
Chapter 4

Integrating QSR into Syntactic

Pattern Recognition

4.1 Qualitative Representation of Motion Pat-

terns

4.1.1 Definition of Binary Motion Pattern

A binary motion pattern is a pattern that is defined between two objects. A

movement pattern is characterised by certain parameters. Thus, parameters are

characteristics that are used in the definition of a motion pattern.The term pa-

rameter, in Pattern Recognition, refers to the constants in a hypothesis function.

The usage of the term parameter in this thesis is based on motion pattern defi-

nitions in the domain of GIScience. Typically, parameters like direction, speed,

distance, spatial location etc. are used to characterise a movement pattern. Pa-

rameters depend on the application domain. These parameters are dynamic in

the sense that the values of the parameters change over time. In the framework

proposed in this thesis, each motion pattern parameter is represented using a

JEPD set of binary qualitative relations. A motion pattern is modeled as a

sequence of temporal states. Each temporal state is characterised by a set of

values for the binary qualitative relations that are used to represent movement

parameters of the pattern. For example, let us consider a motion pattern where

67

Chapter 4. Integrating QSR into Syntactic Pattern Recognition

direction and distance are used as movement parameters. Let direction be mod-

eled qualitatively using the qualitative direction relations defined in section 3.1.

The set of qualitative distance relations is taken as { veryclose, close, near, far

}. Then a temporal state may be (Same+, Close). This temporal state will

last in time for a certain duration and a state transition will occur when there is

a change in any or both of the qualitative relations that characterise the state.

For example, this state may change to (Same, near) when direction relations

changes from Same+ to Same and distance relation changes from close to near.

Definition 4.1.1 A temporal state of a motion pattern is an ordered n-tuple <

r1 , r2 , . . . , rn > where each ri is the value of a binary qualitative relation

Ri used to represent the i-th movement parameter of the pattern. Each temporal

state holds for a finite duration of time.

Temporal states are the building blocks using which a motion pattern can

be represented. Temporal states are assigned a qualitative interpretation by

defining them in terms of qualitative relations. A transition from one state to

another is caused by a change in any relation value ri in the state. In our

framework, each temporal state is treated as symbol of some alphabet set Σ of

a language. In formal language theory, a language is defined as a set of strings.

In state-space representation, a motion pattern can be represented as a sequence

of temporal states. When we move from the state-space representation to the

language-theoretic representation, it is necessary to treat each temporal state as

a symbol of some alphabet Σ of a language. Then, a sequence of temporal states

becomes a sequence of symbols i.e. a string of symbols. Symbols that comprise

such a string are terminals of a language. This is the language that represents the

motion pattern in language-theoretic domain. Different instances of the pattern

are represented by different strings. By instances, we refer to the different ways

in which a motion pattern can occur. All these strings, representing various

instances of the pattern, belong to the same language that describe the pattern.

A formal grammar can be used to define such a language. In subsequent sections,

we further explore this language-theoretic interpretation of a motion pattern.

Definition 4.1.2 Binary Motion Pattern: A binary motion pattern ξ for two

68

Chapter 4. Integrating QSR into Syntactic Pattern Recognition

objects can be denoted by (Gbmp, χ), where Gbmp is a grammar and χ is a

set where each element is a Jointly Exhaustive Pairwise Disjoint (JEPD) set of

binary qualitative spatial relations.

Definition 4.1.3 The set χ = { R1 , R2 , . . . , Rn }, where each Ri is a JEPD

set of binary qualitative spatial relations. Each Ri represents the i-th parameter

of the movement pattern qualitatively.

A binary motion pattern holds between two objects. There are two im-

portant considerations in the definitions given above. One is about how each

movement parameter is represented. Each movement parameter is represented

by a JEPD set of binary qualitative spatial relations. The other is a grammar

termed as Gbmp. The properties of Gbmp will be gradually explored in subsequent

discussions. A binary motion pattern can also be defined as a formal language:

Definition 4.1.4 A binary motion pattern between two objects can be defined as

a set Lbmp = { w | Gbmp =⇒∗ w }

We would like to discuss now how a state-space representation of a motion

pattern can be transformed into a string of symbols. For this purpose, we intro-

duce a notion called primitive patterns:

Definition 4.1.5 Primitive Pattern : Let R1 , R2 , . . . , Rn be JEPD sets

of binary qualitative spatial relations, each Ri representing a different movement

parameter qualitatively. Then, a primitive pattern between a primary object and

a reference object is denoted by an n-tuple of the form ≺ r1 , r2 , ... rn � such

that ≺ r1 , r2 , ... rn � ∈ R1 × R2 × . . . Rn.

Each primitive pattern is a temporal state that can be called as a snapshot

of the motion pattern during a certain time interval. Primitive patterns form

the the alphabet set Σbmp of the grammar Gbmp. Each primitive pattern is a

terminal symbol using which strings in the language Lbmp are constructed. It is

obvious that the set of primitive patterns is exhaustive i.e. it includes all possible

temporal states a motion pattern may be in.

69

Chapter 4. Integrating QSR into Syntactic Pattern Recognition

4.1.2 Spatio-temporal Continuity

Spatio-temporal continuity, expressed in the form of conceptual neighbourhood

graphs, imposes an ordering on the terminals in the set Σbmp.

Definition 4.1.6 Neighbouring Terminal: Let Σbmp be the alphabet set for the

grammar Gbmp.Let a ∈ Σbmp and let a be of the form ≺ r1 , r2 , ... rn �. Let

b ∈ Σbmp and it is of the form ≺ s1 , s2 , ... sn �. Then, b is a neighbouring

terminal of a iff s1 is a conceptual neighbour of r1, s2 is a conceptual neighbour

of r2, ... and sn is a conceptual neighbour of rn.

Therefore, spatio-temporal continuity restricts the terminals that may appear

after a given terminal in a string representation of a motion pattern. If a and b are

consecutive terminals in a string, then it must be the case that b is neighbouring

terminal of a and vice-versa. This notion of continuity influences the productions

of Gbmp i.e. it affects the form of grammar necessary to recognize a binary

motion pattern. Moreover, spatio-temporal continuity of terminal symbols can

be exploited to handle low level processing errors and missing observations.

Spatio-temporal continuity affects the format of a string in the language

Lbmp. The following lemma states an important property about a string w ∈

Lbmp.

Lemma 4.1.1 Let Lbmp be a binary motion pattern language defined over Σbmp

and let a ∈ Σbmp. Let w be a string representation of a motion pattern and let w

∈ Σ∗. Then, w can not have a substring of the form an where n is greater than

or equal to two.

Proof: The proof follows from the fact that in QSR, change is recorded only when

it crosses a qualitative boundary. Let the terminal a be of the form ≺ r1 , r2 , ...

rn �. When any qualitative relation ri changes to its conceptual neighbour, then

only this change is recorded and a new terminal results. So, it is not possible that

the same terminal a occurs more than once consecutively in a string.

The above lemma simplifies algorithms for representation of a motion pat-

tern string using productions of a grammar. The lemma states that the same

70

Chapter 4. Integrating QSR into Syntactic Pattern Recognition

terminal is not repeated multiple times consecutively in string representation of

a motion pattern. After a terminal, its neighbouring terminal appears in the

string. Because of this, the representation of the string using productions of a

regular grammar becomes very simple and consequently, the algorithm for learn-

ing these grammar productions becomes simple. This is so because when the

above lemma holds, we can treat all terminals in the same manner and add a

production like A→ a B where A and B are non-terminals and a is the terminal

under consideration. With repetition of a multiple times consecutively, we need

to add appropriate productions to generate the repetition. So, for every terminal

encountered in the string, we need to check whether it is a single occurrence or

a repetition.

4.2 Integration of QSR with Formal Grammar

4.2.1 Definition of Gbmp

Definition 4.2.1 The grammar Gbmp = (V, Σbmp, P, S), where V is a set of

non-terminal symbols, Σbmp is a set of terminal symbols, P is the set of produc-

tions and S is the start symbol of the grammar.

Spatio-temporal continuity of terminal symbols in Σbmp makes it possible to

use a regular grammar for representation and recognition of Lbmp.

Lemma 4.2.1 The motion pattern grammar Gbmp = (V, Σbmp, P, S) is a

regular grammar i.e. each production is of the form A → a B where a ∈ Σbmp

and A, B ∈ V .

Proof: Let m be a motion pattern and let m be of the form a1 a2 a3 . . . an, where

each ai ∈ Σbmp. Each ai+1 is a neighbouring terminal of ai. For recognising m,

we can construct a deterministic finite automaton with states S0, S1 . . . Sn

such that there is a transition from state Si to state Si+1 on input ai+1. Here, S0

is the start state and Sn is the final state. From equivalence of DFA and regular

grammar, we can write grammar productions as S0 → a1 S1, S1 → a2 S2, . . .

Sn−1 → an Sn, Sn → ε . Here, each Si is a non terminal.

71

Chapter 4. Integrating QSR into Syntactic Pattern Recognition

The above lemma is significant in recognition of a binary motion pattern.

As the motion pattern grammar Gbmp is a regular grammar, this grammar can

be converted into a finite state automaton during recognition and therefore,

recognition of a binary motion pattern can be done in linear time using this

finite state automaton.

4.2.2 Implication of JEPDness

The set of binary qualitative relations used for representing a movement pa-

rameter should be Jointly Exhaustive and Pairwise Disjoint (JEPD). Jointly

Exhaustiveness (JE) property affects the alphabet set Σbmp of the motion pat-

tern language Lbmp. For example, let us assume that L is a language and T be

its alphabet set. Let GL be the grammar that recognises L. Let T = { a, b, c }.

Therefore, all the strings that belong to the language L will be formed out of the

elements of the set T. If some string w contains a symbol d /∈ T, then L can not

be recognised by GL. This implies that the alphabet set must be exhaustive in

the sense that it must contain all the symbols that may constitute strings of the

language L. For the binary motion pattern language Lmp, any terminal symbol

a ∈ R1 × R2 × . . . Rn. Therefore, for the alphabet set Σbmp to be exhaustive,

each Ri must be exhaustive. This is stated in the following lemma:

Lemma 4.2.2 The motion pattern grammar Gbmp = (V , Σbmp , P , S) can

recognize the language Lbmp, only when each binary qualitative spatial relation Ri

representing the i-th movement parameter is Jointly Exhaustive.

Proof: Let us assume that some Rl is not Jointly Exhaustive. This means there

may be some binary qualitative relation rl that can act as the value of the l− th

movement parameter, but rl /∈ Rl. So, the terminal b = ≺ r1 , r2 , ...rl, rl+1 . .

. rn � /∈ Σbmp. Let w ∈ Lbmp and w be of the form a1, a2, . . . b . . . an. For

this w, there can not be a production of the form X → b Y , where X, Y ∈ P .

So, w can not be parsed by Gbmp and hence Lbmp can not be recognised by Gbmp.

For recognition of a string by a grammar, input is scanned over one symbol at

a time. The symbol currently under consideration decides which production rule

72

Chapter 4. Integrating QSR into Syntactic Pattern Recognition

to use for parsing. If the current input symbol is not known deterministically i.e.

if it is possible that current input is not a single terminal, but a set of terminals,

then there is non determinism in parsing. Since Gbmp parses deterministically, it

is necessary that at any point of time a single terminal should be under consider-

ation. For this, the Pairwise Disjointedness (PD) of binary qualitative relations

is an important property.

Lemma 4.2.3 The grammar Gbmp parses deterministically when each binary

qualitative spatial relation Ri representing the i-th parameter of the motion pat-

tern is Pairwise Disjoint.

Proof: Let us assume that some Rl is not Pairwise Disjoint. This means that

there can be two relations rql, sql ∈ Rl such that both can hold at the same point

of time. Let a, b ∈ Σbmp. Let a = ≺ r1 , r2 , ...rql . . . rn � and b = ≺ r1 , r2 ,

...sql . . . rn �. Since, rql and sql can hold at the same point of time, it is pos-

sible that the terminals a and b occur simultaneously. Therefore, the production

for parsing the current input needs to be non deterministically chosen.

The above lemmas are significant because they state an important property

of the binary qualitative relations that can be used for each movement parameter.

If the set of binary qualitative relations, used for a movement parameter, is not

JEPD, then deterministic parsing of a binary motion pattern using grammar

productions is not possible.

4.2.3 Interpretation of Motion Patterns in Temporal Do-

main

A motion pattern lasts for a finite interval of time. Since a motion pattern

consists of one or more primitive patterns, the time duration of the whole pattern

depends on the individual time taken by each of its constituent primitive pattern.

If the time taken by each constituent primitive pattern is known, then it is

possible to know the time for whole motion pattern. The time taken by a motion

pattern has been termed as its Hold Interval.

73

Chapter 4. Integrating QSR into Syntactic Pattern Recognition

Definition 4.2.2 Hold Interval: Let ψ be a binary motion pattern and ψ be of

the form a1 , a2 , . . ., an, where each ai ∈ Σbmp. Let Ti be the time interval for

which the primitive pattern ai holds. Let t1 be the start time for the interval T1

and tn be the end time for the interval Tn. Then, the interval whose start time

is t1 and end time is tn is called the Hold Interval for the binary motion pattern

ψ

The time taken by each primitive pattern can be computed during input

processing. The HoldInterval for the entire motion pattern can be computed

during parsing using a syntax directed translation scheme.

4.3 Automatic Learning of a Binary Motion Pat-

tern

4.3.1 Training Data Format

In order to have a formal representation of a motion pattern in the form of a

grammar, the framework proposed in this thesis provides two methods. The first

is to describe the pattern using a program written in a qualitative language. This

approach is explained in chapter 5. The other is to learn the definition of the

pattern in the form of a formal grammar from a set of training examples. For

learning a binary motion pattern, it is necessary to learn the production rules

automatically from training data set. Spatio-temporal relations of the primary

object with respect to the reference are computed from the training data set.

The training data set may be real life or synthetic. As an example of real life

data set, we can cite the case of collecting data about a particular motion pattern

from video samples and recording these data in a pre-defined format for learning.

Similar synthetic data set can be generated through simulation. For manually

designed training data, we need to have an idea about the different ways in

which the motion pattern may manifest. Whatever may be the method of data

collection, the commonality is that the specifications of the pattern from different

training data sets are recorded in a pre-defined format. This pre-defined format

74

Chapter 4. Integrating QSR into Syntactic Pattern Recognition

Figure 4.1: Training Examples for Overtake Pattern

for a single training record is like:

Pattern_Name=

No_Of_Objects=

Object_List=

Reference=

Object_Id=Pattern_Specification;HoldInterval_Start;HoldInterval_End

Object_Id=Pattern_Specification;HoldInterval_Start;HoldInterval_End

...

The first line of this specification is common to all training data. This line

tells the name of the binary motion pattern for which the training data are

provided. The second line in each record gives the number of objects in that

particular example. The third line specifies the identity of each object partici-

pating in the pattern and the fourth one specifies the reference. After this, there

is a specification of a binary motion pattern along with its HoldInterval for each

object with respect to the reference.

75

Chapter 4. Integrating QSR into Syntactic Pattern Recognition

An example of such training data for an overtake pattern is presented below.

We assume that there are two objects A and B and the object B is the reference.

Objects are abstracted as directed rectangles. Spatial orientation and direction

are taken as movement parameters. These two are represented using the JEPD

sets explained in chapter 3. In all the three training examples given below, the

object A is initially behind the object B. In the first example, the object A goes

to the right of B from behind and finally from right it goes to the front of B.

In the second training example, from behind, A goes to the left of B and from

left it finally goes to front. In the third case, A is beside B on left. From there,

it goes to front. In the training examples, these cognitive descriptions of the

three overtake examples have been translated into string representation using

primitive patterns. Since time is represented only at the level of a pattern (not

at the level of each primitive pattern i.e. a state), the hold interval for the entire

pattern is indicated at the end of the binary motion pattern by listing the end

points of this interval.

Pattern_Name=Overtake

No_Of_Objects=2

Object_List=A;B

Reference=B

A=(Back,Same-),(BackRight,Same-),(Right,Same-),(Right,Same),

(FrontRight,Same);10;30

Pattern_Name=Overtake

No_Of_Objects=2

Object_List=A;B

Reference=B

A=(BackLeft,Same),(Left,Same),(FrontLeft,Same);20;50

Pattern_Name=Overtake

No_Of_Objects=2

Object_List=A;B

76

Chapter 4. Integrating QSR into Syntactic Pattern Recognition

Reference=B

A=(Back,Same-),(BackRight,Same-),(Right,Same-),

(FrontRight,Same-);15;30

Three training records have been manually designed. This specification is

based on our intuitive idea of an overtake. In Figure 4.1, these overtake patterns

have been illustrated.

4.3.2 Algorithm For Learning

It is possible to learn the production rules of grammar Gbmp automatically from a

training data set. A learning algorithm is presented below. This algorithm takes

a training data set in pre-defined format and constructs the productions of the

grammar Gbmp. The Pattern Specification field in a training record is assumed

to be of the form a1a2 . . . an.

77

Chapter 4. Integrating QSR into Syntactic Pattern Recognition

Algorithm 1 Learn bmp(Training Data)

1: while there is a training record do

2: j:=1

3: Read training record

4: for each object Ai in Object List do

5: if there is no production of the form S → Ai then

6: add S → Ai

7: add Ai → Xj

8: add Xj → a1 Xj1, Xj1 → a2 Xj2, . . . Xj(n−1) → an Xjn, Xjn →

ε

9: j:=j+1

10: else

11: Search Pattern Specification string in production list of Ai

12: if a match is not found then

13: add the production Ai → Xj

14: add the production Xj → a1 Xj1, Xj1 → a2 Xj2, . . . Xj(n−1)

→ an Xjn, Xjn → ε

15: j:=j+1

16: end if

17: end if

18: Read HoldInterval of the binary motion pattern for object Ai

19: end for

20: Find Max HoldInterval bmp()

21: end while

In this algorithm, a non-terminal is used for each object. This non-terminal

has the same name as the name of the object. When an object is seen in a training

record for the first time, a production is added from the start symbol to the non-

terminal representing that object. The format of a string in Pattern Specification

field is assumed as a1a2 . . . an. In line 8 of the algorithm, productions are added

for parsing a pattern string corresponding to the object under consideration when

the object is seen for the first time in a training record.

78

Chapter 4. Integrating QSR into Syntactic Pattern Recognition

Otherwise if an encountered object was seen before, it is necessary to check

whether the binary motion pattern stored in Pattern Specification string is al-

ready learned from some earlier training example for that object. For this, we

search for Pattern Specification string in the set of productions for that object.

We take this view that Pattern Specification string match terminal by terminal

starting at the first position. If such a match is found, it means that the current

example (stored in Pattern Specification string) was already seen exactly in the

same way or it occurred within an earlier example. It is true that even when the

current example in Pattern Specification string matches with earlier example(s),

the temporal characteristics may be quite different state wise. In the framework

proposed in this thesis, time is not stored at the level of a terminal (state).

Therefore, when a match is found, we assume that this example is already seen

and accordingly, do not add any production for this. Otherwise, if no match is

found, then this example has to be stored as a different way of performing the

event and this is done in line number 13 to 15 of the algorithm. The maximum

interval of time for which the binary motion pattern occurs is calculated by the

function Find Max HoldInterval bmp(). Since hold intervals of all the bmps are

available in training data set, the problem is to find the maximum among these

individual bmps.

Illustrative Example

As an example of operation of this algorithm, we look at the training data set

given for the overtake pattern in 4.3.1. When the first record is encountered, the

following productions are added:

S → A1 | A2 | A3

A1 → X1

X1 → (Back,Same-) X11

X11 → (BackRight,Same-) X12

X12 → (Right,Same-) X13

79

Chapter 4. Integrating QSR into Syntactic Pattern Recognition

X13 → (Right,Same) X14

X14 → (FrontRight,Same) X15

X15 → ε

The second record specifies that possibilities exist at the first two terminals.

The productions are augmented as:

A2 → (BackLeft,Same) X2

X2 → (Left,Same) X21

X21 → (FrontLeft,Same) X22

X22 → ε

The third training record shows a new possibility for the third terminal. The

production set is augmented as:

A3 → (Back,Same-) X3

X3 → (BackRight,Same-) X31

X31 → (Right,Same-) X32

X32 → (FrontRight,Same-) X33

X33 → ε

Complexity of Learning

When an object is seen for the first time, we need to store productions for each

terminal in the Pattern Specification string.

Let LP be the maximum length of the Pattern Specification string. When the

object is seen for the first time, LP number of productions are stored. Storing of

a production can be done in constant time. In the second case where the object

was already seen, we need to check whether the Pattern Specification string

80

Chapter 4. Integrating QSR into Syntactic Pattern Recognition

was already seen as a prefix of some already learned example. The number of

examples learned already can not be more than the total number of training

examples. Let the total number of training examples be NT . So, this search

takes time O(LP ∗ LP ∗ NT). Let NO be the number of objects in a training

record. Therefore, searches for all the examples in the training data set can not

take time more than O(LP ∗ LP ∗ NT ∗ NT ∗ NO). The number of objects

does not vary with training examples and it is same for all training examples.

Therefore, this time complexity can be approximated as O(LP ∗ LP ∗ NT ∗ NT).

4.4 Handling Low Level Error in Learning

4.4.1 The Principle

There are two types of errors that may be encountered in low level processing.

Firstly, we may encounter a primitive that is not a conceptual neighbour of

its previous primitive pattern. This may happen at the time of training the

framework and also at the time of recognition of a learned motion pattern. The

second is the problem of missing observations. In video processing, problem can

be caused by obstruction of camera view by other objects in such a way that

one or more objects may be occluded. The details about movements of objects

during the occluded period are not known definitely.The framework proposed

in this thesis is based on the notion of spatio-temporal continuity of binary

qualitative relations. It is expected that after a given primitive, its conceptual

neighbour will be encountered next. Because of above mentioned errors in low

level processing, this may not always hold.

In our framework, we treat both these types of errors as instances of dis-

continuity. If we encounter a primitive q after p, but q is not a neighbouring

primitive of p, then there is a discontinuity in input. It is not important whether

this happened because of processing error (for example in object detection, track-

ing etc.) or occlusion. Using spatio-temporal continuity of binary qualitative

relations, we try to infer what may be a possible sequence of primitives between

p and q. There is no definite way of knowing the actual sequence because the

81

Chapter 4. Integrating QSR into Syntactic Pattern Recognition

same discontinuity may be caused by different types of errors. If the technique of

handling the discontinuity remains same during learning and recognition, then

all kinds of errors that caused the discontinuity are automatically included in

the definition of the pattern. We follow this principle in our framework.

We try to find a sequence of primitives to fill the discontinuity between p and

q. The problem is to find a string a1a2 . . . an such that pa1a2 . . . anq satisfies

spatio-temporal continuity. This means that a1 is a neighbouring primitive of p,

any ai+1 is a neighbouring primitive of ai for i in the range from 1 to n− 1 and

q is a neighbouring primitive of an. Whenever there is a discontinuity between p

and q, the same string a1a2 . . . an is used to achieve continuity. By doing this,

we always treat the error in the same manner and incorporate the error into the

representation of the learned pattern. During recognition, when an error in the

form of two consecutive primitives p and q is observed, we know that this error

was seen during learning and steps were incorporated into the productions for

handling this kind of discontinuity. In this approach, we need to be careful about

the fact that the string pa1a2 . . . anq may be observed during recognition though

it is not a learned string. Actually, the discontinuous string with p followed by q

is the learned string; the string a1a2 . . . an is artificially filled during learning.

So, there is a possibility that false patterns may be recognised.

Extra information needs to be incorporated in the primitives so that the

exact path a1a2 . . . an can be traced. This extra information is explicitly

maintained in the learned pattern only. This extra information contains two

fields. The first is called category. The category specifies whether the primitive

was a conceptual neighbour of its previous primitive or not. If yes, then the

value of the category field is N to indicate that it is a non-error case. Otherwise,

the category field is set to the value E to indicate that it is an error case. When

the primitive is of category E, then we store the starting and ending primitives

for the discontinuity. We name this information as Path Name. Otherwise, if

the primitive category is N, then Path Name is set to a Null value to indicate

its non-significance. As an example, let us consider the discontinuity between p

and q. When this is filled with the sequence a1a2 . . . an, each ai is of category

82

Chapter 4. Integrating QSR into Syntactic Pattern Recognition

Figure 4.2: Data Structures for Error Handling During Learning

Figure 4.3: Conceptual Dependency of Distance Relations

E. The Path Name information in each of these ai is < p, q >. These two fields

i.e. Category and Path Name are auxiliary information maintained with the

primitives in order to prevent recognition of false patterns.

4.4.2 Algorithm for Handling Discontinuity

We present an algorithm below for finding a sequence of primitive patterns when-

ever a discontinuity is observed in Pattern Specification field during learning.

Data structures used in this algorithm are shown in Figure 4.2. In the table

Primitives in the figure, the primitive patterns computed during the operation

of the algorithm are stored. If there are N binary qualitative relations repre-

senting movement parameters, then each primitive will have N relation values.

Therefore, the number of columns in the Primitives table is N . Each row of

the Paths table is used for handling discontinuity at a particular position in the

primitive. For example, Paths[1] gives us the sequence of relation values for the

first binary qualitative relation R1.

83

Chapter 4. Integrating QSR into Syntactic Pattern Recognition

Algorithm 2 Find Sequence(p,q,Len)

Two primitive patterns p and q are passed as arguments. After p, q is encountered

and q is not a neighbouring terminal of p. The primitive p is of the form (p1,

p2, . . . pn) and the primitive q is of the form (q1, q2, . . . qn). The binary

qualitative relations for the movement parameters are R1,R2, . . . Rn. The

algorithm stores the computed sequence of primitives in a data structure called

Primitives. The length of the sequence is returned in the parameter named as

Len.

1: for i:= 1 To n do

2: Paths[i] := Find Shortest(pi,qi)

3: Length[i] := Find Length(Paths[i])

4: end for

5: Max Length := Length[1]

6: for i := 2 To n do

7: if Length[i] > Max Length then

8: Max Length := Length[i]

9: end if

10: end for

11: for j := 1 To n do

12: for i := 1 To Length[i] do

13: Primitives[i][j]:= Paths[j][i]

14: end for

15: if Length[j] < Max Length then

16: for k := Length[j]+1 To Max Length do

17: Primitives[k][j]:= Paths[Length[j]]

18: end for

19: end if

20: end for

21: Len := Max Length

In line 2 of the algorithm, we compute the shortest paths between corre-

84

Chapter 4. Integrating QSR into Syntactic Pattern Recognition

sponding relation values in the primitive patterns using conceptual neighbour-

hood graphs. For example, shortest paths between p1 and q1 is computed using

the conceptual neighbourhood graph of R1. Each such path is in the form of

sequence of primitives. In line 3 of the algorithm, any such path, computed

between pi and qi is stored in Paths[i]. Maximum length of such a path is com-

puted and stored in Max Length in lines 5 to 10 of the algorithm. From the

Paths data structure, these shortest paths are assigned to the Primitives data

structure in lines 11 to 20 of the algorithm. For the paths that have length less

than the maximum path length observed between two primitives (available in

Max Length), the last relation value is repeated. This is done in lines 15 to 19.

In the work of Fernyhough [133], handling of noise using a continuity network

(conceptual neighbourhood) is reported. It is assumed and motion is continuous

and the continuity network is respected. In their approach, in the event history

verification step, history is fixed by inserting a missing relationship tuple or by

removing an extraneous one. However, when the discrepancy is large, the entire

sequence is discarded. There are similarities and differences with our approach of

handling noise using conceptual neighbourhood. We too assume that motion is

continuous and if a pattern occurs, it must occur in a way that respects continuity

networks. Accordingly, missing primitives are inserted between discrepancies. In

our approach, we do not remove any discrepancy. Moreover, we do not discard

the sequence. If the discrepancies are same, then we the same sequence of missing

primitives is inserted always. This is like trying to represent the noise also in the

pattern in the hope that if the same noise occurs during recognition, the same

treatment is applied and resulting sequences too become identical.

Complexity of handling discontinuity

When discontinuity is observed, the algorithm needs to compute shortest path

from each pi to each qi in the conceptual neighbourhood graph of the correspond-

ing JEPD set of binary qualitative relations. Shortest paths between all-pairs

of nodes in a conceptual neighbourhood graph can be pre-computed and stored

in a hash table along with its length. In that case, finding the required shortest

85

Chapter 4. Integrating QSR into Syntactic Pattern Recognition

path between any pi and pi takes constant time and the loop from line 1 to 4

takes O(n) time. Here, n is the number of movement parameters. In lines from

5 to 10, the maximum among these path lengths is computed and this is done

in O(n) time. If this maximum path length is denoted by LM , then the nested

loop from lines 12 to 14 runs in O(LM) time. In the worst case, it can be as-

sumed that the loop in line 15 too tuns for O(LM) time. Therefore, complexity

of the for loop in line 11 can be taken as O(n ∗ LM) in the worst case. So, the

complexity of algorithm 2 in the worst case is O(n ∗ LM). Since the maximum

path length between any two nodes for all conceptual neighbourhood graph can

be computed in advance, the parameter LM can be considered to be a constant

integer. Moreover, for a particular application the number of movement param-

eters is also fixed. Therefore, for a particular application discontinuity can be

handled in constant time.

Illustrative Example

For an example of operation of this algorithm, we choose qualitative direction

and distance as two movement parameters. Qualitative directions are modeled

using the JEPD set of relations introduced in section 3.1. For convenience, we

refer to this set as Q. The set D = { very close, close, near, far } is used to model

distance qualitatively. The conceptual neighbourhood graph for these distance

relations is shown in Figure 4.3. We take two primitive patterns p and q such

that p = (Same , close) and q = (opposite+ , far). Obviously, q is not a

neighbouring pattern of p. In the conceptual neighbourhood graph in Figure 4.3,

the shortest path between close and far is close, near, far. The length of this

path is two. In the conceptual neighbourhood graph in Figure 3.5, we observe

that the shortest path between Same and opposite+ is Same, Same-, lr+, lr,

lr-, opposite+. The length of this path is five. Therefore, the missing primitives

between p and q are constructed as: (Same- , near), (lr+ , far), (lr , far), (

lr- , far), (opposite+ , far). The Category of each of this generated primitives is

E and the Path Name field is set to (Same , close), (opposite+ , far). During

recognition, if the same discontinuity is observed between consecutive primitives

86

Chapter 4. Integrating QSR into Syntactic Pattern Recognition

p and q, missing primitives will be generated using the same algorithm.

4.4.3 Modification of the Learning Algorithm

We need to incorporate error handling into the learning algorithm for a binary

motion pattern. Whenever a new terminal is seen in the training input, it is

necessary to check whether this terminal is a neighbouring terminal of its prede-

cessor.

Algorithm 3 Learn bmp Modified(Training Data)

The value of Pattern Specification field in a training record is assumed to like

a1, a2, . . . an.

1: while there is a training record do

2: Read training record

3: j := 2

4: Sequence := ””

5: for each object Ai in current training record do

6: for each primitive aj in Pattern Specification do

7: if aj is not a neighbouring terminal of aj−1 then

8: Find Sequence(aj−1,aj,Len)

9: for k:=1 to Len do

10: Set Category of Primitives[k] to E

11: Set Path Name of Primitives[k] to (p, q),

12: Concatenate(Sequence,Primitives)

13: end for

14: Insert Sequence into Pattern Specification at index j

15: j := j + Length +1

16: else

17: j := j +1

18: end if

19: end for

20: end for

21: end while

87

Chapter 4. Integrating QSR into Syntactic Pattern Recognition

22: while there is a training record do

23: j:=1

24: Read training record

25: for each object Ai in Object List do

26: if there is no production of the form S → Ai then

27: add S → Ai

28: add Ai → Xj

29: add Xj → a1 Xj1, Xj1 → a2 Xj2, . . . Xj(n−1) → an Xjn, Xjn →

ε

30: j:=j+1

31: else

32: Search Pattern Specification string in production list of Ai

33: if a match is not found then

34: add the production Ai → Xj

35: add the production Xj → a1 Xj1, Xj1 → a2 Xj2, . . . Xj(n−1)

→ an Xjn, Xjn → ε

36: j:=j+1

37: end if

38: end if

39: Read HoldInterval of the binary motion pattern for object Ai

40: end for

41: Find Max HoldInterval bmp()

42: end while

In Algorithm 3, for each object we remove discontinuities present in Pat-

tern Specification field of a training record. We check whether a terminal aj

is a neighbouring terminal of aj−1. If not, we compute the sequence of termi-

nals by making a call to Find Sequence. Find Sequence returns the sequence of

terminals in a data structure called Primitives. We concatenate these terminals

into a variable Sequence and insert the resulting string into Pattern Specification

field at index j. The length of Pattern Specification increases after this insertion

and therefore, we update the index variable j to get to the next primitive to be

88

Chapter 4. Integrating QSR into Syntactic Pattern Recognition

Figure 4.4: Allen’s Interval Algebra: In terms of Endpoint Relations

considered. Once the discontinuities are eliminated, learning is identical to what

was done in algorithm 1.

Complexity of Modified Learning Algorithm

Let us assume that the number of training records is NT , the maximum number

of objects in a any training record is NO and the maximum length of any pattern

specification string is LP . Then the for loop in line 5 runs for O(NO) time,

the for loop in line 6 runs for O(LP) time. The most frequent operations in

this algorithm are steps in lines 10, 11 and 12. Out of these, steps in lines 10

and 11 can be carried out in constant time. The concatenation operation in

line 12 joins all the computed primitives into a single string. If the maximum

path length of a discontinuity is LM , then the number of symbols to be copied is

O(LM). Considering the fact that the while loop in line 1 runs for O(NT) time,

the complexity of the most frequent operation at line 12 is O(NT ∗NO ∗LP ∗LM).

Since the conceptual neighbourhood graph for a set of JEPD relations is known

a priori, the parameter LM can be considered to be a constant. The part of this

algorithm from line 22 to line 42 is same as what was done in algorithm 1. This

part has the complexity O(LP ∗ LP ∗ NT ∗ NT). This is the dominant part of

the algorithm and so, the complexity of algorithm 3 can be taken as O(LP ∗ LP

89

Chapter 4. Integrating QSR into Syntactic Pattern Recognition

∗ NT ∗ NT).

4.5 Basic Multi Object Pattern: Representa-

tion, Learning and Recognition

4.5.1 Definition and Representation

A binary motion pattern expresses a motion pattern between two objects. In

reality, a motion pattern may involve more than two objects. A motion pattern

among multiple objects will thus be naturally termed as Multi Object Motion

Pattern (abbreviated as MOP). There is a subclass of Multi Object Motion Pat-

terns that we term as Basic Multi Object Motion Pattern. A Basic Multi Object

Motion Pattern (abbreviated as BMOP)too has more than two participating ob-

jects. The difference is that a BMOP can be learned from training data because

it does not contain any other nested BMOP within it. A BMOP is directly

learnable from training examples because inside a BMOP, we allow binary mo-

tion patterns only and techniques for learning these from training data examples

have been presented in algorithm 3.

Definition 4.5.1 A basic multi object motion pattern (to be abbreviated as bmop)

Υ is defined as a triple (M , O, T), where M is a set of binary motion patterns,

O is a set of objects and T is a set of temporal constraints.

The set M can be written as M = (ξ1, ξ2, . . . ,ξn), where each ξi is a

binary motion pattern between an object in the set O and a reference object in

the same set O. Since all objects share the same set of qualitative movement

parameters, the set χ i.e. the set of JEPD binary qualitative relations is same

for all the binary motion patterns. When interpreted as a language, a basic multi

object pattern will be a set of sets. Each set will contain the strings that are

generated by some Gibmp for the binary motion pattern ξi.

Definition 4.5.2 A basic multi object pattern can be defined as a language Lbmop

= { { w1ξ1, w2ξ1, . . ., wnξ1 }, { w1ξ2, w2ξ2,...wkξ2 }, . . . { w1ξn, w2ξn,...wlξn

90

Chapter 4. Integrating QSR into Syntactic Pattern Recognition

Figure 4.5: Hierarchical Organization of Motion Pattern

} }

Since the same JEPD sets of binary qualitative spatial relations are used for

all the objects, the alphabet set Σbmop is same for all the ξis. Therefore, the

strings in every set are made out of the terminals belonging to the same Σbmop.

When Lbmop is defined as a set of sets, the inner curly braces demarcate the

binary motion patterns for various primary-reference pairs.

The language Lbmop is regular because each string belonging to this language

is generated by a regular grammar. After the introduction of basic multi object

patterns, hierarchical organization of a motion pattern among multiple objects

can be described as shown in Figure 4.5. In the figure, bqr stands for a value of a

binary qualitative spatial relation. Each primitive pattern is a set of such values.

A binary motion pattern bmp between two objects is formed using a set of prim-

itive patterns. A basic multi object pattern BMOP among a number of objects

is made up of a number of bmps. The format of training data for basic multi

object patterns is same as the one used for binary motion patterns. In the case of

binary motion pattern, there is only Pattern Specification field in each training

record because only two objects participate and one of them is the reference. For

basic multi object patterns, there may be multiple Pattern Specification fields in

a single training record. After learning it is necessary to represent a basic multi

object pattern. Once learned, a basic multi object pattern can be represented in

the following form:

Pattern_Name

Object_List

91

Chapter 4. Integrating QSR into Syntactic Pattern Recognition

Reference

Learned_Grammar

Temporal_Constraint_List

MaxHoldTime_bmop

MaxHoldTimeList_bmp

The name of the basic multi object pattern along with the identities of

the primary objects and the reference are stored in first three fields. The

Learned Grammar field stores the learned grammar for constituent binary mo-

tion patterns. Temporal constraints can be learned from training data. In a

training record, the start point and end point are recorded along with string rep-

resentation of a binary motion pattern. During processing of a training record, it

is possible to compute Allen’s interval algebra relations between pairs of binary

motion patterns using the end point relations shown in Figure 4.4. Between the

same two binary motion patterns, different Allen relations may hold in different

training records. In Temporal Constraint List, the Allen relations between each

pair of bmps are maintained. The field MaxHoldTime bmop stores the HoldIn-

terval of the basic multi object pattern. The value of this field can be computed

from the values of the constituent binary motion patterns during learning. The

field MaxHoldTimeList bmp is a list of values. Each value in this list gives the

HoldInterval of a constituent binary motion pattern.

In our proposed framework, time is represented at the level of a basic mul-

tiobject pattern. An alternative will be to record time with each state i.e. with

each primitive. When time is recorded with each state, it is possible to make a

finer distinction between patterns using their temporal characteristics. On the

other hand, two patterns, identical in terms of spatial characteristics, may not

be considered identical if one takes a shorter/longer duration. For example, two

overtake patterns may be identical in terms of spatial locations and directions;

but when temporal duration is compared state wise, they may differ. In the

thesis, we overlook this and have taken the view that if patterns are observed

within the maximum learned interval for such patterns, then we check them for

recognition.

92

Chapter 4. Integrating QSR into Syntactic Pattern Recognition

4.5.2 Learning

For learning a basic multi object pattern, we need to perform two tasks. One is

to learn the bmps for each primary-reference pair. The other is to compute the

Allen relations between Hold Intervals of binary motion patterns. The binary

motion pattern between a primary object and a reference can be learned using

the algorithm Learn bmp Modified. Each Allen relation between a pair of inter-

vals can be expressed by relations between the end points of the intervals. In

Figure 4.4, we have shown the definitions of Allen’s interval algebra relations in

terms of endpoints of the intervals [134]. Each interval is denoted by an ordered

pair of the form (Xs, Xf). The first value in this ordered pair is the start point of

the interval and the second value is the end point of the interval. The following

algorithm learns a basic multi object pattern:

Algorithm 4 Learn Basic Multi(Training Data)

Input: Training records

Output: A representation of the learned bmop

1: Learn bmp Modified(Training Data)

2: Assign the learned grammar to the Learned Grammar field

3: Find Max HoldTime List bmp(Training Data)

4: Find Max HoldTime bmop(Training Data)

5: Find Temporal Constraint List(Training Data)

Complexity of Learning Basic Multi Object Pattern

In line 1 of algorithm 4, a call is made to Learn bmp Modified. For a particular

application, the complexity of Learn bmp Modified is O(LP ∗ LP ∗NT ∗NT). As-

signing the learned grammar involves scanning grammar productions and copy-

ing them into the Learned Grammar field of the representation. This operation

can be done in O(LP) time. The algorithm Find Max HoldTime List bmp com-

putes maximum hold time for each binary motion pattern. Here, a scan through

training records is necessary. During this scan, for each binary motion pattern,

the minimum start time and the maximum finish time is computed. Therefore,

93

Chapter 4. Integrating QSR into Syntactic Pattern Recognition

this algorithm actually computes the minimum and maximum among a set of

time points. If NO is the maximum number of objects in a training record, then

Find Max HoldTime List bmp takes O(NT ∗NO) time. At line 4, the maximum

hold time for the basic multi object pattern is computed. Here, a scan is made

through the MaxHoldTimeList bmp field of the representation and the minimum

start time and the maximum finish time among all bmps are computed. There-

fore, this operation takes O(NO) time. Temporal constraints between pairs of

bmps are computed at line 5 of the algorithm. Since Allen’s interval algebra

relations are closed under converse, it is not necessary to compute temporal con-

straints between all pairs of bmps. For example, if the Allen relation between

the first and the second bmp is computed to be p, then the relation between the

second and the first is pi. Therefore, in a set of NO bmps, the Allen relation be-

tween the first and the remaining NO−1 are computed. Then, relations between

the second and the remaining NO − 2 are computed. Each computation involves

four comparisons. So, the total number of comparisons is O(4 ∗ NO ∗ NO). As

there are NT training records, the total time taken at line 5 is O(NT ∗NO ∗NO).

Comparing this time with the time taken at line 1, we find that the parameter LP

dominates NO because the maximum length of a binary motion pattern will far

exceed the maximum number of objects in an application. Therefore, complexity

of algorithm 4 is taken as O(LP ∗ LP ∗ NT ∗ NT).

4.5.3 Recognition of a Basic Multi Object Pattern

During recognition, we will have to compute primitive patterns between each

primary-reference pair. New primitives occur when qualitative spatial relations

between a primary-reference pair change. Before this recognition phase, one

or more basic multi object patterns have been learned and represented. The

Learned Grammar field of each BMOP is a regular grammar. In algorithm 5,

recogniser of a regular grammar i.e. a finite state automaton has been used for

describing the recognition process. Whenever a new primitive is observed for

an object, this primitive may trigger transitions in multiple learned automata.

This is because of the fact that the object under consideration may participate

94

Chapter 4. Integrating QSR into Syntactic Pattern Recognition

in multiple learned basic multi object patterns. Therefore, when a new primitive

is seen for an object, it is necessary to find the learned BMOPs where this

object participates. After identifying such BMOPs, we need to check whether

this newly observed primitive triggers any state transitions. If so, then the state

transitions are recorded in the BMOPs. This process continues as and when

new primitive patterns occur in input. State transitions may stop because of two

reasons. Firstly, a new primitive for an object may fail to trigger a transition

because such a transition was not encountered during learning. Secondly, if

elapsed time exceeds the maximum hold time of a basic multi object pattern, then

it is not necessary to make state transitions in that BMOP. A learned BMOP is

recognised if all of its constituent bmps are recognised within the maximum hold

time of the BMOP. In order to fulfill this requirement in terms of finite state

automaton, at first we need to be in the start state of the automaton. This state

corresponds to the start symbol of the learned grammar. From this start state,

there is an edge to each state that corresponds to an object non-terminal. By

object non-terminal, we mean a non-terminal in the grammar that corresponds

to an object in the motion pattern. When a new primitive is seen for an object,

a transition is attempted in the part of the automaton that starts with the non-

terminal corresponding to the object under consideration. Then, for the BMOP

to be recognised, the first requirement is that the automaton has to reach final

states along each path starting with a object non-terminal. There are two other

requirements. One is the about maximum hold time and the other is related

with temporal constraints. During recognition, if the binary motion pattern for

an object occurs for a duration that is more than the MaximumHoldInterval of

the pattern, then we need to discontinue the process of recognising the BMOP.

The other requirement is about satisfaction of temporal constraints by the binary

motion patterns during recognition. When a constituent binary motion pattern

is recognised, its start time and end time become known. Allen relations between

these constituent bmps can then be computed and checked for conformance with

the ones stored during learning. The learned temporal constraints between each

pair of constituent binary motion patterns need to be satisfied for recognition.

Algorithm 5 recognises a basic multi object pattern. In lines 1 to 3, we

95

Chapter 4. Integrating QSR into Syntactic Pattern Recognition

set the status of each learned basic multi object pattern to a value termed as

Processing. Processing status signifies that we have not yet recognised that

BMOP and maximum hold time has not exceeded for this BMOP. The loop

set up at line 1 that constantly checks whether any new terminal is seen for any

of the objects participating in the pattern. Moreover, in this loop elapsed time

is updated, violation of temporal constraints is checked and decisions regarding

recognition of BMOP are taken. The steps from line 5 to line 33 handle new

terminals seen in input. Whenever any new terminal is seen, it is necessary to

check whether a transition is possible. Since the terminal is seen for a particular

object, we need to examine each learned BMOP where this object participated.

The for loop set up from line 6 to 32 takes care of this. Within this for loop,

in line 7 and 13, we check whether the terminal is seen for the first time for

the object. In that case, there is no possibility of discontinuity. We can make

a transition if it is defined. In lines 14 to 31, we handle the situation where

the terminal is not a first-seen one. In these lines, possibility of discontinuity is

checked and transition is made if defined. Irrespective of the fact whether new

terminal is seen or not, elapsed time is updated at line 34. In lines 35 to 53,

various conditions of recognition and temporal constraint violation are checked.

Conditions in lines 41 and 42 ensure that the algorithm terminates if some learned

BMOP is recognised. Line 48 ensures that the algorithm terminates if no learned

BMOP is recognised. Because of step at line 51, the algorithm will eventually

terminate when maximum hold times of all learned BMOPs are exceeded.

96

Chapter 4. Integrating QSR into Syntactic Pattern Recognition

Algorithm 5 Recognise bmop

1: for each learned bmop do

2: Mark its status as Processing

3: end for

4: while true do

5: if there is a new terminal ai for object Oj then

6: for each learned bmop do

7: if ai is first seen for Oj and status of bmop is Processing then

8: if transition for Oj on ai is defined then

9: Make a transition for Oj on ai

10: Increment match count for Oj

11: end if

12: end if

13: if ai is a neighbouring terminal of ai−1 and status of bmop is

Processing then

14: if transition for Oj on ai is defined following transition of ai−1

then

15: Make a transition for Oj on ai

16: Increment match count for Oj

17: end if

18: end if

19: if ai is not a neighbouring terminal of ai−1 and status of bmop is

Processing then

20: X ⇐ Find Sequence(ai−1,ai,Len)

21: for each terminal d in X do

22: Set Category of d to E, Set Path Name of d to ai−1,ai

23: if transition for Oj on d is defined then

24: Make a transition for object Oj on d

25: Increment match count for Oj

26: end if

97

Chapter 4. Integrating QSR into Syntactic Pattern Recognition

27: end for

28: end if

29: end for

30: end if

31: Update Time()

32: if MaxHoldTime is exceeded for a bmp in some bmop then

33: Make the status of corresponding bmop as NotRecognised

34: end if

35: if MaxHoldTime is exceeded for any learned bmop then

36: Mark the status of that bmop as NotRecognised

37: end if

38: if all the constituent bmps have match count equal to their respective

lengths then

39: if all temporal constraints are satisfied for bmps then

40: Mark the status of the bmop as Fully Recognised and Exit

41: end if

42: end if

43: if Pattern string for each object in the new instance is processed then

44: Output recognition status

45: Exit

46: end if

47: if MaxHoldTime is exceeded for all the learned bmops then

48: Exit

49: end if

50: end while

Complexity of BMOP Recognition

In this complexity analysis, ∗ is the multiplication operator. We denote the num-

ber of learned BMOPs as NB and the maximum path length encountered during

discontinuity processing as LM . Moreover, the maximum number of objects in

any BMOP is assumed to be NO. Then frequency of step 2 is O(NB). The for

98

Chapter 4. Integrating QSR into Syntactic Pattern Recognition

loop in line 6 runs for O(NB) time. The frequency of the for loop in line 23

is O(NB ∗ LM). The parameter LM is a constant for a particular application.

This is so because LM is the maximum path length encountered in discontinuity

processing. Different events will have different values for this path length. The

discontinuity processing algorithm finds the shortest paths from every node to

every other node in a conceptual dependency graph (CNG). Out of these, the

maximum path length is taken and used as the value of LM . Since Conceptual

Neighbourhood Graphs (CNGs) for a particular application are known (because

the set of binary qualitative relations to be used are known), the value of LM

becomes constant for that application. Therefore, this frequency can be taken as

O(NB). The step in line 35 runs for O(NB ∗NO) time. The condition in line 38

can be checked in O(NB) time as each BMOP needs to be examined. The if

condition in line 41 can be checked in O(NB∗NO) time. Temporal constraints are

verified for each recognised BMOP. In section 4.5.2, it is shown that computa-

tion of temporal constraints takes O(NO ∗NO) time. The steps 48 and 51 can be

carried out in O(NB) time. In a real application, we assume that the number of

learned BMOPs is more than the maximum number of objects participating in

a pattern. With this assumption, the complexity of the algorithm can be taken

as O(NB ∗NO).

Illustrative Example

We consider a basic multi object pattern among four objects. The objects have

identities A, B, C and D. Object D is the reference. This motion pattern

is learned from a set of training records. For convenience of presentation, we

choose to denote primitives by letters of alphabet. The training data set for this

example is taken as:

Pattern_Name=Overtake

No_Of_Objects=4

Object_List=A;B:C

Reference=D

A=a,b,c,d;10;30

99

Chapter 4. Integrating QSR into Syntactic Pattern Recognition

B=p,q,r,s:20;40

C=u,v,w,x:5;40

Pattern_Name=Overtake

No_Of_Objects=4

Object_List=A;B;C

Reference=D

A=a,b,c,d;25;50

B=p,q,t,s:20;30

C=u,v,w,x:15;20

Pattern_Name=Overtake

No_Of_Objects=4

Object_List=A;B;C

Reference=D

A=a,g,c,d;10;45

B=p,q,r,s:15;40

C=y,v,w,x:4;40

When this bmop is learned, its representation will look like:

Pattern Name=Overtake

Object List=A;B;C;D

Reference=D

Learned Grammar= S → A | B | C, A → a A1, A1 → b A2 | g A2, A2 → c A3,

A3 → d A4, A4 → ε

B → p A5, A5 → q A6, A6 → r A7 | t A7, A7 → s A8, A8 → ε, C → u A9 | y

A9, A9 → v A10, A10 → w A11, A11 → x A12, A12 → ε

Temporal Constraint List=(A o B or A di B);(A d C or A pi C or A o C);(B f

C or B pi C)

100

Chapter 4. Integrating QSR into Syntactic Pattern Recognition

MaxHoldT ime bmop=(4,50)

MaxHoldT imeList bmp=(A,10,50);(B,15,40);(C,4,40)

Temporal Constraint List field enumerates the temporal constraints between

pairs of binary motion patterns. A binary motion pattern in this field is specified

by the identity of the object for which the pattern is defined. Since, Allen’s each

Allen algebra relation has a converse, it is not not necessary to enumerate all

possible combinations. For example, if the Allen relation between A and B is

stored, the relation between B and A can be found by taking its converse. In

the MaxHoldTimeList bmp field, the maximum hold time for each constituent

binary motion pattern is listed. This can be found from the training records

by considering the earliest start time and latest finish time for a binary pat-

tern. The MaxHoldTime bmop field stores the maximum hold time for the basic

multi object pattern. In the example representation, the earliest start time for

any constituent bmp is 4 and latest finish time for any constituent bmp is 50.

Therefore, Maximum hold time for the bmop is (4,50).

Figure 4.6: Representation of bmop using FSA

In Figure 4.6, the learned grammar is represented by a finite state automaton.

The initial state is S and it corresponds to the start symbol of the grammar. In

order to explain how recognition is done using algorithm 5, we assume that input

is in the following form:

A=a,g,c,d;10,30

B=p,q,r,s;15,40

C=y,v,w,x;15,40

101

Chapter 4. Integrating QSR into Syntactic Pattern Recognition

In each line, the sequence of primitives for the binary motion pattern for an

object is listed. The hold interval for the bmp is also shown. In this example,

there is only one learned basic multi object pattern. New primitives, observed

for objects A, B and C, will trigger state transitions in the automaton. For

example, when the primitive a is seen for object A, a transition will be made

from state S to state A and then to state S1. When primitive p is observed

for object B, transition will be made from state S to state B and then to state

S5. For the example input, transitions will eventually take us to the final states

F1, F2 and F3. This means that each binary motion pattern corresponding to

an object is recognised. Once the final states are reached, temporal constraints

between the input bmps can be computed. The temporal constraints are:

(A o B), (A o C), (B eq C)

The observed temporal constraints are in conformance with the ones com-

puted during learning. The hold time for the input bmop is (10,40) i.e. the

duration of the observed basic multi object pattern is 30. This duration does not

exceed the MaxHoldTime of the learned bmop. Therefore, the input basic multi

object pattern is recognised by algorithm 5.

In the next chapter, we present design of a qualitative description language

for representation and recognition of motion patterns. Binary motion patterns,

introduced in this chapter, can represent motion between two objects only. The

description language, proposed in the next chapter, can express motion pattern

among multiple objects. Moreover, using this language, motion patterns can be

constructed hierarchically and temporal constraints among sub-patterns can be

expressed.

102

