database [84], another set of data, referred as data set 1
in Section 5.5.1.1 is generated for 109 queries and 51 candidate views for experi-
menting with higher dimensional data. Out of the data set 1, two other data sets
have been generated for 50 and 60 queries sharing the 51 candidate views of data
set 1.

The MapReduce CPU cost of processing the queries, materialized view
creation and maintenance of the materialized views and sizes of the candidate
views for materializing are extracted from the system and related log-file. The
test queries are designed such a way that the shared sub-queries of selection,
join and projection and other aggregation functions for considering as candidate
materialized views are easily distinguishable. These test-data are then entered
manually as input to the three different materialized view selection systems that
uses AMOSA-MVS, Multi-Objective Differential Evolution Algorithm using Bi-
nary Encoded Data (MODE-BE), and NSGA-II for analyzing their performances.

122



5.5. Experimental Results and Performance Analysis

5.5.1.1 Test data sets

The different MapReduce costs and view sizes for queries and shared views that
have been used as input to the materialized view selection programs are presented
below. Here labels q1, q2 · · · q109 are used to represent the queries and v1, v2 · · · v51

are the labels representing the sub-queries or views. The MapReduce CPU time
costs are presented as pairs of labels representing queries or views and corre-
sponding costs in Seconds. Similarly the view sizes are presented in terms of
Mega Bytes(MB).
Data set 1:This data set is generated for 109 queries and 51 candidate views
synthesized for experimenting with higher dimensional data in the experimental
setup.

• Query processing MapReduce CPU time in Seconds: {q1, 15.5},{q2,
6}, {q3, 14.57}, {q4, 18.42}, {q5, 19.92}, {q6, 27.08}, {q7, 29.67}, {q8, 36.02},
{q9, 27.73 }, {q10, 30.65}, {q11, 27.78}, {q12, 30.01 }, {q13, 24.24 }, {q14,23.49
}, {q15, 21.22}, {q16,27.97 }, {q17, 31.51 }, {q18, 27.08}, {q19, 24.25}, {q20,
24.25 }, {q21, 22.57 }, {q22, 24.6}, {q23, 23.26}, {q24, 24.09}, {q25, 25.88},
{q26, 25.18}, {q27, 28.74}, {q28, 28.74}, {q29, 33.54}, {q30, 29.17}, {q31,
25.46}, {q32, 24.79}, {q33, 17.41}, {q34, 14.49}, {q35, 12.54}, {q36, 18.14},
{q37, 14.21}, {q38, 10.67}, {q39, 6.67 }, {q40, 10.72}, {q41, 6.01}, {q42, 14.3},
{q43, 13.15}, {q44, 10.09}, {q45, 9.15}, {q46, 11.28}, {q47, 10.41}, {q48, 10.41},
{q49, 10.41}, {q50, 10.77}, {q51, 10.46}, {q52, 7.58}, {q53, 10.77}, {q54, 13.71},
{q55, 17.01}, {q56, 5.55}, {q57, 15.84}, {q58, 10.66}, {q59, 12}, {q60, 11.36},
{q61, 8.52}, {q62, 10.89}, {q63, 8.52}, {q64, 10.39}, {q65, 10.39}, {q66, 11.55},
{q67, 10.39}, {q68, 11.12}, {q69, 10.18}, {q70, 6.64}, {q71, 15.53}, {q72, 10.42},
{q73, 12.79}, {q74, 10.42}, {q75, 5.58}, {q76, 2.46}, {q77, 13.23}, {q78, 7.82},
{q79, 11.29}, {q80, 11.36}, {q81, 7.15}, {q82, 11.53}, {q83, 16.34}, {q84, 10.43},
{q85, 7.8}, {q86, 8.96}, {q87, 12.48}, {q88, 22.56}, {q89, 16.72}, {q90, 13.93},
{q91, 10.14}, {q92, 10.14}, {q93, 10.14}, {q94, 10.89}, {q95, 13.33}, {q96, 5.78},
{q97, 7.65}, {q98, 5.78}, {q99, 9.57}, {q100, 13.71}, {q101, 21.3}, {q102, 13.34},
{q103, 13.34}, {q104, 14.24}, {q105, 7.8}, {q106, 10.28}, {q107, 14.84}, {q108,
7.94}, {q109, 16.18}.

• View processing MapReduce CPU time in Seconds: {v1, 3.79},{v2,
4.79}, {v3, 3.9}, {v4, 3.54}, {v5, 1.87}, {v6, 5.11}, {v7, 2.36}, {v8, 4.38},
{v9, 3.47}, {v10, 4.48}, {v11, 2.84}, {v12, 1.78}, {v13, 1.16}, {v14, 4.79},
{v15, 3.59}, {v16, 3.72}, {v17, 0.51}, {v18, 3.68}, {v19, 4.19}, {v20, 3.55},
{v21, 3.56}, {v22, 2.18}, {v23, 0.56}, {v24, 1.8}, {v25, 1.48}, {v26, 4.01}, {v27,
1.82}, {v28, 3.59}, {v29, 0.84}, {v30, 3.5}, {v31, 5.55}, {v32, 0.49}, {v33, 3.42},
{v34, 3.96}, {v35, 0.67}, {v36, 1.95}, {v37, 2.7}, {v38, 4.01}, {v39, 1.56}, {v40,
3.59}, {v41, 4.84}, {v42, 1.65}, {v43, 2.97}, {v44, 2.63}, {v45, 2.62}, {v46,
3.24}, {v47, 1.35}, {v48, 2.23}, {v49, 1.9}, {v50, 2.39}, {v51, 1.7}.

• View maintenance MapReduce CPU time in Seconds: {v1, 4.7},{v2,
5.69}, {v3, 4.02}, {v4, 3.7}, {v5, 2.04}, {v6, 5.52}, {v7, 3.07}, {v8, 4.48},
{v9, 3.72}, {v10, 4.71}, {v11, 2.94}, {v12, 2.55}, {v13, 1.38}, {v14, 5.15},
{v15, 4.03}, {v16, 3.91}, {v17, 0.61}, {v18, 4.32}, {v19, 4.43}, {v20, 4.51},
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{v21, 3.91}, {v22, 2.93}, {v23, 1.5}, {v24, 2.31}, {v25, 1.71}, {v26, 4.78}, {v27,
2.33}, {v28, 4.27}, {v29, 1.24}, {v30, 3.55}, {v31, 6.01}, {v32, 1.08}, {v33,
3.6}, {v34, 4.54}, {v35, 1.41}, {v36, 2.3}, {v37, 3.69}, {v38, 4.46}, {v39, 2.02},
{v40, 3.82}, {v41, 5.51}, {v42, 2.2}, {v43, 3.97}, {v44, 3.47}, {v45, 3.62}, {v46,
3.68}, {v47, 1.98}, {v48, 2.78}, {v49, 2.68}, {v50, 2.57}, {v51, 1.82}.

• Size of candidate views for materializing in MBs: {v1, 4.93},{v2,
9.78}, {v3, 5.85}, {v4, 4.83}, {v5, 2.22}, {v6, 9.69}, {v7, 3.55}, {v8, 5.69},
{v9, 5.67}, {v10, 9.38}, {v11, 3.96}, {v12, 3.87}, {v13, 2.42}, {v14, 6.17},
{v15, 7.03}, {v16, 5.05}, {v17, 0.82}, {v18, 7.31}, {v19, 5.19}, {v20, 5.17},
{v21, 7.34}, {v22, 3.67}, {v23, 2.71}, {v24, 3.65}, {v25, 1.78}, {v26, 9.35},
{v27, 4.16}, {v28, 6.74}, {v29, 2.4}, {v30, 6.97}, {v31, 7.73}, {v32, 1.91}, {v33,
6.54}, {v34, 6.84}, {v35, 2.19}, {v36, 4.38}, {v37, 4.66}, {v38, 7.62}, {v39,
2.36}, {v40, 6.84}, {v41, 9.37}, {v42, 3.35}, {v43, 4.81}, {v44, 5.34}, {v45,
7.17}, {v46, 4.32}, {v47, 3.37}, {v48, 5.11}, {v49, 4.97}, {v50, 3.14}, {v51,
3.24}.

• Candidate view and number of queries that access them: {v1,
43},{v2, 17}, {v3, 8}, {v4, 15}, {v5, 17}, {v6, 8}, {v7, 7}, {v8, 6}, {v9,
5}, {v10, 7}, {v11, 5}, {v12, 25}, {v13, 5}, {v14, 28}, {v15, 14}, {v16, 7}, {v17,
7}, {v18, 12}, {v19, 7}, {v20, 4}, {v21, 3}, {v22, 20}, {v23, 1}, {v24, 16}, {v25,
17}, {v26, 8}, {v27, 1}, {v28, 5}, {v29, 10}, {v30, 8}, {v31, 14}, {v32, 13}, {v33,
4}, {v34, 16}, {v35, 12}, {v36, 6}, {v37, 1}, {v38, 13}, {v39, 5}, {v40, 12}, {v41,
45}, {v42, 3}, {v43, 7}, {v44, 6}, {v45, 1}, {v46, 1}, {v47, 18}, {v48, 1}, {v49,
10}, {v50, 4}, {v51, 6}.

Data sets 2 and 3: Data sets 2 and 3 are not separately generated but extracted
from data set 1. In data set 2, cost function values of 60 queries from data set 1
was considered which share the 51 views considered in data set 1. Similarly in
data set 3 the cost function values of 50 queries from data set 1 was considered
which share the 51 views.

Data set 4: The 20 queries and 25 associated views presented in Chapter
4 which was implemented for a recommendation system for selecting views to
materialize, using real-life situation log-file containing different Map-Reduce
and space costs against queries and views designed and implemented in real-life
Lahman baseball database [84] is referred here as data set 4.

• Query processing MapReduce CPU time in Seconds: {q1, 45.05},{q2,
37.62}, {q3, 37.35}, {q4, 42.59}, {q5, 25.51}, {q6, 24}, {q7, 25.48}, {q8, 38.87},
{q9, 29.77}, {q10, 18.29}, {q11, 22.57}, {q12, 14.15}, {q13, 12.68}, {q14, 29.27},
{q15, 13.83}, {q16, 20.56}, {q17, 22.04}, {q18, 21.82}, {q19, 2.39}, {q20, 2.31}.

• View processing MapReduce CPU time in Seconds: {v1, 11.52},{v2,
16.34}, {v3, 19.43}, {v4, 14.16}, {v5, 8.37}, {v6, 13.85}, {v7, 6.84}, {v8,
11.74}, {v9, 7.75}, {v10, 15.71}, {v11, 16.98}, {v12, 6.02}, {v13, 20.12}, {v14,
11.05}, {v15, 13.76}, {v16, 6.61}, {v17, 10.73}, {v18, 10.11}, {v19, 1.84}, {v20,
7.28}, {v21, 16.38}, {v22, 8.07}, {v23, 6.99}, {v24, 11.58}, {v25, 2.3}.
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• View maintenance MapReduce CPU time in Seconds: {v1, 4.02},{v2,
8.23}, {v3, 4.03}, {v4, 2.6}, {v5, 6}, {v6, 13.04}, {v7, 11.5}, {v8, 3.2}, {v9,
6.45}, {v10, 5.8}, {v11, 10.03}, {v12, 5.03}, {v13, 4.6}, {v14, 6.8}, {v15, 5.4},
{v16, 4.5}, {v17, 2.2}, {v18, 4.3}, {v19, 5.4}, {v20, 3}, {v21, 5}, {v22, 9}, {v23,
7.2}, {v24, 9.3}, {v25, 5.8} .

• Size of candidate views for materializing in MBs: {v1, 2.2},{v2,
2.236}, {v3, 2.151}, {v4, 2.2}, {v5, 0.267}, {v6, 2.9}, {v7, 0.0956}, {v8,
0.296}, {v9, 0.001}, {v10, 0.316}, {v11, 0.313}, {v12, 0.0252}, {v13, 3.252},
{v14, 0.3}, {v15, 0.294}, {v16, 0.026}, {v17, 0.021}, {v18, 0.297}, {v19, 0.519},
{v20, 0.061}, {v21, 0.314}, {v22, 0.075}, {v23, 0.07}, {v24, 0.299}, {v25, 0.487}.

• Candidate view and number of queries that access them: {v1, 2},{v2,
2}, {v3, 1}, {v4, 2}, {v5, 1}, {v6, 2}, {v7, 1}, {v8, 1}, {v9, 2}, {v10, 1}, {v11,
1}, {v12, 1}, {v13, 1}, {v14, 2}, {v15, 1}, {v16, 1}, {v17, 1}, {v18, 1}, {v19, 1},
{v20, 1}, {v21, 1}, {v22, 2}, {v23, 2}, {v24, 1}, {v25, 2}.

5.5.2 Experimentation and results

The data sets presented in Section 5.5.1 was applied as input in implementations
of AMOSA-MVS, Multi-Objective Differential Evolution Algorithm using Binary
Encoded data (MODE-BE), and NSGA-II based system for materialized view
selection. These 3 implementations are executed for several times (i.e, 20 times)
using the data sets presented in Section 5.5.1 and the result sets for maximum
Purity [94](see Section 5.5.3), i.e, where the maximum number of solutions remain
non dominated considering the all non dominated solutions obtained by other
algorithms, are considered for analysis.

5.5.2.1 Parameters used and obtained solutions

In the set of experimentation with AMOSA-MVS algorithm, the maximum size
of the Archive i.e SL was fixed at 150 and when the archive size becomes more
than 150, some of the solutions in the Archive are discarded to reduce the number
of solutions to 75 as discussed in Section 5.4.2, i.e, the HL value is defined as
75. The initial value of temperature Tmax was set as 200 and that of Tmin used
as 0.0000002. The value of α was set as 0.8. The number of iterations in every
temperature in the annealing process was set as 300. For data set 1,2 and 3 the
constraint on minimum size for the set of materialized views was set as 25MB. For
data set 4, the constraint of minimum size of materialized views was set as 3MB.

While experimenting with MODE-BE algorithm based materialized view
selection, the amplification factor F was set as 0.7 and cross-over ratio CR was
set as 0.6. the population size NP used as 100 and is allowed to grow up to 200
after which the population size is controlled or reduced by preserving diversity in
solution space as discussed in Chapter 4. That is, the value of Γ was set as 2.
Here for 100 number of generations the process was set to run. In case of NSGA-II
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based view selection, the CR value was set as 0.5 for 100 generations with initial
100 solution population in the archive which was allowed to increase maximum up
to double of this size in intermediate generations and after which the population
was controlled as suggested in [32].

The objective function values obtained by the yielded solutions that are
considered for performance analysis are presented in tables 5.2, 5.3, 5.4, 5.5, 5.6,
5.7, 5.8, 5.9, 5.10, 5.11, 5.12 and 5.13.

5.5.3 Comparison measures

In case of multi-objective optimization by randomized algorithms, the performance
of algorithms may be analyzed in different ways. The main measures used for per-
formance analysis of non-deterministic multi-objective optimization techniques are
(1) the measure on how the obtained solutions converge towards the true Pareto
front, (2) the number or fraction of obtained solutions that are non dominating
with respect to the known Pareto front and (3) the distribution of solutions in the
Pareto front or in the solution space. In case of selection of materialized views,
the goal is to find sets of views as solutions such that these solution sets converge
to the true sets of solutions that minimizes query processing costs, materialized
view maintenance costs and number of materialized views with respect to size of
the views. Thus the obtained solutions should be nearest to the true solutions and
they should be well represented from the actual complete set of non-dominated
solutions. By a single measuring parameter these can not be measured. Therefore
two types of measures have been used to evaluate the quality of obtained solu-
tions. One for measuring the fraction of solutions that remain non-dominated with
respect to all solutions by other algorithms i.e the Purity [94] of solutions. And
the second type of measure for measuring the extent of Convergence [32] of the
solution set to an already known set of Pareto optimal solutions with uniformity
of the Spacing between the solutions over the non dominated front [32, 89, 94].
These measures are defined below.
Purity: The Purity measure is used to compare the solutions obtained by differ-
ent multi-objective optimization techniques by calculating the fraction of solutions
from one particular technique that remains non-dominating by considering the all
non-dominated solutions obtained by all other techniques that are considered for
comparing [94]. The Purity value near 1 indicates better performance and the
value near 0 means poorer performance. If the solutions obtained by an algorithm
yields Purity value 1, then the the algorithm may be considered as the fittest for
the application, because all the solutions it has produced are not dominated by
solutions produced by any other algorithm so far.
Convergence measure γ: The Convergence measure denoted by γ measures the
extent of convergence to a known set of Pareto-optimal solutions. For computing
Convergence as suggested in [32], first the set of non dominating solutions obtained
by already used algorithms for the application considered, H, are found and then
for each solution obtained with an algorithm, the minimum Euclidean distance of
it from chosen solutions of H on the Pareto-optimal front are computed and the
average of these minimum distances is used as the Convergence measure γ. The
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Figure 5-7: Purity

lower the value γ, better is the convergence of the solution set obtained to the
true Pareto optimal front.
Spacing and Minimal Spacing: Other than Convergence and Purity measure,
the algorithms are also analyzed for how the solutions are distributed over the
known true Pareto front. The multi-objective optimization techniques are ba-
sically aimed at getting a set of solutions that spans the entire Pareto-optimal
region. For measuring the span of solutions, Schott [89] proposed the measure of
Spacing, S, to reflect the uniformity of the solutions over a non-dominated front.
The spaceing, S is computed as expressed below.

S =

√√√√ 1

|Q|

|Q|∑
i=1

(di − d)2 (5.14)

where di = mink∈Q and k 6=i
∑M

m=1 |f im − fkm| and f im ( or fkm) is the mth objective
value of the ith (or kth) solution in the final non-dominated solution set Q , d
is the mean value of all dis. A value of S near 0 indicates that the solutions
are uniformly distributed over the Pareto optimal front. But in cases where the
complete true Pareto front is not known or only a segment of the front is considered
for computing S, this measure may be unable to indicate the actual spaces in
between the solutions in the front. Therefore in [94] a modified measure named
Minimal Spacing, Sm is proposed, where |Q| is replaced by |Q| − 1 as actually
|Q| − 1 number of distances are considered for measuring. Again there may be
diverse objective function values. Therefore, the term |f im − fkm| is divided by
|Fmax
m − Fmin

m | to normalize the objective function values, where Fmax
m and Fmin

m

are the maximum and minimum objective function values respectively of mth
objective. Bigger value of Sm reflects that solutions are not uniformly distributed
over the known Pareto-optimal front. If uniformly distributed larger number of
solutions are desired then smaller value of S or Sm indicates better performance.
But if fewer number widely spread solutions in objective function space are to be
extracted, then bigger value of S or Sm is better.
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Figure 5-8: Convergence metric (γ)

Figure 5-9: Minimal spacing between solutions on estimated true Pareto front

Table 5.6: MODE-BE generated solutions’ objective function values considering
109 number of queries and 51 views. Number of initial solutions = 2487.

Sol. Query View Number Total [D]ominated/
Sl.No. processing maintenance of views view [N]on-dominated

cost cost selected size solutions by
(in Seconds) (in Seconds) (in MB) other algorithms.

1. 124.18 129.14 37 197.29 N
2. 157.17 128.42 36 198.11 N
3. 183.88 125.4 34 190.34 N
4. 184.42 122.69 35 189.55 N
5. 187.08 119.02 31 183.86 N
6. 198.37 115.19 32 174.03 N
7. 210.8 116.56 31 180.42 N
8. 218.33 115.71 31 178.79 N
9. 221.56 113.33 33 177.55 N
10. 222.01 115.74 30 176.14 N
11. 222.38 114.53 31 174.12 N
12. 228.63 112.56 31 171.76 N
13. 231.92 110.89 33 166.37 N
14. 236.77 112.18 30 171.57 N
15. 241.26 109.98 30 165.6 N

Continued on next page
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Table 5.6 – continued from previous page

Sol. Query View Number Total [D]ominated/
Sl.No. processing maintenance of views view [N]on-dominated

cost cost selected size solutions by
(in Seconds) (in Seconds) (in MB) other algorithms.

16. 249.65 109.66 31 170.59 N
17. 249.85 109.11 30 166.57 N
18. 249.9 108.84 32 165.52 N
19. 257.02 109.35 29 164.1 N
20. 261.99 108.45 29 162.42 N
21. 263.33 107.8 32 163.85 N
22. 263.45 105.26 28 161.17 N
23. 266.97 103.92 29 154.94 N
24. 270.28 105.19 28 162.12 N
25. 274.26 105.65 27 159.88 N
26. 278.1 103.35 29 155.57 N
27. 281.55 102.64 27 156.07 N
28. 292.13 100.61 27 152.91 N
29. 297.25 100.22 28 153.51 N
30. 302.08 101.52 26 152.26 N
31. 316.87 98.97 28 152.79 N
32. 318.36 94.96 27 145.31 N
33. 323.61 95.23 26 145.26 N
34. 326.78 98.42 24 152.73 N
35. 333.24 91.53 26 139.08 N
36. 346.76 91.44 24 136.66 N
37. 353.44 89.87 24 135.95 N
38. 356.48 90.74 23 134.15 N
39. 369.15 87.63 26 133.5 N
40. 377.52 87.56 24 130.95 N
41. 396.8 88.14 23 139.75 N
42. 397.96 85.1 24 127.15 N
43. 401.15 90.47 22 137.36 N
44. 428.66 83.45 25 122.88 N
45. 431.08 86.95 22 132.9 N
46. 452.92 82.09 23 121.62 D
47. 456.55 84.32 22 133.2 D
48. 457.13 80.24 21 124.78 N
49. 472.32 79.54 22 122.16 N
50. 474.28 79.11 22 121.92 N
51. 476.61 76.94 23 114.38 N
52. 503.05 76.42 21 117.27 N
53. 504.1 82.68 20 125.49 N
54. 516.88 75.84 20 111.89 N
55. 524.4 75.13 20 113.64 N
56. 531.57 72.93 18 107.14 N

Continued on next page
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Table 5.6 – continued from previous page

Sol. Query View Number Total [D]ominated/
Sl.No. processing maintenance of views view [N]on-dominated

cost cost selected size solutions by
(in Seconds) (in Seconds) (in MB) other algorithms.

57. 536.57 72.44 19 108.49 N
58. 559.96 66.24 19 98.33 N
59. 607.53 69 18 107.94 N
60. 651.5 64.4 19 94.18 N
61. 658.18 66.41 16 101.53 D
62. 685.91 61.46 17 94.89 D
63. 687.89 66.02 16 100.6 D
64. 692.07 60.16 16 88.21 D
65. 726.05 57.54 14 84.09 N
66. 818.85 54.89 18 82.55 D
67. 820.6 52.69 16 78.33 D
68. 937.27 50.62 16 77.36 D
69. 973.71 47.87 16 68.83 D
70. 1002.54 45.97 15 70.61 D
71. 1019.05 42.71 13 60.75 N

Table 5.10: NSGA-II generated solutions’ objective function values considering
109 number of queries and 51 views. Number of initial solutions = 5015

Sol. Query View Number Total [D]ominated/
Sl.No. processing maintenance of views view [N]on-dominated

cost cost selected size solutions by
(in Seconds) (in Seconds) (in MB) other algorithms.

1. 1381.99 19.7 7 27.97 N
2. 1368.75 32.87 10 47.94 N
3. 1210.3 33.7 11 53.5 N
4. 1192.64 39.48 12 62.24 D
5. 1150.16 42.49 12 63.57 N
6. 1084.72 37.52 13 58.24 N
7. 1069.11 40.09 13 57.43 N
8. 1065.4 42.12 13 65.62 N
9. 1062.05 42.62 13 66.32 N
10. 1052.05 42.56 15 62.7 N
11. 1012.29 44.57 13 62.63 N
12. 976.22 42.95 14 63 N
13. 930.36 44.91 13 70.37 N
14. 887.53 47.94 15 71.02 N
15. 799.51 49.87 15 70.94 N
16. 764.3 50.62 13 76.96 N
17. 754.63 54.65 16 75.65 N
18. 754.48 58.22 17 84.04 D

Continued on next page
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Table 5.10 – continued from previous page

Sol. Query View Number Total [D]ominated/
Sl.No. processing maintenance of views view [N]on-dominated

cost cost selected size solutions by
(in Seconds) (in Seconds) (in MB) other algorithms.

19. 747.36 56 18 83.64 N
20. 717.48 58.53 15 90.62 N
21. 665.06 60.95 15 90.41 N
22. 652.81 59.36 16 86.89 N
23. 652.53 62.82 18 92.73 N
24. 637.06 64.5 16 97.38 N
25. 602.46 65.13 18 95.32 N
26. 589.43 69.81 18 105.91 N
27. 581.57 66.74 19 99.33 D
28. 581.47 68.12 19 98.77 D
29. 574.57 73.17 19 110.35 D
30. 573.82 74.17 21 110.29 D
31. 551.6 76.48 20 116.26 D
32. 546.57 75.64 22 112.31 D
33. 487.46 76.62 21 113.72 N
34. 451.3 81.34 22 121.95 N
35. 433.36 83.4 23 124.17 N
36. 409.57 90.34 25 140.37 D
37. 408.61 91.93 24 142.79 D
38. 407.1 91.34 26 138.07 D
39. 399.05 93.69 24 141.87 D
40. 394.19 92.21 25 139.69 D
41. 387.94 92.81 25 145.43 D
42. 386.78 94.15 25 146.02 D
43. 383.79 95.01 25 148.79 D
44. 378.85 95.41 25 148.53 D
45. 374.03 94.56 26 140.62 D
46. 369.82 93.72 28 146.09 D
47. 365.19 95.41 26 147.02 D
48. 361.56 99.62 27 153.32 D
49. 334.83 100.82 27 156.76 D
50. 303.06 103.27 28 161.23 D
51. 296.74 112.6 30 175.8 D
52. 280.38 109.85 31 168.71 D
53. 263.57 118.31 33 176.32 D
54. 237.34 121.23 35 187.5 D
55. 184.3 138.94 40 209.53 D
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Table 5.2: AMOSA-MVS generated solutions’ objective function values consid-
ering 109 number of queries and 51 views. Number of initial solutions considered=
3975.

Sol. Query View Number Total [D]ominated/
Sl.No. proc. maint. of view [N]on-dominated

cost cost views size solutions by
(in (in select (in MB) other
Seconds) Seconds) ed algorithms.

1. 661.84 100.6 32 148.64 D
2. 680.5 84.13 27 128.54 D
3. 751.26 83.52 27 129.21 D
4. 754.83 82.91 26 128.39 D
5. 814.62 78.98 26 122.37 D
6. 898.3 78.62 26 119.17 D
7. 972.63 77.4 25 119.02 D
8. 973.35 77.33 25 119.05 D
9. 1004.71 72.62 24 109.67 D
10. 1033.51 70.31 23 106.02 D
11. 1159.04 36.01 10 52.27 N
12. 1226.68 35.73 10 54.13 N
13. 1267.19 32.56 10 54.13 N
14. 1442.95 29.11 10 46.72 D

5.5.4 Comparative analysis

The Purity, Convergence and Minimal Spacing values obtained by AMOSA-MVS,
MODE-BE and NSGA-II algorithms in materialized view selection for data ware-
housing in our experimentation using the data sets in Section 5.5.1 above are
presented in Tables 5.14, 5.1 and 5.15 respectively. Though all the algorithms
show acceptable values of performance measures, MODE-BE results are found to
be consistently well performing among these three techniques in our experimental
setup. In case of materialized view selection problem, for large dimensional prob-
lem, i.e, with large number of queries and views it is not possible to find the true
Pareto front beforehand. In our comparison metrics, only the segment of the front
that has been obtained by the considered algorithms have been used. MODE-BE
and NSGA-II both are evolutionary algorithms where cross-over and mutations
among solutions are done for generating new candidate solution. Whereas in
case of AMOSA-MVS new candidate solutions are generated by perturbing one
or more dimensions of one solution vector at a time during large number of itera-
tions in the annealing process. Therefore, randomized function based generation
of solutions by perturbing values of dimensions of solution vectors from randomly
selected solution vector as in case of AMOSA-MVS may produce distant solutions
in objective function space.

In this set of experimentation, though in higher dimensional test data
it has been observed that MODE-BE and NSGA-II generated solutions are of
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Table 5.3: AMOSA-MVS generated solutions’ objective function values consid-
ering 60 number of queries and 51 views. Number of initial solutions considered=
3975.

Sol. Query View Number Total [D]ominated/
Sl.No. processing maintenance of views view [N]on-dominated

cost cost selected size solutions by
(in Seconds) (in Seconds) (in MB) other algorithms.

1. 471.93 56.18 18 84.31 D
2. 771.74 36.57 11 53.04 D
3. 702.44 36.39 11 52.49 D
4. 816.32 29.95 8 41.2 N
5. 863.62 28.99 8 43.23 N
6. 925.63 25.84 8 38.14 N

Table 5.4: AMOSA-MVS generated solutions’ objective function values consid-
ering 50 number of queries and 51 views. Number of initial solutions considered=
3975.

Sol. Query View Number Total [D]ominated/
Sl.No. processing maintenance of views view [N]on-dominated

cost cost selected size solutions by
(in Seconds) (in Seconds) (in MB) other algorithms.

1. 93.96 104.54 33 152.42 D
2. 717.62 21.58 6 32.05 N
3. 162.2 99.01 31 143.8 D

higher Purity, AMOSA-MVS produced highest Purity value in smaller dimensional
problem ( as in Table 5.14). In Table 5.1, the Convergence measures are presented.
Here it is observed that AMOSA-MVS produced acceptable convergence measure
γ despite measuring it with respect to large number of non-dominated solutions
obtained from MODE-BE and NSGA-II. Overall it is observed that MODE-BE
algorithm converges very well empirically in this application.

From Table 5.15, it is observed that in higher dimensional cases, AMOSA-
MVS based solutions are of largest value of minimal spacing indicating least uni-
formity in their distribution in the Pareto front. But in case of one data set,
the AMOSA-MVS and MODE-BE generated solutions’ minimal spacing values
are less than that of NSGA-II generated solutions. In most cases, as MODE-BE
and NSGA-II yield comparatively larger number of solutions in the Pareto front
than that of AMOSA-MVS (as seen in Tables 5.2 to 5.13), there is possibility of
getting smaller minimal spacing value. By looking at these comparison metrics,
it has been observed that AMOSA-MVS with its less computational complexity
(as discussed in Section 5.4.5), yields comparable quality of solutions with respect
to MODE-BE and NSGA-II for selecting views to materialize in data warehouses
which use Big data framework with Distributed File System architecture.
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Table 5.5: AMOSA-MVS generated solutions’ objective function values consid-
ering 20 number of queries and 25 views. Number of initial solutions considered=
4000.

Sol. Query View Number Total [D]ominated/
Sl.No. processing maintenance of views view [N]on-dominated

cost cost selected size solutions by
(in Seconds) (in Seconds) (in MB) other algorithms.

1. 323.11 56.17 11 8.98 N
2. 331.91 53.82 10 9.47 N
3. 338.61 49.72 10 8.98 N
4. 343.65 50.62 9 9.17 N
5. 348.29 48.82 9 9.15 N
6. 352.59 42.52 9 8.91 N
7. 359.87 39.52 8 8.85 N

5.6 Discussion

In this endeavor, AMOSA algorithm has been applied for materialized view selec-
tion problem considering Data warehouse query performance, built on Big data
or Big-table based Distributed File System Architecture termed as Hadoop Dis-
tributed File System frame work. The fundamental AMOSA algorithm designed
by Bandyopadhyay et al. in [30] has been adapted with modification for control-
ling solution population by maintaining diversity in solution space using distance
based measure for filtering solutions during annealing process unlike the Single-
linkage clustering used in the original AMOSA algorithm. This version of AMOSA
for materialized view selection problem is termed as AMOSA-MVS.

By sorting the solution vectors on minimum distances of each solution
vectors to all other solutions in the Archive in solution space and discarding so-
lutions with smaller minimum distances for maintaining diversity instead of using
clustering based technique as used in original AMOSA algorithm, the complexity
of AMOSA-MVS algorithm is remarkably reduced and yet the solutions yielded
by this algorithm found to be of comparable quality with respect to other sim-
ilar randomized algorithms with higher computational complexities. In case of
higher dimensional problem, it is not possible to find the true Pareto front be-
forehand. Therefore, when randomized algorithms are used for such problems, at
different instances, an algorithm may produce different sets of solutions and for
that a different comparison metrics of Purity, Convergence and Minimal spacing
may be found. In our experimentation randomly maximum 109 queries with 51
sub-queries, that may be converted to views for materializing, are used with their
MapReduce CPU time cost for experimenting with higher dimensional data. An-
other real-life data set of 20 HiveQL queries with 25 associated views, implemented
for a real-life situation data warehousing for generating cost function values is used
in this Multi-Objective Simulated Annealing Algorithm based recommendation
system.
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Table 5.7: MODE-BE generated solutions’ objective function values considering
60 number of queries and 51 views. Number of initial solutions considered= 2545.

Sol. Query View Number Total [D]ominated/
Sl.No. processing maintenance of views view [N]on-dominated

cost cost selected size solutions by
(in Seconds) (in Seconds) (in MB) other algorithms.

1. 6.12 73.78 19 109.8 N
2. 29.21 73.89 18 110.36 N
3. 34.8 69.36 18 102.62 N
4. 37.51 68.16 21 100.97 N
5. 39.75 71.84 17 109.17 N
6. 48.51 69.11 18 104.28 N
7. 48.8 64.94 19 97.41 N
8. 52.02 65.52 17 97.78 N
9. 100.02 64.75 19 96.47 N
10. 104.22 62.86 17 93.44 N
11. 119.62 58.92 17 89.04 N
12. 165.7 56.57 17 84.76 N
13. 191.88 60 16 90.35 N
14. 208.3 59.39 16 92.99 D
15. 220.11 52.44 15 76.05 N
16. 297.03 49.99 16 77 N
17. 319.98 48.83 16 75.52 N
18. 387.58 46.96 14 69.9 D
19. 483.87 41.67 15 62.06 D
20. 614.9 40.43 12 64.37 D

In [30], Bandyopadhyay et al. mention that the main time consuming pro-
cedure in basic AMOSA algorithm is the clustering part. Therefore, in AMOSA-
MVS algorithm, this clustering part is replaced with a simpler method. The
AMOSA-MVS, MODE-BE and NSGA-II algorithm with test data generated by
processing queries in a stand-alone version of testing platform with Hadoop and
Hive system have been used for implementing multi-objective optimization tech-
nique in selecting views to materialize. Though by randomly generated experi-
mental data, the actual convergence properties and quality of solutions can not
be established, yet by looking at the performance comparison measures with re-
spect to that of already established test problems and algorithms, AMOSA-MVS
is found to be acceptable for selecting views to materialize in data warehouses.
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Table 5.8: MODE-BE generated solutions’ objective function values considering
50 number of queries and 51 views. Number of initial solutions considered=2520

Sol. Query View Number Total [D]ominated/
Sl.No. processing maintenance of views view [N]on-dominated

cost cost selected size solutions by
(in Seconds) (in Seconds) (in MB) other algorithms.

1. 13.71 57.04 16 86.32 N
2. 90.06 53.42 15 76 N
3. 159.49 49.74 15 73.42 D
4. 174.71 53.5 14 83.07 D
5. 268.38 47.56 15 70.4 D

Table 5.9: MODE-BE generated solutions’ objective function values considering
20 number of queries and 25 views. Number of initial solutions considered=2899

Sol. Query View Number Total [D]ominated/
Sl.No. processing maintenance of views view [N]on-dominated

cost cost selected size solutions by
(in Seconds) (in Seconds) (in MB) other algorithms.

1. 371.95 21.08 5 8.81 N
2. 382.68 18.88 4 8.79 N
3. 388.25 17.85 5 6.89 N
4. 391.38 17.05 4 6.66 N
5. 398.98 15.65 4 6.87 N
6. 402.11 14.85 3 6.64 N
7. 404.63 12.85 4 6.57 N
8. 414.42 13.03 3 4.46 N
9. 415.36 10.65 3 6.55 N
10. 424.06 8.82 3 4.42 N
11. 425.15 10.83 2 4.44 N
12. 434.79 6.62 2 4.4 N
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Table 5.11: NSGA-II generated solutions’ objective function values considering
60 number of queries and 51 views. Number of initial solutions considered= 5040.

Sol. Query View Number Total [D]ominated/
Sl.No. processing maintenance of views view [N]on-dominated

cost cost selected size solutions by
(in Seconds) (in Seconds) (in MB) other algorithms.

1. 686 30.7 10 47.89 N
2. 584.45 43.09 10 62.83 N
3. 523.03 35.4 11 52.82 N
4. 495.22 39.29 12 60.01 N
5. 479.38 39.89 13 61.19 N
6. 420 41.92 12 58.93 N
7. 413.07 43.75 12 63.49 N
8. 378.45 45.36 12 69.1 N
9. 369.85 42.58 14 60.19 N
10. 339.75 45.94 16 65.98 N
11. 329.02 46.77 13 67.02 N
12. 322.63 48.63 14 74.45 N
13. 308.72 48.87 16 71.99 N
14. 297.78 51.35 14 71.94 N
15. 286.02 55.85 14 79.29 N
16. 280.79 56.76 14 86.24 N
17. 266.41 57.02 13 84.58 N
18. 239.17 50.57 15 72.39 N
19. 238.87 54.45 17 81.11 D
20. 238.63 56.36 15 78.11 D
21. 237.75 56.53 18 83.6 D
22. 233.13 56.75 17 84.44 D
23. 193.99 57.67 15 89.47 N
24. 193.7 60.09 19 86.9 D
25. 174.62 60.39 16 87.25 N
26. 158.69 61.84 16 93.95 N
27. 143.28 68.07 17 102.38 D
28. 133.9 62.73 18 86.48 D
29. 131.95 72.27 17 108.78 D
30. 131.47 60.86 19 91.46 N
31. 117.43 69.84 18 99.18 D
32. 108.25 65.67 19 96.8 D
33. 102.41 66.87 19 101.17 D
34. 99.9 69.36 21 101.77 D
35. 98.1 70.89 19 99.64 D
36. 89.86 70.21 21 102.73 D
37. 55.69 75.8 18 112.73 D
38. 37.27 71.56 20 103.01 D
39. 34.02 72.86 19 103.75 N
40. 2.09 73.15 21 106.13 N
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Table 5.12: NSGA-II generated solutions’ objective function values considering
50 number of queries and 51 views. Number of initial solutions considered= 5163.

Sol. Query View Number Total [D]ominated/
Sl.No. processing maintenance of views view [N]on-dominated

cost cost selected size solutions by
(in Seconds) (in Seconds) (in MB) other algorithms.

1. 461.65 34.04 10 52.1 N
2. 339.74 37.03 11 53.47 N
3. 332.99 41.71 12 63.57 N
4. 301.09 42.52 12 64.59 N
5. 267.7 43.24 12 67.44 N
6. 260.28 44.74 13 69.56 N
7. 254.56 45.56 13 68.09 N
8. 178.62 46.11 12 68.37 N
9. 134.05 47.84 14 71.77 N
10. 127.65 52.36 15 78.04 N
11. 114.93 54.65 14 86.42 N
12. 99.36 56.87 14 86.36 N
13. 59.13 55.53 15 79.87 N
14. 58.02 54.28 16 83.25 N
15. 56.82 59.29 17 83.77 D
16. 46.69 59.69 17 88.96 D
17. 40.15 60.16 17 92.36 D
18. 28.94 60.36 16 88.54 D
19. 14.48 61.28 18 91.83 D
20. 4.54 63.18 17 95.69 N
21. 2.56 64.34 17 97.86 N

Table 5.13: NSGA-II generated solutions’ objective function values considering
20 number of queries and 25 views. Number of initial solutions considered=4888

Sol. Query View Number Total [D]ominated/
Sl.No. processing maintenance of views view [N]on-dominated

cost cost selected size solutions by
(in Seconds) (in Seconds) (in MB) other algorithms.

1. 231.74 92.68 14 14.91 N
2. 197.1 122.43 20 16.16 N
3. 454.45 13.9 2 3.55 D
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Table 5.14: Purity

Number of AMOSA-MVS MODE-BE NSGA-II
queries, shared views

109, 51 0.2143 0.8451 0.4909
60, 51 0.5 0.8 0.6
50, 51 0.3 0.4 0.7619
20, 25 1 1 0.6667

Table 5.15: Minimal Spacing

Number of AMOSA-MVS MODE-BE NSGA-II
queries, shared views

109, 51 0.1655 0.0228 0.0410
60, 51 0.1247 0.0497 0.0630
50, 51 0.6665 0.0592 0.0737
20, 25 0.0296 0.0211 0.2782
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