
Chapter 2

Literature Review

2.1 Introduction

In this chapter, we would like to present brief discussions on important concepts

of qualitative spatial reasoning and grammar based pattern recognition. More-

over, approaches for motion pattern recognition in computer vision as well as in

Gi Science are outlined.

2.2 Qualitative Spatial Reasoning

2.2.1 What is Qualitative Spatial Reasoning (QSR)?

Qualitative spatial reasoning is a knowledge representation and reasoning tech-

nique. It is used for representation of commonsense knowledge without resorting

to numerical values [8]. Quantitative information is precise and accurate, but

in many applications, precise quantitative representation may not be necessary.

Human cognition is often qualitative. In systems where we need to represent

knowledge at a level close to human cognition, qualitative representation may be

a better idea.

Early attempts at developing qualitative reasoners for spatial and kinematic

mechanisms were not successful. This led to what is known as the poverty

conjecture [17]. It was argued that there can be no purely qualitative spatial
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reasoning mechanism. Forbus et. al. felt that the best way to overcome these

limitations is to combine quantitative and qualitative representations [17]. Space

is multidimensional and there was a doubt whether transitivity of qualitative

spaces is possible in higher dimensions. It was concluded that representations

in higher dimensions are sparse and spatial reasoning in higher dimensions can

not be done without resorting to numbers. Over the years, many qualitative

constraint calculi have been proposed for different aspects of space. The most

important aspects are topology, orientation and distance. Other aspects are

size, shape, morphology and spatial change. Most works on qualitative spatial

reasoning have focused on single aspect of space.

Space and time are two important aspects of our commonsense knowledge.

Time is a scalar quantity. Qualitative temporal reasoning has emerged as a sub

field of qualitative reasoning. Allen’s interval algebra (IA) [18] is an important

work in qualitative temporal reasoning. IA defines thirteen Jointly Exhaustive

and Pairwise Disjoint (JEPD) binary qualitative relations that may hold between

a pair of convex time intervals. Representation of space is more complex because

of its multidimensionality. Multidimensionality of space becomes apparent from

the qualitative terms that we use in natural language to refer to spatial aspects.

For example, in everyday description of spatial events, we use terms like inside,

outside etc. for topology, terms like left, right for direction, close , far etc. for

distance.

In QSR, a set of basic binary qualitative relations is used for representation

of knowledge. This set partitions the domain under consideration. Moreover,

between any two objects, only one of the relations can hold. In other words,

the set of binary qualitative relations is Jointly Exhaustive and Pairwise Disjoint

(JEPD). A partition of a set is a grouping of the sets elements into non-empty

subsets, in such a way that every element is included in one and only one of the

subsets. A set of Jointly Exhaustive and Pairwise Disjoint (JEPD) relations is

same as a partition. In QSR literature the term JEPD is more prevalent. Simi-

larly, the term complete conveys the same meaning as Exhaustive. For example,

let us consider the distance between two objects. Distance is continuous and
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can assume any positive real value. We discretise this continuous domain into

qualitative categories like close, near and far. Any possible distance between

the objects will belong to one of this qualitative categories. Therefore, the set of

qualitative relations { close, near, far } is Jointly Exhaustive. This set is Pair-

wise Disjoint also because any numerical distance between the objects belongs

to exactly one of the relations. Similarly, a JEPD set for comparing relative size

of two objects may be { equal, bigger, smaller }.

In QSR there are two forms of reasoning. One is based on construction

of composition tables [19]. Composition tables are usually pre-computed from

the semantics of the basic relations. If the binary qualitative relation r1 holds

between objects A and B and the relation r2 holds between objects B and C,

then the relation between A and C can be found by computing the composition

of r1 and r2. This result is stored in a composition table in the row indexed

by r1 and in the column indexed by r2. Composition table for RCC-8 [20] is

presented in the work of Wolfl et al. [21].

The other form of reasoning is based on the notion of spatial change. An

inherent assumption in QSR is that change is continuous [22]. In order to change

from one qualitative value to another, all the values in between must be passed

through. The set { close, near, far } of binary qualitative relations for distance

can be taken as an example. The distance between two objects can not directly

change from close to far. It has to change from close to near and then finally to

far. This notion of spatio-temporal continuity in expressed using a graph known

as conceptual neighbourhood graph. A relation r2 is a conceptual neighbour of

another relation r1 if we can arrive at r2 from r1 by continuous change [23]. In

the set of distance relations, near is a conceptual neighbour of close and similarly

close is a conceptual neighbour of near. If two objects are close and if the dis-

tance between them increases, then the binary qualitative distance relation will

change from close to near. On the other hand, if the distance decreases and the

current relation is near, then we arrive at the relation close next. In a conceptual

neighbourhood graph, vertices represent binary qualitative relations. An edge is

drawn from one vertex to another if the qualitative relation represented by the
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second vertex is a conceptual neighbour of the qualitative relation represented by

the first vertex. Using this notion of spatio-temporal continuity, we can reason

about changes that are possible.

2.2.2 QSR Formalisms for Orientation, Direction and Dis-

tance

Direction and Orientation

Direction is an important concept in qualitative spatial formalisms. Qualitative

direction relations describe the qualitative direction of one object with respect

to another. A frame of reference is necessary for expressing qualitative direc-

tions [24]. Therefore, qualitative direction is based on three concepts, namely,

primary object, reference object and a frame of reference (FoR). Some qualita-

tive direction relations reported in the literature use triadic relations, taking into

account these three aspects. Other formalisms use external reference directions.

For example, the geographical direction east, west, north and south can be used

as a frame of reference. Such an external reference frame is known as extrinsic

or allocentric frame of reference. In intrinsic or egocentric frame of reference,

an object is directed along an intrinsic direction that depends on properties like

its shape, size etc. This intrinsic direction sets up a reference system and in

this case, direction labels like front, left, back, right etc. are typically used to

convey the directional information. In a deictic frame of reference, direction of

a primary object with respect to a reference is expressed from the point of view

of an external observer [25]. Qualitative direction and orientation are closely

related. Spatial orientation expresses the spatial location of a primary object

with respect to a reference object. When we say that an object A is to the north

of another object B, we convey information about cardinal direction as well as

spatial orientation. Similarly, a qualitative term like front has a flavour of direc-

tion and orientation.

Spatial objects are often abstracted as dimension less points, one dimensional
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Figure 2.1: Cone Based and Projection Based Orientation

directed line segments and also as extended spatial entities. Most of the works on

direction and orientation, reported in literature, abstract objects as points. Frank

proposed different methods for expressing the cardinal direction of a primary

point with respect to a reference point in geographical space [26]. Labels like

north, south, east and west etc. express the orientation of a primary object with

respect to the reference. Frank suggested a cone based and a projection based

approach. In part (a) and (b) of Figure 2.1, these cone based and projection

based orientation models are shown. Orientation relations are binary because an

allocentric FoR is used in these models.

Figure 2.2: Star Calculus: Renz and Mitra

In the work of Frank, eight orientation labels,namely, n, s, e, w, ne, nw, se

and sw are used for expressing the orientation of a primary point with respect to

the reference point located at the centre. These calculi were generalized into a
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Star Calculus by Renz and Mitra [27]. This calculus is based on n number of lines

li with given angles δi that define 2n sectors and 4n+1 basic relations (shown in

Figure 2.2). Two different star calculi, one with 8 lines and 33 relations and the

other with 4 lines and 17 relations are shown in the figure. The granularity can

be adjusted by changing the number of lines and the angles of the sectors. Star

Calculus uses an allocentric frame of reference.

Freksa proposed another projection based model for point objects which is

known as double-cross calculus [23]. This calculus defines the direction of a lo-

cated point to a reference point with respect to a perspective point. Here, three

axes are used. One axis is obtained by connecting the perspective point to the

reference point and the other two axes are perpendicular to this line and inter-

sects it at the positions of the perspective point and the reference point. This

is shown in part (c) of Figure 2.1. In double-cross calculus, fifteen ternary basic

orientation relations are defined.

Figure 2.3: Direction of An Oriented Point

There are other formalisms for direction and orientation that abstract spa-

tial objects as directed entities. Notable works include oriented point relation

algebra (OPRA) by Moratz [28] and dipole relation algebra by Moratz, Renz and

Wolter [29]. In OPRA, basic entities are points that have an intrinsic direction.

In Figure 2.3, intrinsic direction of a point is shown.
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Figure 2.4: Orientation Relation Between Two Points

This direction of a point sets up a reference system and divides the plane into

different direction sectors. For defining basic orientation relations, two labels are

used. The lower label tells the qualitative spatial orientation of the second point

when seen from the first point. The upper label expresses the orientation first

point as seen from the second. An orientation relation between two oriented

points is shown in Figure 2.4. The lower label for this relation is rightfront

(abbreviated as rf ) and the upper label is leftfront abbreviated as lf. Therefore,

if the name of the first object is A and that of the second object is B, then the

relation is A lf
rf

B.

In dipole relation algebra, spatial objects are abstracted as directed line

segments (named as a dipole). A dipole has two end points. For any dipole A,

its start point is denoted as SA and its end point is denoted as EA.

In Figure 2.5, two dipoles A and B and the lrrr orientation relation that

holds between these two dipoles is shown. The first two letters of this relation

i.e. l and r express the relative position of the end points of the dipole B with

respect to A. The point SB lies to the left and the point EB lies to the right. The

last two letters represent the relative positions of the end points of A with respect

to B. The point SA as well as EA lie to the right of the dipole B. Therefore, the

orientation relation is lrrr.

Dipole calculus can be defined at different granularities. In Figure 2.6, atomic

orientation relations of a coarse grained dipole calculus are presented.
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Figure 2.5: lrrr Relation Between Two Dipoles

Figure 2.6: Twenty Four Atomic Relations of Coarse Dipole Calculus

It is much more difficult to define orientation relations for spatial entities that

are extended in space. Problem is more complicated when these objects have

holes or if they are multipiece. In QSR literature, we find that many researchers

abstract all such extended regions as rectangles whose sides are parallel to the

axes of projection in a two dimensional plane. When this type of abstraction

is used, it is possible to represent an extended region by its projections to the

axes (shown in part(a) of Figure 2.7). The orientation relations between two

such rectangles can be expressed using Allen’s interval algebra (IA) relations.

For each such rectangle, there are two projections. Then, IA relations can be

defined between corresponding projections. Balbiani et. al. defined 13 × 13

basic relations for two rectangles and the resulting calculus is known as rectangle
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Figure 2.7: Rectangle Algebra and Direction Relation Matrix

algebra [30].

Goyal and Egenhofer [31] proposed a model for representation of orientation

of rectangular objects. The sides of rectangles are parallel to the axes of projec-

tion. An object is represented by its Minimum Bounding Rectangle (MBR) and

the sides of this reference MBR are extended as shown in part (b) of Figure 2.7.

This results in nine sectors. The primary rectangle may be contained in one of

these sectors or it may span more than one sector.

Figure 2.8: Rectangular Cardinal Directions

Skiadopolous and Koubarakis developed reasoning algorithms for this calcu-

lus and studied its computational properties [32]. This work was taken further

by Sciavicco and Navarrete [2]. Instead of using numbers for sectors, they as-

signed labels like North, South, NorthWest, SouthWest etc. and proposed a set of

rectangular cardinal directions for rectangular spatial objects. Each rectangular

19



Chapter 2. Literature Review

cardinal direction relation can be mapped to a set of rectangle relations proposed

in Balbiani’s work. In Figure 2.8, the unlabelled middle rectangle is the MBR of

the reference object. The primary rectangle may have relations like NorthWest,

NorthWest:North:NorthEast, East:SouthEast etc. with respect to the reference

rectangle.

Distance

Distance is an important aspect of space. In our everyday communication, we

often refer to distance in some way or other. Sometimes we use qualitative terms

like ”Place A is close to place B” to convey our idea of distance. Use of quanti-

tative information like ”I am 1 k.m. away from my work place” is also common.

Distance expressions can be relative too. Sentences like ”I am nearer to place A

than to place B” are often heard. Qualitative distance relations can be absolute

or relative [8]. In absolute distance relations, the exact distance between the ob-

jects will be considered. Otherwise, distance relations may be relative. In QSR

literature, most works on qualitative distance abstract spatial objects as points.

Absolute distance relations can be defined at various granularity levels [33]. This

issue of granularity depends on the scale of space. In defining these relations,

the real number line is divided into various zones and qualitative distance labels

are assigned to each zone. At a coarse granularity, these labels may be close,

near and far. At a finer level, these may be very close, close, commensurate, far,

and very far. For relative distance representation, ternary relations like closer

than, farther than etc. are often used. Distance and orientation are intricately

related and qualitative distance is often combined with orientation information.

Clementini et. al. have termed this kind of information as positional infor-

mation. They have combined a cone-based orientation approach with absolute

distance relations and presented different procedures for computing the composi-

tion of two positional relations (A,B) and (B,C)ClementiniFeliceHernandez. Isli

and Moratz have proposed several position calculi on various levels of granularity

by combining relative distance relations with different approaches to orientation

such as the projection-based approach or the double-cross calculus [19].
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Size is another aspect that can be represented qualitatively. An early work in

this area that combines translation with rotation is reported in [34]. Using this

model, it is possible to compare relative sizes of size and shape invariant regions.

Here, if translation is possible and after translation, a region becomes proper

part of another, then it is argued that the size of this object must be smaller.

Figure 2.9: Allen’s Interval Algebra Relations

2.2.3 Allen’s Interval Algebra

On the temporal dimension, a notable work is that of James Allen [18]. Allen

proposes to represent temporal relations by defining thirteen mutually exclusive

qualitative relations between intervals of time. These relations are shown in Fig-

ure 2.9. The set consists of seven basic relations and their inverses. For the equal

relation, the converse is same as the basic relation. In Figure 2.9, each interval of

time is shown by a line segment. Relation names have been abbreviated. Tem-

poral reasoning is done by deriving compositions of basic relations and storing

them in a table. Composition may result in unique relations or a set of relations.

For example, let A, B and C be three intervals of time. We assume that the

relation between A and B is meets and that between C and B is during. The

relation between B and C is during inverse ( di ). It can be inferred that the
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interval A must come before the interval C. So, the composition of A and C gives

the relation before.

2.2.4 Spatio-temporal Continuity

In spatio-temporal representation and reasoning, change is an important no-

tion [35]. Change can be continuous or discontinuous. In discontinuous changes,

in any sufficiently small temporal neighbourhood, an attribute having ordered

values will change from one value to another without taking on all intermedi-

ate values [36]. When change is continuous, intermediate values are also passed

through. As an example, we can consider distance between two objects. On

quantitative scale, this distance is a real number interpreted in some unit. If the

objects are far, the numerical distance value is high and when they are close,

this value is low. Distance can not suddenly jump from this high value to the

low value. When objects move closer, distance value will gradually diminish and

finally reach the low value. This idea of spatio-temporal continuity can be an

important concept in qualitative reasoning [8]. Forbus [22] has emphasised the

importance of spatio-temporal continuity as A simple consequence of continuity,

respected by all systems of qualitative physics, is that, in changing, a quantity

must pass through all intermediate values. That is, if A < B at time t1, then it

cannot be the case that at some later time t2 A > B holds, unless there was some

time t3 between t1 and t2 such that A = B.

Conceptual neighbourhood of relations [37] can be considered as a method

of representing continuous change. Freksa has defined conceptual neighbour-

hood as ”Two relations between pairs of events are conceptual neighbors if they

can be directly transformed into one another by continuous deformation (i.e.,

shortening or lengthening) of the events”. Continuous deformation may involve

different activities like rotation, translation, scaling, movement etc. For exam-

ple, in Allen’s interval algebra, the relations before and meets are conceptual

neighbours because when the before relation is extended in time, it results in the

meets relation. Conceptual neighbourhood graphs are used to express conceptual

neighbourhood of relations. Nodes in a conceptual neighbourhood graph repre-
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Figure 2.10: Conceptual Neighbourhood Graph: Allen’s Interval Algebra

sent spatial or temporal relations. Edges are created to connect the relations that

are conceptual neighbours. Conceptual neighbourhood graphs express the fact

that some relations are closer to each other than others. Such a graph for Allen’s

interval algebra is shown in Figure 2.10. Conceptual neighbourhood graphs can

be used to find alternate possible paths between two relation nodes. These paths

convey information about sequences of deformations because of which the change

in relation occurred. When we are given any two relations in the graph, the

neighbourhood graph helps in knowing the possible change process that brought

about the change.

2.3 Motion Patterns Analysis in GIScience

2.3.1 Outline of Approaches

In GIScience, analysis of motion patterns has been an active area. GPS, mobile

phones and radio transmitters have helped collection of large amount of move-
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ment data. Analysis of such mobility data helps in extraction of meaningful

patterns that convey high level information to a human analyst. An early work

on movement pattern analysis includes the simulation study of human adaptive

behavior [38]. Imfeld performed a spatio-temporal analysis of movement data of

animals [39]. There has been ample research on discovery of similar trajectories

or clusters. Data for such analysis are typically location of moving point objects

over consecutive time points. Laube and Imfeld proposed the REMO (RElative

MOtion) framework to define motion patterns of groups of objects [40]. They

used direction of motion or change of direction as the principle feature for rep-

resenting spatio-temporal patterns. Laube et. al. augmented the framework by

including locational information also. Spatio-temporal patterns like flock, lead-

ership, convergence, and encounter were defined at a given time step or interval.

Recognition of these patterns was algorithmic.

Noyon et. al. used relative position and relative velocity for representing

motion event of a primary object with respect to a reference [41]. Gundmunds-

son et. al. [42] evaluated the computational efficiency for detecting four spatio-

temporal patterns, namely, flock, leadership,convergence and encounter defined

in the work of Laube and others. Relative orientation of points is defined in work

of Mossakoski and Moratz [43]. In the work of Nico van de Weghe et. al. [9],

changing distance between a pair of moving points is used for representation

of motion. In their work, motion was represented within the framework of a

qualitative spatial algebra. Gottfried considered relative directions and relative

positions between two oriented line segments [44]. The 9+ intersection model,

proposed by Kurata and Egenhofer, consider directed line segment in relation to

regions for describing motion [45].

Dodge et. al. proposed a taxonomy of motion patterns for individual or

groups of moving point objects [1]. Using such a taxonomy, we can define various

types of motion patterns. Galton [46] augmented this work by associating specific

collectives with typical motion patterns of such collectives.

In a work of Nico van de Weghe, a qualitative formalism has been used for

motion representation [36]. Qualitative Trajectory Calculus (QTC) [9] makes
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comparisons between positions of moving objects at different time points and

considers changing distance between the objects for defining the qualitative rela-

tions. Attributes of trajectories are represented qualitatively in the work of Tales

et. al. [47]. In [48], integration of cross-scale analysis in spatial and temporal

domains in proposed for classification of behavioural movement. Gottfried [10]

defined a set of sixteen atomic motion patterns that form a relation algebra.

In his work, Gottfried suggested the use of formal grammars for recognition of

motion patterns.

Since we have shown the application of our language based framework for

representation of the taxonomy proposed by Dodge et. al. [1], in the next section

we would like to give an introduction to this taxonomy.

2.3.2 A Taxonomy of Motion Patterns

In the geographic domain, movement is defined as change in position of an ob-

ject with condition that the identity of the object is maintained. Movement data

typically are in the form of positions of an object at different time points. Move-

ment parameters specify the features that we use to describe movement patterns.

There are three types of parameters. These are primitive parameters, primary

derived parameters and secondary derived parameters [1]. Parameters are orga-

nized along spatial, temporal and spatio-temporal dimensions. Primitive spatial

parameter is the position of an entity. Primitive temporal parameters can be an

instance of time or an interval of time. Among the primary derivatives, distance

and direction of movement are in the spatial dimension and solely a direct func-

tion of position. Duration is defined as a period of time in which a movement is

observed. Duration is a direct function of time and consists of one or more time

intervals. Speed (i.e. rate of change of the objects position) and velocity (i.e.

rate of change of position and direction) are parameters that combine both space

and time dimensions, and can be derived directly from spatial position and time

instances [1]. Higher order parameters of movement such as acceleration can be

derived from primary derivatives. Of the secondary derivatives, the definition of

the spatial parameters is assumed to be commonly known. For instance, spatial
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distribution represents a snapshot of the positions of MPOs in the database at

a specific time. Sinusoity is a function of distance and refers to the degree of

windingness of an objects trajectory. Among the temporal parameters, temporal

distribution denotes the distribution of events along the time line. Change of du-

ration denotes the rate of change of the duration between different observations

of the same movement behavior (e.g. rate of change of the migration duration

of a species of animal).

Figure 2.11: Movement Parameters (as defined in [1])

Acceleration (i.e. rate of change of the objects speed) represents a spatio-

temporal parameter derived from speed. Approaching rate is a function of speed

and distance and describes whether and how intensively a moving object ap-

proaches its destination. These parameters are shown in the Table 2.11. Generic

movement patterns are common to different groups of Moving Point Objects

(MPO) whereas behaviour patterns are specific to a certain type of MPOs [1].

Movement patterns are divided into generic patterns and behavioural pat-

terns. Generic patterns are building blocks from which other patterns can be

constructed. Genericity implies that these patterns are not specific to a partic-

ular kind of moving point objects; rather these patterns express commonality in

movement patterns among multiple types of moving point objects. A behavioural
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Figure 2.12: Classification of Movement Parameters (as defined in [1])

pattern can be a specific property of a particular kind of MPOs. By combin-

ing different types of generic patterns, one can construct a behavioural pattern.

Generic patterns are further subdivided into primitive patterns and compound

patterns. Primitive patterns are the most basic forms of movement patterns,

where only a single movement parameter varies. Compound patterns are made

up of several primitives involving complex inter-object relations. Primitive pat-

terns can be analysed along three dimensions, namely, spatial, temporal and

spatio-temporal dimension. Along the spatial dimension, only spatial location

of the object(s) is important for expressing the movement pattern. The tem-

poral dimension is concerned with specific points in time or a duration of time

expressible by a temporal interval. Both spatial location and temporal informa-

tion about these locations are important along the spatio-temporal dimension.
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Compound movement patterns analysed along the spatio-temporal dimension

only. In Table 2.12, we cite the classification from the work of Dodge et. al. A

description of the various types of patterns is given below.

Figure 2.13: Colocation in Space (taken from [1])

Co-location in space: In such a pattern, the trajectories of moving objects

have some positions in common. In ordered colocation, these common points are

arrived at by different entities in the same order whereas in the unordered case

it is not so. In symmetrical colocation pattern, the common points are attained

in the opposite order [1]. Visit of a set of places by different tourists in the

same order may be an example of colocation pattern. Unordered and ordered

colocation in space is illustrated in the Figure 2.13. In both left and right part

of the figure, two trajectories are shown in an external (allocentric) frame of

reference. The points A, B and C are common locations in both the trajectories.

In the left part of the figure, these points are arrived at in different orders by the

objects. One object arrives at these locations in the order A, B and C whereas

the other object reaches in the order B, A and C. Therefore, it is an example

of unordered colocation in space. The right part of the figure shows an ordered

colocation among the objects.

Concentration: It expresses spatial concentration of moving objects at a

certain instance of time [1]. Congestion of vehicles at a particular zone in the

traffic network may be an example. In Figure 2.14, three spatial concentrations

of objects in an external frame of reference are shown. This is a snapshot of the

locations of the objects at a particular time point ti.

Incidents: Occur among multiple object and can be further classified as:
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Figure 2.14: Concentration (taken from [1])

Figure 2.15: Concurrence (taken from [1])

Concurrence: It is an incident where a set of entities show the same values

of motion attributes at a certain instant or duration e.g. a flock of wild geese

flying with similar motion azimuth [1]. In Figure 2.15, directions of movement

of a set of MPOs are shown. All these objects are directed in a direction that

take them from the left bottom corner to the top right corner.

Co-incidence in space and time: It is an incidence that considers similar

positions of moving objects. This pattern may be full or lagged [1]. For instance,

two different flocks of wild geese reach a particular pond at the same time or

separated by a delay of one day.

Opposition: Spatial splitting of a group of moving objects shown in a

sudden appearance of two opposite motion directions [1]. For instance, when

flying geese are prompted to fly in opposite directions by a source of disturbance.
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Figure 2.16: Opposition (taken from [1])

In Figure 2.16, at time point ti, the two groups of objects split in two different

directions.

Figure 2.17: Dispersion (taken from [1])

Dispersion: It is the opposite of concurrence. An evident pattern in a group

of MPOs that is performing a non-uniform or random motion [1].In Figure 2.17, it

is seen that there is no uniformity in the direction of movement for the objects.

The objects are randomly directed along different directions. Though certain

objects may move in the same or similar direction, there is no concurrence of

motion for the group as a whole.

Figure 2.18: Constancy of Direction and Constancy of Speed (taken from [1])

Constancy: When the movement parameters remain the same or change
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insignificantly for a particular duration, e.g. , when a convoy of cars moves

along a straight road, at a constant speed, speed and direction and the derived

parameters remain the same [1]. In left part of the Figure 2.18, two objects move

along the same direction for a time interval. In the right part of the same figure,

constancy of speed is illustrated.

Figure 2.19: Sequence (taken from [1])

Sequence: A sequence is an ordered list of visits to a series of locations. It

consists of a contiguous series of segments with a known start and end point in

space and time. A spatio-temporal sequence refers to an ordered subsequence of

locations with their time stamps [1]. As an example of sequential patterns, the

tendency of tourists to visit a set of places A to C in a particular sequence ABC

within specified duration could be mentioned. In Figure 2.19, the locations from

A to H are visited by an object in the order A,B,C,D,E,F,G,H. Each location

has an X-coordinate and a Y-coordinate and each location point is annotated

with temporal information.

Figure 2.20: Periodicity (taken from [1])

Periodicity: A pattern repeats after a definite time duration. The interval
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of repetition may be daily, weekly, monthly or yearly. In the Figure 2.20, the

pattern is visit to three places in the sequence A, B and C. Along the temporal

dimension, it can be seen that these patterns repeat after a fixed duration of

time.

Figure 2.21: Meet (taken from [1])

Meet: A meet pattern consists of a set of MPOs that form a stationary

cluster i.e. they stay within a cylinder of a certain radius in the space-time cube;

in the projection to the plane, they stay within a stationary disk of specific radius

in a certain time interval [1]. There are two variants of meet, fixed meet and

varying meet depending on whether the objects that stay together for a certain

duration are the same or change in the meeting region . As an example for a fixed

meet pattern, we mention families of geese that gather in the fall in a specific

place to form a flock. An example for a varying meet is the rental car drop-off

at an airport. In Figure 2.21, the left part shows that moving objects meet in a

space-time cube for time interval from ti to tj. The right part of the figure shows

the same thing in terms of the projection to the plane. Here, the objects remain

within a stationary disk of a specific radius for a certain time duration and this

proximity implies their meeting during that duration.

Moving cluster: A moving cluster consists of a set of objects that stay close

to each other while taking the same path for a specific duration [1]. Nevertheless,

it is not necessary that the objects participating in the pattern remain the same,

but they may enter and leave, while the cluster is moving. A flock of migrating

geese, a convoy of cars following the same route, and troops that move parallel on

a military battlefield are different examples of moving clusters. In Figure 2.22,
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Figure 2.22: Moving Cluster (taken from [1])

four objects are very close together. The direction of movement of these objects

are not changing synchronously, but the changes are such that the objects are

taking a similar path. This similarity of path is expressed by similarity of changes

in movement direction.

Figure 2.23: Synchronization in Time (taken from [1])

Synchronization in time: There are two variants of synchronization pat-

terns. Full synchronization happens when similar changes of movement parame-

ters (e.g., speed, acceleration, direction, etc.) occur at the same time. In contrast,

lagged synchronization happens when the changes of movement parameters oc-

cur after a time delay [1] e.g. forwards in football (soccer) start moving in a

similar direction synchronously, when their goalkeeper kicks the ball towards the

opponents side. Full and lagged synchronization are shown in Figure 2.23.

Generic compound patterns are built from primitive patterns. A description

of these patterns is given below.

Isolated object: An isolated object is a moving object (normally belonging

to a group of MPOs) that pursues its own path, without any influence on or by

the movement of other objects , e.g., when a goose misses the flock and travels
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Figure 2.24: Isolated Moving Point Object (taken from [1])

alone [1]. Figure 2.24 shows such an individual MPO that was part of a group

for some time. After that it separated out and followed its own course of motion.

Figure 2.25: Symmetry (taken from [1])

Symmetry: Symmetry (shown in Figure 2.25 ) refers to sequences of pat-

terns, where the same patterns are arranged in reverse order, such as wild geese

heading north in the spring, and south in the fall.

Figure 2.26: Repetition (taken from [1])
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Repetition: Refers to the occurrence of the same patterns or pattern se-

quence at different time intervals [1]. For instance, in a football match the

wingers may repeatedly sprint along the sidelines or in an eye tracking experi-

ment the test subjects may repeatedly scan the underlying image up and down.

Figure 2.26 shows how pattern of movement of three objects alternate from one

type to the other.

Figure 2.27: Propagation (taken from [1])

Propagation: Propagation occurs when one object starts to show a cer-

tain movement parameter value, and little by little other objects start adopting

the same pattern [1]. By the same token, with every time step more objects

are involved. For instance, in the spring snow geese gradually start leaving at

different times, depending on how far north they are migrating. The difference

to the trend-setting pattern discussed below is that propagation always happens

gradually and does not necessarily involve the influence of a trend-setter ob-

ject. Figure 2.27 shows that an object exhibits a motion pattern starting at time

instant ti. Other objects follow this pattern, starting at time instants tj, tk and tl.

Figure 2.28: Convergence and Divergence (taken from [1])

Convergence and divergence: Convergence (shown in left part of the

Figure 2.28 ) refers to the movement of a set of objects to the same location,
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while the original movement direction of the involved objects does not change.

In other words, the motion azimuth vectors of the objects involved will be in-

tersecting within a specific range and within a specific duration [1]. The objects

need not arrive at exactly the same time. For example, several flocks of snow

geese may converge toward a lake to rest. Divergence (shown in right part of the

Figure 2.28 ) is defined as the opposite pattern of convergence and describes a

group of moving objects that disperse from a common location.

Figure 2.29: Encounter and Breakup (taken from [1])

Encounter and breakup: Encounter (shown in left part of the Figure 2.29

) refers to moving to and meeting at the same location. Encounter is a spe-

cific form of convergence pattern where the objects arrive at the same time. In

an encounter pattern a set of MPOs have motion azimuth vectors that can be

extrapolated from the current movement such that the vectors intersect within

a specific range and the MPOs meet at the same time [1]. Breakup (shown in

right part of the Figure 2.29 )is defined as the opposite of the encounter pattern

and describes a divergence, adding a temporal (concurrency) constraint. In a

football match, an encounter occurs when several players rush towards the ball

and reach it at the same time. A breakup occurs when ducks flee from a pond

after a gunshot is heard.

Trend and fluctuation: Trend refers to consistent changes in the move-

ment parameters of moving objects . e.g., for an airplane circling in a holding

pattern the rate of change of the movement direction will remain constant [1].

Conversely, fluctuation refers to irregular changes in the movement parameters

of moving objects , e.g., a flock of geese may change their flying formation be-

tween V-shape, irregular V-shape, or sometimes lines. In left part of Figure 2.30,
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Figure 2.30: Trend and Fluctuation (taken from [1])

the direction of movement of an object changes consistently forming a circular

shape. In the fluctuation pattern, shown to the right, the direction changes in

such a way that a fluctuation between high and low points can be observed.

Figure 2.31: Trendsetting Pattern (taken from [1])

Trend-setting: Trend-setters are defined as objects that anticipate a certain

movement pattern that is afterwards followed by a subset of the other moving

objects [1]. In another words, trend-setters are objects that influence the move-

ment of others not necessarily in a spatial and temporal proximity. For example,

in a football match, a striker executing a sudden rush towards the adversary goal

acts as a trend-setter, anticipating (or triggering) a similar movement direction

by the defenders and his/her own teammates). There are two variants of trend-

setting, non-varying trend-setting with a fixed subset of followers and varying

trend-setting. In the case of varying trend-setting, the subset of followers may

change over the time intervals of the observation duration. Similarly to a moving

cluster, in the trend-setting pattern objects move in the same direction or may

have other similar movement characteristics such as same speed or acceleration.

A trendsetting pattern can be observed in Figure 2.31. The trend setter moves

in a particular direction and other objects follow in the same direction.
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Literature survey reveals that statistical approaches are predominantly used

in the filed of computer vision. These approaches are not adequate if we need

to represent internal structure of a motion pattern. Grammar based approaches

are also proposed, but representation of concurrency is a problem in these ap-

proaches. In GIScience, majority of approaches use ad hoc algorithms for ex-

tracting patterns. This approach is not general in the sense that it does not

provide a general framework for recognition of motion patterns.

In the next chapter, we introduce two qualitative formalisms, one for direc-

tion and the other for spatial orientation. We have used these formalisms in

learning and representation of a motion pattern between two persons from video

data. The formalisms are introduced early because these formalisms have been

used in examples in subsequent chapters.

2.4 Syntactic Pattern Recognition

Statistical pattern recognition attempts to classify patterns based on a set of

extracted features. An underlying statistical model is used for the generation of

these patterns. A numerical representation of the features of the pattern in the

form of a vector is used as a representational technique. Statistical approaches

are widely used for their simplicity. A multidimensional feature vector repre-

sents the patterns to be recognised. Each pattern is represented by a point in

this multidimensional feature vector space. Distances between such points are

measured in statistical space for recognition of patterns. Statistical approaches

demand determination of the feature vector along with training and classification

of patterns.

Patterns may sometimes contain structural and relational information that

are difficult to quantify in feature vector form. Syntactic pattern recognition is

a form of pattern recognition that allows us to analyse structural similarity of

patterns. Description of pattern structure is advantageous in situations where

a simple classification is not possible [49]. Moreover, it is possible to describe

aspects that cause a pattern to not be assigned to a particular class. In certain
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applications, recognition of a pattern is possible only through a description of its

structure. As an example, we can cite the case of picture recognition and scene

analysis. These applications have a large number of features. The structure of

the pattern is complex. Therefore, a hierarchical description of these complex

patterns in terms of simple primitives is necessary. An analogy can be drawn

between this case and the syntax definition of formal languages. In a formal lan-

guage, tokens are built from character sets and statements are built hierarchically

from these tokens. This is similar to hierarchical construction of patterns from

sub-patterns and primitives [50]. Syntactic pattern recognition, therefore, uses

formal grammars for representation and recognition of patterns [51], [52]. The

simplest sub-patterns are known as pattern primitives. These pattern primitives

are recognised directly in input data stream. A pattern description language is

used to define the structure of patterns in terms of pattern primitives. In syntac-

tic recognition, a pattern is thus represented as a string of primitives. Pattern

recognition is equivalent to parsing the structure of such a string according to

the formal grammar used for defining the pattern [53]. This approach is ad-

vantageous in the sense that an infinite number of patterns can be represented

in compact way using a formal grammar [54]. This type of pattern recognition

can take handle more complex relations between features than numerical feature

vectors used in statistical recognition. The challenge of grammar based pattern

recognition is to propose grammars that have decidable and efficient algorithms

for parsing [50].

In a general sense, a formal language is defined as a set of strings over some

alphabet Σ. The alphabet is a finite non-empty set of symbols. A string over an

alphabet Σ is a finite sequence of symbols of Σ. We can represent the rules that

characterise the strings of a language using a grammar [55]. Grammars represent

the most general system of representing languages.

A grammar is a quadruple (Σ, V, S, P), where:

1. Σ is a finite nonempty set called the terminal alphabet. The elements of Σ

are called the terminals.

2. V is a finite nonempty set disjoint from Σ. The elements of V are called
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the non-terminals or variables.

3. S ∈ V is a distinguished non-terminal called the start symbol.

4. P is a finite set of productions rules of the form α → β where α ∈ ( Σ ∪

V )∗ V ( Σ ∪ V )∗ and β ∈ ( Σ ∪ V )∗.

Chomsky provided a classification of grammars into four classes [56]. This

classification is obtained by imposing stricter restrictions on the forms of pro-

ductions. In Type-0 or unrestricted grammar, no restriction is imposed on the

grammar productions. In a Type-1 or context-sensitive grammar each produc-

tion is of the form αAβ → αγβ where γ 6= ε. In Type-2 or context free grammar,

in any production of the form α → β, α is a single non-terminal. A grammar is

called a Type-3 or regular grammar if each production has one of the forms: A

→ c B, A → c and A → ε. Language generated by Type-1 grammar is known

as context sensitive language. Type-2 grammars generate context free languages

and Type-3 grammars generate regular languages. The language generated by

Type-0 grammars is recognised by Turing machines. Linear bounded automata

are the recognisers for context sensitive languages. Context free languages are

recognised by pushdown automata whereas finite automata recognise regular lan-

guages.

Given these four classes of languages, an important problem is the member-

ship problem. Membership problem can be stated as: Given a string over Σ, does

this string belong to L(G)? For Type-0 grammars, the membership problem is un-

decidable in general. For Type-1 grammars this problem is PSPACE-Complete.

For context free languages, this problem is decidable in polynomial time and for

regular languages it is decidable in linear time [57].

In the work presented in this thesis, patterns are represented as strings of

terminals. These terminals are derived from a qualitative description of a pat-

tern. Therefore, learning of a regular grammar (equivalently a DFA) is necessary.

So,it will be relevant to discuss some approaches in learning DFA. Learning a

deterministic finite automaton from both positive and negative data is a well-

known problem in grammatical inference. Gold established that the associated
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combinatorial problem is not tractable [58]. Pitt and Warmuth [59] showed that

finding a polynomially larger DFA than the minimum DFA, consistent with data,

is NP-Hard. Gold [58] gave an algorithm that works when data are sufficient; but

can not generalise if this is not the case. Trakhtenbrot and Barzdin proved that

in the case where all the data are presented upto a certain length, it is possible to

learn a DFA. The problem here is that the volume of data becomes huge. Dupont

et. al. [60] proposed a lattice based approach for learning a DFA where the num-

ber of nodes in the lattice grows exponentially. Lang [61] showed experimentally

that when volume of data increases beyond a limit, learning becomes very poor.

After this different approaches have been applied to solve this problem. No-

table work include evidence driven technique (Lang [60]), data driven heuristics

( [60]), TABU search by Giordano [60], genetic algorithm by Dupont [60], incre-

mental algorithm by Parekh and Honavar [60], learning of a non-deterministic

automaton first by Denis et. al. [60], learning non-deterministic automaton from

queries and counter-examples by Yokomori [62], algorithms by Oliveira [63] and

Lang [64] on learning large automata etc.

In this thesis, we do not need to consider solving the general DFA learn-

ing problem from data. Rather, we need to handle a very special subclass and

therefore learning algorithm becomes simple. The notion of spatio-temporal con-

tinuity, found in QSR represented events, makes the pattern strings structurally

very simple. In Chapter 4, we have shown that by exploiting spatio-temporal

continuity, it is possible to represent pattern strings in a form where a termi-

nal does get repeated consecutively inside the string. Therefore, a sequence of

non-repeated terminals can be represented by a set of simple production rules.

Whenever a new example is seen, we need to check whether the corresponding

string representation occurs as a substring of already learned strings. If not, this

new string needs to be learned and represented using a set of productions. In

our work, only positive examples are learned and represented.
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2.5 Motion Pattern Analysis in Computer Vi-

sion

Activity recognition from video has been a significant research area. The reason

is that it finds application in a diversified set of areas like security and surveil-

lance, content based video retrieval, animation, behavioural biometrics, sports

analysis etc. Activity recognition is closely related with motion pattern recogni-

tion. Analysis of movement of participating entities is a central focus in activity

recognition problem. Activity recognition is hierarchical in nature. This hierar-

chy is in terms of a set of modules that are organised hierarchically. Low level

modules perform tasks such as background-foreground segmentation, tracking

and object detection. The middle level is concerned with action recognition.

An action occupies a short span of time. At the highest level, semantics of the

activity are derived from the low level actions.

Within the computer vision community, activity recognition focuses mainly

on human activity recognition. A common and widely used way to model the

structure of human behaviors relies on purely probabilistic approaches. Hidden

Markov Models (HMM) is one such widely used model. The general idea of these

approaches is to extract sets of features from the low-level data and feed them into

the probabilistic graphical model used to define the event structure. Yamato et.

al. [65] used HMM s to recognize tennis shots such as backhand stroke, backhand

volley, forehand stroke, forehand volley, smash etc. Successful gesture recogni-

tion systems using HMM s have been reported in [66], [67] and [68]. HMM s

have also been used in modeling the temporal evolution of human gait patterns

for action recognition and biometrics in [69], [70] and [71]. Brand et. al. [72]

proposed a coupled HMM to represent the dynamics of interacting objects [72].

Moore et. al. [73] used HMM s combined with object detection modules to anal-

yse the relationship between actions and objects [73]. In the work of Hongeng

and Nevatia [74], a priori beliefs of state-duration were incorporated into HMM

framework. The resultant is called Hidden semi-Markov Model. Cuntoor and

Chellappa [75] proposed a mixed-state HMM formalism to model non-stationary
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activities. A special type of HMM (Switching Hidden Semi-HMM) with a two

layer implementation is reported in the work of [76] to learn and recognise hu-

man activities. Nguyen et. al. [77] proposed a hierarchical HMM for recognising

the hierarchical structure and the shared semantics contained in the movement

trajectories. A scalable method for complex activity recognition is presented

in [78].

Linear dynamical systems (LDS) are a more general form of HMM s where

the state-space is not constrained to be a finite set of symbols but can take on

continuous values. The LDS can be interpreted as a continuous state-space gen-

eralization of HMM s with a Gaussian observation model. Several applications

such as recognition of humans and actions based on gait [79] , [80], activity

recognition [75] and dynamic texture modeling and recognition [81] , [82] have

been proposed using LDS s. Advances in system identification theory for learning

LDS model parameters from data [83], [84], [85] and distance metrics on the

LDS space [86], [81], [87] have made LDSs popular for learning and recognition

of high-dimensional time series data. In-depth study of the LDS space has en-

abled the application of machine learning tools on that space such as dynamic

boosting [88], kernel methods [89], [90] and statistical modeling [3]. Newer meth-

ods to learn the model parameters [91] have made learning much more efficient

than in the case of HMM s.

Bregler [92] presented a multilayered approach to recognize complex move-

ments consisting of several levels of abstraction. North et. al. [93] augment

the continuous state vector with a discrete state component to form a mixed

state. Pavlovic and Rehg [94], [95] model the non-linearity in human motion

in a similar framework, where the dynamics are modeled using LDS and the

switching process is modeled using a probabilistic finite state-machine. Though

the SLDS framework has greater modeling and descriptive power than HMM s

and LDS s, learning and inference in SLDS are more complicated, often requiring

approximate methods [96]. In practice, determining the appropriate number of

switching states is challenging and often requires large amounts of training data

or extensive hand tuning.
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A Bayesian network (BN) [97] is a graphical model that encodes complex

conditional dependencies between a set of random variables which are encoded as

local conditional probability densities (CPD). Dynamic Belief networks (DBNs)

are a generalization of the simpler Bayesian networks by incorporating tempo-

ral dependencies between random variables. DBN s encode more complex con-

ditional dependence relations among several random variables as opposed to

just one hidden variable as in a traditional HMM. Buxton and Gong [98] used

Bayesian networks to capture the dependencies between scene layout and low

level image measurements for a traffic surveillance application. Remagnino et.

al. [99] present an approach using DBN s for scene description at two levels of ab-

straction. Modeling two-person interactions such as pointing, punching, pushing,

hugging etc. was proposed by Park and Aggarwal [100] in a two-stage process.

Intille and Bobick [101] use Bayesian networks for multiagent interactions where

the network structure is automatically generated from the temporal structure

provided by a user. Usually the structure of the DBN is provided by a do-

main expert. But this is difficult in real life systems where there are a very

large number of variables with complex inter-dependencies. To address this is-

sue Gong et. al. [102] presented a DBN framework where the structure of the

network is discovered automatically using Bayesian Information Criterion [103]

, [104]. DBN s have also been used to recognize actions using the contextual

information of the objects involved. Moore et. al. [73] conduct action recog-

nition using belief networks based on scene context derived from other objects

in the scene. Gupta et al. [105] present a Bayesian network for interpretation

of human-object interactions that integrates information from perceptual tasks

such as human motion analysis, manipulable object detection and object reaction

determination. Use of Bayesian networks in anomaly detection of vessel tracks

is reported in the work of Steven et. al. [106]. Phan has proposed an automatic

decision tree pruning method for improving activity recognition [107]. A survey

of human activity interpretation in video sequence can be found in [108]. In

another work of Borges et. al. [109], a survey of video-based human behaviour

understanding can be found. Ontologies are used for recognition of human be-

haviour. Natalia et. al. [110] have provided a survey on the ontological issues
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of human behaviour recognition. Holistic and posed based methods for activity

recognition are proposed in [111].

Works highlighting the importance of qualitative spatial relations for video

understanding have been reported in literature. Early attempts in this area

includes the work of Fernyhough et. al. who have shown how qualitative rela-

tions can be automatically learned from a video input [112]. Qualitative spatio-

temporal relations have been used with variable length Markov model to learn in-

teraction between objects in a scene [113]. Qualitative spatio-temporal relations

between objects have been reported in the work of Sridhar [12] for unsupervised

learning of event classes from video. Relational representation of scenes using

qualitative spatial relations is reported in the work of Dubba et. al. [11]. An

approach to integrate spatial aspects like topology, direction, size and distance of

moving objects is proposed in the work of Cohn et. al. [114]. Sadeghi et. al. have

proposed a modified version for extracting spatial information with much higher

accuracy [115]. A qualitative spatial representation of General Solid Rectangles

is represented in [116]. In [117], combination of topological and directional infor-

mation for two dimensional spatial objects is studied. Use of qualitative spatial

reasoning in improving tracking accuracy in reported in [118].

Using formal grammars, we can represent the structure of an activity. Use

of formal grammars is advantageous because it permits principled inference and

provably correct analysis. Moreover, efficient parsing algorithms exist for certain

classes of formal grammars [119], [120]. Here, efficiency refers to time complexity

of parsing algorithms. For example, for regular languages, parsing can be done in

linear time and for context free languages, it can be done in polynomial time. An

early work on the use of grammars for activity recognition is reported in [121].

In this work, a deterministic grammar with no probabilistic modelling is used for

recognising hand manipulations in sequences containing disassembly tasks. Ryoo

and Aggarwal [13] used the context-free grammar (CFG) formalism to model

and recognize composite human activities and multiperson interactions. In their

work, HMM s were used at low-levels and higher level semantics are modeled by

CFGs. Algorithms for detection of low-level primitives are frequently probabilis-
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tic in nature. Stochastic Context-free grammar (SCFG) was used by Ivanov and

Bobick to represent semantics of activities [14]. Structure of these activities was

assumed to be known a priori. In their work, HMM s were used for detection of

low-level primitives. Probabilities were used along with grammar productions.

Use of skip transitions made the system robust against errors. Moore et. al. [122]

used SCFGs to model multi-tasked activities. Probabilistic attribute grammars

have been used by Joo and Chellappa [123] for multiagent activities in visual

surveillance. A computational framework is proposed in [124] for recognising

behaviour in a minimally supervised manner. Zhang et. al. [125] have proposed

to extract the terminal symbols of a SCFG from motion trajectories. Motion

trajectories are transformed in a set of basic motion patterns (primitives) that

are taken as terminals for the formal grammar. A rule induction algorithm,

based on the Minimum Description Length (MDL), automatically extracts the

spatio-temporal structure of the event from the primitive stream. Temporal logic

between atomic events is modeled through a combination of SCFG and Allens

temporal logic [18]. A Multi-Thread Parsing algorithm with Viterbi-like error

recovering is developed in order to recognize events in the stream. A method for

learning a context-free data automatically from input motion data is reported

in [126]. A Gesture Description Language is proposed in [127] for recognition of

human body poses and gestures in real time. A context-free grammar, named

as Manipulation Action Grammar, is proposed by Yezhou et. al. [128] for un-

derstanding human manipulation actions. A hierarchical recognition strategy

using support vector machine, HMM and formal grammars is used for real-time

3D motion recognition in [129]. Heryadi et. al. [53] have proposed a method

to recognise basic 3D dance motions using a stochastic regular grammar from

training data set. Recognition of human behaviour using a context-free gram-

mar is proposed in the work of Andrea et. al. [51]. A Featurebased Stochastic

Context-Free Grammar is used in [130] for learning and recognising natural hand

gestures. A review of vision-based human action recognition is presented in [131].

Inductive logic programming (ILP) is a subfield of machine learning which

uses logic programming as a uniform representation for examples, background

knowledge and hypotheses. When an encoding of the known background knowl-
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edge along with a set of examples is represented as a logical database of facts,

an ILP system will derive a hypothesised logic program which entails all the

positive and none of the negative examples. ILP has been explored as a way of

learning events from video. A notable work on learning QSR represented events

from complex videos within an ILP based framework is reported in [11] . In this

work, a supervised ILP based framework was applied on a large (approximately

2.5 million frames) and noisy video dataset from airport apron to learn events.

In this approach, a type refinement operator is used to reduce the number of

false positives and learn semantically meaningful hypotheses.
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