
Chapter 1

Introduction

We are drowning in an ocean of data. Every minute Email users send over
200 million messages, Twitter users tweet nearly 300,000 times, YouTube users
upload 72 hours of new video content, Instagram users post nearly 220,000 new
photos and Amazon generates over $80,000 in online sales1. Facebook stores more
than 300 petabyte of data in their Hive technology based data warehouse with
an incoming rate of around 600 terabyte of data every minute which is increasing
three times every year2. During the month of August 2015, there were 1.49 billion
daily users of Facebook3.

Historical data are manipulated for deriving data for analysis by applying
analytical operations such as ratios, totals, trends, allocations across dimensions
and across hierarchical levels to plan and forecast for better productivity and earn-
ings by defining gaps and deciding on new strategies. These analytical processing
do not require any transaction processing. Therefore these historical data are kept
separately in data warehouses. Inmon in [1] defines data warehouse as Definition 1
below.

Definition 1. A data warehouse is a subject-oriented, integrated, time-variant
and non-volatile collection of data in support of management’s decision making
process.

The results of some of the very expensive analytical operations on data
warehouse may be saved for using them by other similar subsequent analytical
processing on these huge volume of data. Therefore, data warehouse views are
used to pre-compute and store aggregated data of a central theme such as the
sum of sales, grouped by different classifications of the theme. For example, total
sales from January to June in a year, total quarterly sales in a particular region
of a country in a specific year, total sales by a dealer etc.. The views are often
referred to as summaries in data warehouses, because they are used to store sum-

1Guneltus, S. in: The data explosion in 2014 minute by minute infographic, 2014. URL
http://aci.info/

2As posted in ”https://code.facebook.com” in October 2015
3The US edition of The Times of India, September 13, 2015.

1

Chapter 1. Introduction

marized data. They are also used to pre-compute database joins with or without
aggregations.

Definition 2. In database theory, a view is the result set of a stored query on
the data, which the database users can query just as they would in a persistent
database collection object.

Materialized or stored views as defined in Definition 3 below are primarily
used to eliminate the overhead associated with expensive joins and aggregations
for a number of selected queries when they are executed again and again.

Definition 3. In computing, a materialized view is a database object that con-
tains the results of a query or a portion of a query.

Materialized views are also can be used to replicate data at distributed sites
and to synchronize updates at distributed sites with conflict resolution methods
for distributed computing. Again materialized views may be used as replicas to
provide local access to data that otherwise would have to be accessed from remote
sites. In mobile computing, materialized views can be used to download a subset
of data from central servers to mobile clients with periodic updates between the
mobile clients and the central servers.

Large amounts of storage space are required for materializing the views.
Materializing view also incurs maintenance costs for periodic refreshing and up-
dates. Therefore it is not feasible to save all views of a data warehouse. And
hence, an optimum set of views are selected for materializing.

In this thesis an analysis of applying few randomized search methods,
customized for selecting views for materializing, is presented.

This chapter focuses on introducing the use of materialized views in data
warehouse and the materialized view selection problem as multi-objective opti-
mization problem. The objectives of this research work, contributions and orga-
nization of this thesis are also presented in this chapter.

1.1 Data Warehousing and Materialized Views

Data warehouse consolidates data in multidimensional space by integrating data
from multiple heterogeneous data sources. Data warehouses are used for interac-
tive analysis of multidimensional data of different levels of granularity for making
strategic decisions. They are maintained separately from operational database
as they are used only for analysis for using as support system for management’s
decision making process and do not require any transaction processing. The basic
operations of data analysis on data warehouse are analytical processing by On
Line Analytical Processing (OLAP) system. Thus Data warehouses are historical
operational data for analytical processing and data mining [2–4]. In case of op-
erational database, basic operation is transactional processing. Therefore data in

2

1.1. Data Warehousing and Materialized Views

operational database may change for every transactional operation performed on
them. While making strategic decision by analytical processing, the database is
considered to be unchanged during the considered period. Therefore, from mul-
tiple transactional databases data are uploaded periodically to a data warehouse
for analytical processing later on. For analytical processing, aggregated or consol-
idated measures of some selected entities of the transactional information system
over a large historical period are useful which are not very important in case of
transactional database. Therefore the data warehouses are maintained separately
from transactional database to maintain the performance of both the systems.
Data warehouses are designed considering a central theme of measure on different
related entities. The entities that are measured and used by OLAP functions for
analyzing the central theme are termed as dimensions of the data warehouse. The
number of enquiries may be the central theme of a data warehouse for Example 1
below.

Example 1. The Indian Railways run around 7000 passenger trains daily. There
are 18 different types of trains or services for passengers with 10 different classes of
services in them connecting 7112 stations managed by 17 different administrative
zones. Indian Railway carries around 13 million passengers every day. Most of the
passengers make enquiry regarding availability of different services before booking
a service4.

In Example 1, the enquiries are made on real time transactional database
to get the latest updated information. On the other hand for strategic planning,
the users needs may be analyzed by studying different enquiries triggered to the
system without any transactional updating. All the queries made over a time
period to the system may be recorded and loaded to a separate data warehouse.
For strategic decisions, different OLAP operations are to be performed on this data
warehouse of enquiries made regarding different services or entities at different
times of the organization. Hence, aggregated values on number of queries on
different dimensions or entities with different granularity may be recorded in the
data warehouse for quicker response of OLAP queries.

1.1.1 Multidimensional data model

Data warehouse and OLAP functions are conceptualized based on a multidimen-
sional data model. This multidimensional model is termed as data cube. The data
cube concept visualizes data modeled in multiple dimensions. These dimensions
are the entities, of which measures are to be recorded for analysis [2–4]. For our
Example 1, we may design a data warehouse of central theme enquiry to keep
number of queries made with respect to the dimensions zones, types of trains and
time. In Relational Database Management System (RDBMS) based data ware-
house, for each dimension, a table may be associated. These tables are called
dimension tables. Numerical measures on different dimensions on the main sub-
ject of interest or central theme are called the facts of the data warehouse and

4http://www.indianrailways.gov.in/

3

Chapter 1. Introduction

Figure 1-1: Data cube representing a data warehouse.

are represented by a central fact table. In case of Example 1, number of queries
made with respect to different zones, stations, routes, types of services and time
of inquiries are the facts that are to be recorded in a fact table. The data cube
representing the data warehouse in Example 1 may be represented as Figure 1-1.
A cube in geometry is a 3-D geometric structure, however in case of data ware-
housing, the data cube is of n-dimensional for n number of dimensions on which
facts or measures are recorded. As depicted in Figure 1-1, cuboids for each of the
subsets of given dimensions may be generated. Different degrees of summarized
measures or data are stored in these cuboids. Thus, lattice of cuboids providing
data at a different level of aggregation or ”group by” is formed. These lattices
of cuboids are termed as data cubes. Figure 1-2 represents a lattice of cuboids
as a data cube for dimensions type, zone and year. The cuboid keeping lowest
level of summarized value is called the base cuboid and cuboid containing highest
level of summarisation is called the apex cuboid. The value of a measure in a
data cube is a numerical function evaluated for a given point by aggregating the
data corresponding to the specific dimension and value pairs. Some example of
aggregating functions are sum(), min(), max() and count(). Again a dimension
may have several levels of concept hierarchies, e.g. the time dimension based on
the attributes day, week, month, quarter and year on which aggregated values
are to be kept (see Figure 1-3). For implementing data cube concept of data
warehousing in entity-relationship data model, three types of modeling paradigm
called star-schema, snow-flake schema and fast constellation schema are used [2,4].
These schema basically contain a central fact table containing the primary-keys
of other dimension tables as foreign key and related measures or values. The
dimension tables contain a primary key field and the hierarchical data. For ex-

4

1.1. Data Warehousing and Materialized Views

Figure 1-2: A lattice of cuboids

ample the fields in a fact table may be time key, service type key, location key
and number of inquiries. Similarly dimension table time may contain fields like
time key, time of day, day, day of the week, month, quarter, year. Mainly four
types of OLAP operations are performed on multidimensional data model based
data warehouses. The OLAP operations are termed as Roll-up, Drill-down, Slice
and dice and pivot (rotate) [2]. The roll-up is performed for aggregating values
reducing one or more dimensions from the data cube like representing number of
queries about a service in a period of time by summing up values of all different
zones where the zone dimension is removed. The Drill-down is the reverse oper-
ation of roll-up. That is, by drill-down, data in a new dimension are added by
evaluating and exploding the aggregated values in the new dimension. The slice
operation is selection of one dimensional data of a cube and the dice operation is
for generating a sub-cube by performing a selection on two or more dimensions.
The pivot is a data visualization operation by rotating the data axes to present
an alternative view of the data in the data cube.

1.1.2 Aggregations of data as data warehouse views

The main design consideration of data cube based multidimensional data ware-
house is efficient computation of aggregations of data across different dimensions.
In SQL implementation of multidimensional data warehouse, the aggregations
across dimensions are performed by group-by clause of SQL. Thus a cuboid is
represented by an SQL group-by clause. Thus a set of SQL group-by forms a
lattice of cuboids or data cube [2–4]. An example SQL implementation of data
cube is presented below.

Example 2. SQL implementation of a data cube

5

Chapter 1. Introduction

Figure 1-3: Representation of hierarchies in Data cube

SELECT s.time_key, s.service_type_key, s.location_in_zone_key,

SUM(s.numb_of_enquiry)

FROM enqiry s, time m, service_type t, zone z,

WHERE s.time_key=m.time_key

AND s.service_type_key=t.service_type_key

AND s.location_in_zone_key=z.location_in_zone_key

GROUP BY s.time_key, s.service_type_key, s.location_in_zone_key;

For three dimensions there may 23=8 number of possible ”group-by”s like
(zone, type, year), (zone, type), (zone, year), (type, year), (zone), (type), (year),
(). Thus for n-dimensional data cube, there will be total 2n number of cuboids.
Again many of the dimensions have hierarchies. So, for n-dimensional data cube,
Πn
i=1(Li+1) number of cuboids can be generated, where Li represents the number

of levels or hierarchies associated with a dimension i. (Li + 1) is used to include
the top level i.e group-by all [2]. Analytical processing on data warehouse accesses
different cuboids for responding decision support queries. Therefore, all or at
least some of the cuboids in a data cube may be computed in advance during an
analytical processing session to make query response faster. These pre-computed
aggregations are termed as data warehouse views.

6

1.1. Data Warehousing and Materialized Views

1.1.3 Materialized views for efficient computation of data
cubes

Some data warehouse views may be generated frequently in different analytical
processing sessions by some frequent queries in a period of time in the past on the
data warehouse. Therefore these views may be saved or stored in the data ware-
house as materialized views to avoid redundant computations while responding
OLAP queries. Thus materialized views make query response significantly faster.
For large number of dimensions, conceptual hierarchies in dimensions, and their
cardinality, the storage space requirement for materializing these views may ex-
ceed the size of the data warehouse as many of the group-by’s size may exceed the
size of the input relation or base table [2,4]. Again, the data warehouses are to be
periodically updated with corresponding operational database. Whenever there is
a change in the data warehouse, the materialized views are also to be updated [3].
Therefore it is not realistic to materialize all of the views [3,4]. The computation
cost of aggregations while responding OLAP queries may be substantially reduced
by accessing materialized views. But substantial overhead for materializing these
views do not encourage materialized views. In [4], a greedy algorithm referred as
HRU Greedy algorithm has been proposed to determine which cuboids should be
precomputed for materializing.

1.1.4 Materializing views in RDBMS technology

Most of the popular RDBMS technologies have incorporated the materialized view
feature as a component in their data warehousing platforms, where SQL query can
be used to materialize view for improving query response time. In RDBMS based
data warehousing environment, the schema could be a star-schema, snow-flake
schema or fast constellation schema without any restriction on which schema is
to be used. Before creating a materialized view, the first step is to review the
schema and identify the dimensions. A dimension here is an object which defines
a hierarchical relationships between columns, where all the columns do not have
to come from the same table [5]. Example 3 below defines a time dimension, which
contains a hierarchy defining the relationship between a day, month, quarter and
year in Oracle Database 10g Release 2 for a Snowflake schema of a data warehouse.

Example 3. An SQL statement in Oracle Database 10g Release 2 to create Time
dimension

CREATE DIMENSION times_dim

LEVEL day IS TIMES.TIME_ID

LEVEL month IS TIMES.CALENDAR_MONTH_DESC

LEVEL quarter IS TIMES.CALENDAR_QUARTER_DESC

LEVEL year IS TIMES.CALENDAR_YEAR

HIERARCHY cal_rollup

(day CHILD OF month CHILD OF quarter CHILD OF year)

ATTRIBUTE day DETERMINES

7

Chapter 1. Introduction

(day_number_in_week, day_name, day_number_in_month,

calendar_week_number)

ATTRIBUTE month DETERMINES

(calendar_month_desc, calendar_month_number, calendar_month_name,

days_in_cal_month, end_of_cal_month)

ATTRIBUTE quarter DETERMINES

(calendar_quarter_desc, calendar_quarter_number, days_in_cal_quarter,

end_of_cal_quarter)

ATTRIBUTE year DETERMINES

(calendar_year, days_in_cal_year, end_of_cal_year);

Once the dimensions have been defined, the materialized views can
be created using SQL statements. A materialized view definition in Oracle
Database 10g Release 2 can include aggregation, such as SUM, MIN, MAX, AVG,
COUNT(*), COUNT(x), COUNT(DISTINCT), VARIANCE, STDDEV, and a
GROUP BY clause of SQL with one or more tables joined together.These views
may be indexed and partitioned where basic DDL operations like CREATE,
ALTER, and DROP may also be applied [5]. A materialized view is created using
the CREATE MATERIALIZED VIEW statement of SQL. Example 4 below
illustrates the creation of a materialized view called number of enquiries mv that
computes the sum of enquiries by time and service type name. The SELECT
list in CREATE MATERIALIZED VIEW statement must contain the entire
GROUP BY columns.

Example 4. SQL Statement to create Materialized View

CREATE MATERIALIZED VIEW number_of_enquiries_mv

PCTFREE 0 STORAGE (initial 8k next 8k pctincrease 0)

BUILD IMMEDIATE

REFRESH FAST ON DEMAND ENABLE QUERY REWRITE

AS

SELECT time_id, service_type_name, SUM(no_of_enquiries)

AS sum_of_enquiries, COUNT(no_of_enquiries) AS

record_count_of_enquiries,

COUNT(*) AS cnt

FROM enquiries c, types_of_services p

WHERE c.service_id = p.service_id

GROUP BY time_id, service_type_name;

1.1.5 Common SQL sub-expressions of SQL queries as ma-
terialized views

It has been observed that, in one hand, no materialization of pre-computed cuboids
leads to expensive computing of multidimensional aggregations, and on the other

8

1.1. Data Warehousing and Materialized Views

hand, pre-computing all the cuboids and materializing requires huge memory space
and to incur maintenance costs. Therefore, optimum selective materialization is
suggested. But clear guidelines for determining which views are to be material-
ized is not defined. In basic multidimensional data model of data warehousing,
computing an iceberg cube was suggested, which is a data cube storing only those
cube cells whose aggregate value is above some minimum support threshold [2].
In [4,6] authors present greedy algorithms referred as HRU Greedy algorithm and
Polynomial Greedy Algorithm (PGA) to determine which cuboids should be pre-
computed for materializing.

The algorithms presented in [4, 6] are to select views to materialize
considering only queries with aggregate functions involved for OLAP applications
but not to deal with general SQL queries that include select, project, join
and aggregation operations. Most of the recent works on selecting views for
materializing consider common sub-expressions among multiple queries executed
frequently in analytical processing sessions or periods on data warehouse for
efficient multiple query execution [7–14]. This approach of considering shared
common sub-expressions of queries on data warehouse as views for materializing
is thus basically outcome of the problem of selecting multiple query optimization
plan [7]. Multiple-Query optimization means finding an optimal execution plan for
multiple queries executed by sharing some temporary results from some common
sub expressions so that the total query processing cost of all the queries are
minimum. But multiple-query execution cost by sharing results of intermediate
sub-expressions as views depend on how the base relations are defined and how
the intermediate select, join and project operations are defined. In case of very
less number of base tables an optimum query execution plan by sharing multiple
number of sub-expressions or intermediate relations as views may be easier but
in case of larger number of considered queries on large number of base table or
relations it becomes a complex problem of deciding how the intermediate results
are to be shared for minimizing the total cost of execution of the considered
queries. In [7], the authors design an algorithm for generating multiple view
processing plan (MVPP) for optimizing total query processing cost of multiple
queries by connecting or sharing pre-identified common sub-expressions of the
queries as views. By SQL queries as presented in Example 5 and 6, how sharing of
result of intermediate sub-expressions of queries as materialized views can reduce
total query execution cost can be shown. These two SQL queries are designed
for version H benchmark database of Transaction Processing Performance
Council [15].

Example 5. A query on TPC-H benchmark database

SELECT s_acctbal, s_name, n_name, p_partkey,

p_mfgr, s_address, s_phone, s_comment

FROM part, supplier, partsupp, nation, region

WHERE p_partkey=ps_partkey AND s_suppkey=ps_suppkey

AND p_size=:1 AND p_type like ’%:2’

AND s_nationkey=n_nationkey

9

Chapter 1. Introduction

AND n_regionkey=r_regionkey AND r_name=’MIDDLE EAST’

AND ps_supplycost=(

SELECT MIN(ps_supplycost) FROM partsupp, supplier, nation,

region WHERE p_partkey=ps_partkey AND s_suppkey=ps_suppkey AND

s_nationkey=n_nationkey AND n_regionkey=r_regionkey AND

r_name=’MIDDLE EAST’)

ORDER BY s_acctbal, n_name, s_name, p_partkey;

Example 6. A query on TPC-H benchmark database

SELECT s_acctbal, s_name, n_name, p_partkey,

p_mfgr, s_address, s_phone, s_comment

FROM part, supplier, partsupp, nation

WHERE p_partkey=ps_partkey AND s_suppkey=ps_suppkey

AND p_size=:1 AND p_type like ’%:2’

AND s_nationkey=n_nationkey

AND n_name=’:1’

ORDER BY s_acctbal, s_name, p_partkey;

Though both the queries in Example 5 and 6 use different join conditions,
both of them share some common sub expressions like accessing part table of
26260520 number of rows for selecting parts of ”p size=’:1’” and ”p type like
’%:2’” returning 26260 number of rows. If in a considered period, the frequency
of execution of query in Example 5 is 20 and that of Example 6 is 10 then total
20× 26260520 + 10× 26260520 number of rows to be accessed. By materializing
or saving the intermediate result of the SELECT operation for ”p size=’:1’” and
”p type like ’%:2’” from the part table, these queries can be designed to access
only 20× 26260 + 10× 26260 number of rows. If number of rows to be processed
or accessed is considered as query processing cost, then it is observed that there
is a large amount of savings in terms of query processing cost by materializing
the result of this SELECT operation as a database table called view. But during
this period, the saved results or materialized views may have to be refreshed or
updated. Generally the updating frequencies are much less than that of accessing
the materialized views for processing the queries. During the considered period
of these queries, let the materialized views are to be updated two times. Then
2 × 26260520 rows to be processed for maintaining the materialized view. Again
for saving or materializing the intermediate results, additional space for storing
26260 numbers of rows will be required. In case of very huge data warehouse
like in Example 1, there may be a large number of OLAP operations that are to
be performed. In these cases, out of the large number of complex queries, some
queries may be triggered very frequently. These frequent complex queries again
may share a large number of sub-expressions. Therefore results of a set of sub-
expressions may be materialized for minimizing the total query processing cost
with minimized materialized view maintenance cost and space cost.

But, the derived relations and base relations for select, project and join
operations in relational model based query processing are to be designed consid-
ering the indices and keys used in the relations. Therefore grossly selecting shared

10

1.1. Data Warehousing and Materialized Views

temporary results of sub-expressions may prove to be a bad decision when indices
on base relations are defined [7].

In [7], a directed acyclic graph (DAG) of multiple view processing plan
(MVPP) by connecting the base relations and the selections, joins and projections
considering the respective keys and indices are proposed for saving results of the
derived relations as materialized views.

1.1.6 Materializing results of common sub-expressions in
Big data framework

For managing very huge volume of incongruent data (in terabytes , zetta (1021)
bytes etc.) at right speed for analyzing in right time frame, a system model called
Big data has been evolved. In Big data a computing paradigm called MapReduce
is introduced [16]. In MapReduce model, computation tasks on Big data are to
be broken up into units that can be distributed around a cluster of commodity
hardware and server class hardware for providing cost-effective processing with
scalability (see Figure 1-4). This system was designed for handling very big and
semi structured data in a single table. A Distributed File System (DFS) computing
framework has been designed based on the MapReduce model [17]. This DFS is
designed such that each split of the data for MapReduce computation is from a
single big table or file instead of large number of small files because in this DFS,
the block size is at least 64MB and smaller file size of less than the block size
imposes unnecessary overhead.

Hive is a framework for data warehousing on top of Hadoop DFS
(HDFS) [17] of Apache with a query language called HiveQL similar to SQL, which
was initially designed for OLAP like operations on huge volume of data that Face-
book stored in HDFS [17]. Hive runs on workstations and convert HiveQL query
into a series of MapReduce jobs. Hive organizes data into tables as a mean for
providing structure to data stored in HDFS. But Hive is integrated with another
platform called HBase which supports row-level update like delete, update etc.
on big column oriented table of key-value type storage. Therefore, Hive supports
collection data type columns STRUCT, MAP and ARRAY. Using collection data
type may break normal form. In Big data systems a benefit of sacrificing normal
form is higher processing throughput [18]. Again Hive has very limited indexing
capabilities. Therefore, in Big data management, for analytical processing queries,
the use of indices and keys in the relations are very limited. And hence, common
or shared sub-expressions’ results of frequent queries may be saved as materialized
views. Materialized view is not currently supported by Hive. Research work is
going on for supporting materialized views in HDFS [19,20].

11

Chapter 1. Introduction

Figure 1-4: Analytical processing in MapReduce framework.

1.2 Multi-Objective Optimization to Select

Views for Materializing

View materialization for reducing query processing costs in data warehouse ap-
plications requires a large amount of space. Again, materialized views are to be
updated or maintained in response to changes in the base data periodically. On
the other hand, not materializing any view requires lots of redundant on-the-fly
computations. Therefore, it is necessary to select an optimum set of views to ma-
terialize to increase analytical query processing performance with optimized view
maintenance cost and space for materializing the views.

1.2.1 The view selection problem for materializing

The materialized view selection problem is stated as- given a set of data warehouse
queries, select a set of views to materialize so that the total query processing cost,
materialized view maintenance cost and storage space for materializing the views
are minimized [4, 21,22]. Formally the problem may be defined as Definition 4.

Definition 4. Given a set of n frequent queries Q ={q1, q2, · · · , qn} on a data
warehouse, and the set of m views V ={v1, v2, · · · , vm} generated while responding
the queries Q, a set of views M ⊆ V are to be selected for materializing, such

12

1.2. Multi-Objective Optimization to Select Views for Materializing

that, if AM is the space requirement for materializing M , CQ
M is the total cost of

responding queries Q when M is materialized and U(M) is the maintenance cost
of materialized views M , then the selection M minimizes CQ

M , U(M) and AM .

1.2.2 The costs to be minimized and trade-offs

The costs stated in Section 1.2.1 that are to be minimized and their dependencies
are as follows:

• The maintenance or updating cost of each of the views of the set selected
for materializing depends on underlying relations or base relations or tables
from which that particular view is derived and the updating frequency of
corresponding base relations.

• The total analytical query processing cost on the warehouse that can be
minimized by materializing a set of views depends on aggregation functions,
database functions like select, project, (expensive) join and ”group by” on
corresponding underlying base relations that are used to construct each of the
selected views and frequencies of the analytical processing data warehouse
queries that access these views.

• Thirdly, the total space requirement for materializing depends on individual
size of the views that are selected but not on cardinality of the set of views
materialized.

Thus the costs that are to be minimized depend on some underlying or internal fac-
tors but independent of each other. But there are trade-offs to be made because
materializing more number of views may reduce the total query processing cost
but there may be increase in maintenance cost and space cost of materializing the
views. Also reducing number of materialized views may decrease materialized view
maintenance cost and materializing space cost but it may increase the total ana-
lytical query processing cost of the data warehouse. Thus when one minimization
objective improves others may degrade. Therefore, simultaneous minimization of
all the costs defined in Definition 4 is not possible and trade-offs between them
are to be decided.

1.2.3 Multi-Objective Optimization (MOO)

Multi-Objective optimization (MOO) is simultaneous optimization of more than
one objective functions where optimal decisions are to be made considering the
presence of trade-offs between objective functions, i.e, when increase in one ob-
jective function value decreases the objective function values of at least one of
the other objective functions of the problem. Here trade-off means the balanc-
ing factors between the objective function values that can not be simultaneously
minimized or maximized.

13

Chapter 1. Introduction

Formally in mathematical terms multi-objective optimization for mini-
mization problem can be formulated as below [23].

minimize(f1(x), f2(x), · · · , fM(x)), such that, x ∈ S (1.1)

where M ≥ 2 is the number of objectives and S is the set of all feasible solution
vectors.

Multi-objective optimization is defined for maximization or minimization
of objective function values where there does not exist typically a single solution
that maximizes or minimizes all the objective functions simultaneously. Therefore,
the multi-objective optimization technique finds the solutions of the problem that
can’t be farther improved for any of the objectives without farther degrading at
least one of the other objective function values. In the terminology of MOO,
these solutions are called non-dominated solutions. But by simply generating
all the non-dominated solutions without indicating their distribution in objective
function space it may not be possible to find the most applicable solutions or
solution vectors by decision makers. Therefore, the non-dominated solutions are
presented or expressed as curve (in case of two objectives) or surface (in case of
more than two objectives) in objective function space known as Pareto front or
Pareto optimal front such that decision maker can easily decide on trade-offs
to be considered in objective function space.

1.2.4 Selecting views by multi-objective optimization tech-
nique

The view selection problem for materializing in data warehouses may be solved
by converting it into a single objective optimization problem of minimizing the
summed up cost function values of all the objectives functions CQ

M , U(M) and AM
for a set of materialized views M as defined in Definition 4 with some associated
constraints on the costs. It returns many solution sets of views corresponding
to the minimum value of summed-up cost function values. For selecting solution
set of views instead of defining too many constraints on each and every objective
function by the decision makers before hand, trade-offs may be decided between
CQ
M , U(M) and AM . As there are trade-offs to be considered and simultaneous

minimization of all the costs defined in Definition 4 is not possible, instead of con-
verting the problem to a single objective optimization problem by summing-up all
the associated costs, the problem can be defined as a multi-objective optimization
problem for solving by multi-objective optimization techniques.

Research on this problem started in the early nineties when several heuris-
tic greedy algorithms were proposed [4, 6, 21, 22, 24]. As the problem is found to
be NP-hard [4, 7, 9, 21, 22, 25], various stochastic or evolutionary algorithms and
clustering based approaches have been proposed.

14

1.3. Motivation of this Research

1.3 Motivation of this Research

In Section 1.2, it is shown that the view selection for materialization in data ware-
houses is basically an optimization problem with multiple objectives. But so far,
in most of the works it is observed that, the problem is addressed by converting
it into a single objective optimization problem. When an optimization problem
with multiple non-dominating objectives is converted into single objective, it ig-
nores that different solutions may offer trade-offs between the objectives. Though
recently few attempts have been made to handle the problem by using multiple
objective optimization techniques [26], yet there is scope of using other multiple
objective optimization techniques in this area.

In last two decades a number of multi-objective evolutionary algorithms
(MOEAs) have been developed. In [27], it is shown that Differential Evolution
(DE) algorithm [28] can achieve better results than Genetic Algorithms (GAs) on
numerical multi-objective optimization problems. Again non-dominated sorting
genetic algorithm-II (NSGA-II) [29] was found to be able to maintain a better
spread of solutions and converge better compared to other elitist MOEAs. The
DE is a powerful stochastic optimization algorithm for real parameter optimiza-
tion [28]. A support system may be designed for selecting views for materializing
by applying evolutionary algorithms like DE, NSGA-II [29] or Multi-objective
Simulated Annealing (MOSA) [30].

For managing large amount of analytic workloads on Big data systems,
research works have been started for materializing frequent queries in clusters of
disks, solid-state drives (SSD) and other memories [19, 20]. To cope up with the
changing paradigm of very large data processing, the materialized view selection
problem have to be designed in the context of distributed computations in Big data
framework and to evaluate the performance of different techniques for selecting
frequent sub-queries of frequent queries as views to materialize for minimizing the
costs of analytical query processing.

This research is largely motivated by the observation that for strategic
decision making by efficient analytical processing of historical data in data ware-
houses, some most relevant intermediate views with minimum associated costs
are to be selected for materializing in data warehouses by a suitable optimization
technique.

1.4 Research Objectives

The broad objectives of this research work are to (i) design a system for recom-
mending a set of views or frequent sub-queries for storing as materialized views
in data warehouse, considering the associated costs of maintaining the material-
ized views and space, and savings in total query processing costs, (ii) to find a
suitable optimization algorithm for selecting the views by studying the existing
works on this problem and finding the associated issues, (iii) to design input and

15

Chapter 1. Introduction

input methodology for the recommendation system and finally (iv) to develop a
comprehensive materialized view selection mechanism compliant to the changing
data warehousing and query processing paradigm.

The basic objectives of the research work are therefore may be listed as
follows :

• To study different view materialization and materialized view selection tech-
niques used in conventional data warehousing

– To identify the associated issues and challenges involved in the problem.

– To identify possible pitfalls and advantages in different existing repre-
sentations and formulation of the problem and solutions.

– To find the advantages and limitations of different techniques that have
been so far incorporated in materialized view selection.

– To identify the implications to theory and practices.

• Defining the view selection for materializing problem

– By formulating and modeling a suitable representation to address the
issues of existing approaches.

– To improve the quality of solutions and performances by incorporating
new or modified notions or representation of the problem and technique
adaptable to the new definition.

– To design a test bed for evaluating the performances of different view
selection techniques.

• Designing a view selection system compliant to evolving Big data framework

– By defining the problem of selection of sub-queries and aggregations for
materializing in data warehouse.

– To select a suitable optimization technique for customizing it for the
problem.

– To implement the optimization technique customized for view selection.

– To perform experimentation for evaluating the proposed system in an
accepted framework.

• Evaluating different state of the art optimization techniques for implement-
ing in recommendation system for selecting views

– By implementing modern and established stochastic and evolutionary
optimization algorithms.

– By measuring convergence to the optimum solutions by different tech-
niques.

– By designing test data for experimenting with suggested Big data
paradigm and applicable algorithms.

– By designing a prototype framework of recommendation system to pro-
vided optimum set of views for materializing.

16

1.5. Contributions

1.5 Contributions

In this research, the problem representations, data structures and algorithms in
different models proposed so far in view selection for materialization in data ware-
housing have been surveyed and the associated issues and challenges in addressing
this NP-hard problem have been identified and reported. The view selection prob-
lem for materializing in data warehouse is defined as a multi-objective optimization
problem using a cost model representing query processing plan of a set of frequent
queries represented by Directed Acyclic Graph (DAG) for conventional RDBMS
based data warehousing. The view selection to materialize also has been defined for
Big data based Distributed File System (DFS) framework. The Multi-objective
Differential Evolution (DE) algorithm has been customized for binary encoded
solution representation using Formae analysis [31] for view selection in case of
conventional RDBMS based data warehousing as well as Big data/DFS based
framework. The Non-dominated Sorting Genetic Algorithm-II (NSGA-II) [32] has
also been applied using the same test-bed and test-data for comparing perfor-
mances between the algorithms in materialized view selection. Finally a version
of Archived Multi-Objective Simulated Annealing (AMOSA) [30] has been im-
plemented on this problem and its performance is analyzed with other MOEAs
based on purity and convergence towards Pareto front by solutions obtained and
the minimal spacing between the solutions.

In this dissertation, the works done for achieving the above mentioned
goals and contributions are discussed. The organization of the dissertation is
presented in the next Section 1.6.

1.6 Organization of the Thesis

The rest of the dissertation is organized as follows.

• Chapter 2: Approaches and Issues in Materialized View Selection of Data
Warehouses - In this chapter a comprehensive survey of approaches intro-
duced to address the materialized view selection problem have been dis-
cussed. The key issues and research challenges in handling the problem
are identified here with discussion on implications to related theory and
practices. A comparative analysis of different approaches also have been
presented based on theoretical analysis and empirical results presented in
related literature.

• Chapter 3: Multi-Objective Differential Evolution Algorithm for Selecting
Views to Materialize - In this chapter the view selection process for ma-
terializing in data warehouse is defined as a multi-objective optimization
problem. This chapter presents an implementation of Multi-objective Dif-
ferential Evolution (MODE) algorithm for binary encoded data to select
views for materializing.

17

Chapter 1. Introduction

• Chapter 4: Materialized View Selection by Evolutionary Algorithm for Big
Data Query Processing - The view selection to materialize for speeding up
query processing in Big data framework is defined as a multi-objective opti-
mization problem in this Chapter. Implementation of a modified version
of Multi-objective Differential Evolution (MODE) algorithm with binary
encoded data and implementation of Non-dominated Sorting Genetic Algo-
rithm -II have been discussed in this chapter with their performance analysis
in handling this problem.

• Chapter 5: Multi-objective Simulated Annealing Algorithm in Big data
View Selection for Materializing - This chapter presents how multi-objective
Simulated Annealing algorithm based techniques may be applied in selecting
sub-query results or views in MapReduce based query processing framework.
A comparative performance analysis of this technique with respect to com-
mon EA based techniques in view selection problem in this paradigm has
also been presented in this chapter.

• Chapter 6: Conclusion and Future Direction - This Chapter concludes
the dissertation by summarizing the overall contribution and identifies some
future directions of research in this area.

18

