
Chapter 5

Design of a Qualitative

Description Language

5.1 Introduction

A qualitative description language has been designed for representation of motion

patterns. This language allows us to describe motion patterns that we want to

confirm / recognize in an input stream. Concepts like binary motion pattern,

basic multi object pattern and multi object pattern are treated as types in this

language. A criticism of learning using formal grammar is the tediousness of the

process. QDL can alleviate this problem by providing an easy way of pattern

specification. A feature called skip transition, included in this language, allows us

make a representation coarser. Another drawback of grammar based learning is

the representational difficulty of concurrency among patterns. QDL can represent

concurrency among motion patterns using Allen’s interval algebra [18].

A description written in QDL is syntactically analysed and an intermediate

representation is generated. This intermediate representation is interpreted over

input for recognition of patterns. An object is represented as a variable inside a

QDL description and data for every variable are read from input stream. Then,

recognition of a binary motion pattern becomes equivalent to type checking.

103

Chapter 5. Design of a Qualitative Description Language

5.2 Significance

In chapter 4, we have discussed how the framework can learn definitions of binary

and basic multi object movement patterns from training data. In Figure 4.5,

we have shown how a basic multiobject object pattern is structured. Binary

qualitative relations (abbreviated as bqr in the figure) for different movement

parameters are computed and primitive patterns are constructed out of these

qualitative relations. A binary motion pattern consists of a number of primitives.

Finally, a basic multiobject object pattern is made out of one or more binary

motion patterns. Algorithms for learning as well as recognition of binary and

basic multiobject object patterns were presented.

The qualitative description language (QDL), proposed in this thesis, ad-

dresses the issue of hierarchical construction of motion patterns. Hierarchical

representation of motion pattern is related with creation of conceptual group-

ings of objects in the pattern. Each such grouping is an encapsulation of a set

of objects and their temporal relationships. Temporal relations between these

groupings is another important aspect of a hierarchy. A basic multiobject object

pattern is one such grouping that is automatically learnable from input. QDL

treats BMOPs as the basic unit of creating a hierarchical representation. This

means that any hierarchically constructed motion pattern should be ultimately

decomposible to a set of basic multiobject object patterns. It is so because

BMOPs are the units that are learnable from input.

The language has another important use. Sometimes, we may not be in-

terested to know whether the entire pattern has occurred. Instead, we may be

interested in recognition of a particular pattern among certain objects. For ex-

ample, in a motion pattern among multiple persons, we may like to know the

pattern between two particular persons. In this context, the qualitative language

can play the role of a query language.

104

Chapter 5. Design of a Qualitative Description Language

5.3 Language Design

5.3.1 Basic Concepts

A program, written in QDL, specifies the definition of a motion pattern. Use

of description languages is reported in other domains to represent the structure

of various entities. Mention may be made of hardware description languages

and XML. In these languages, the structure of input is parsed according to a

program specification. QDL is different from these languages in certain aspects.

This difference comes from characteristics of the motion pattern recognition prob-

lem. Motion pattern recognition too requires structure recognition, but there is

a temporal dimension to be considered. It is not enough to identify the struc-

ture alone. The temporal relationship between elements of the structure is an

equally important necessity. Secondly, motion pattern recognition, proposed in

this thesis, requires analysis of structure as well as analysis of input data values.

For example, for handling error, we need to know the exact primitives that have

occurred in succession i.e. we need to analyse the data values that have occurred

in input.

QDL uses type theory of programming languages. Motion patterns, binary

as well as multiobject object, are treated as types. Variables can be declared to

be of a motion pattern type. Type declaration is done at compile time. Each

variable is associated with an object. At the time of execution, values for these

variables are read from input data stream. If a variable gets a value of correct

type, then the corresponding motion pattern is recognised. Otherwise, there is

a type mismatch at run time and the motion pattern is not recognised. Tem-

poral constraints between motion patterns are expressed using operators based

on Allen’s interval algebra. For recognition of a pattern, it is necessary that

temporal constraints hold.

5.3.2 Type for Binary Motion Pattern

In the theory of programming languages, a type is defined as a set of values.

A binary motion pattern is represented by a grammar Gbmp. This grammar

105

Chapter 5. Design of a Qualitative Description Language

generates a set of strings. Each string is an instance of a motion pattern between

two objects. Therefore, we can treat a binary motion pattern as a type. In

programming languages, types can be constructed in a bottom up way, starting

from low level primitives and then gradually moving up. This is referred to as

type induction. We use three type induction operators, namely, |, ∗ and •. The |

operator expresses union, ∗ means Cartesian product and • is for concatenation.

For explaining how types can be constructed out of values of binary qualitative

relations, let us assume that a motion pattern is represented using n number of

motion parameters. R1, R2, . . . Rn are the sets of JEPD binary qualitative

relations, such that the set Ri represents the i-th movement parameter. The

relation values for set Ri is denoted as ri1, ri2, . . . rim. We present a grammar

in BNF notation for constructing a type corresponding to a single primitive

pattern:

< btype > ::= R1 | R2 | . . . | Rn

R1 ::= r11 | r12 | . . . | r1m

R2 ::= r21 | r22 | ... | r2l

.

.

.

Rn ::= rn1 | rn2 | ... | rnk

< basictypeexpression > ::= < btype >

< basictypeexpression > ::= < btype > ∗ < btype >

The syntactic category < basictypeexpression > is an abbreviation for basic

type expression and < btype > is an abbreviation for basic type. From the above

definition, we can see that the set of values in a basic type is same as the set of

values for some Ri. A basic type expression is obtained by taking a Cartesian

106

Chapter 5. Design of a Qualitative Description Language

product of basic types. The operator ∗ here is used to denote Cartesian product.

Therefore, a < basictypeexpression > is the language counterpart of a primitive

motion pattern.

We introduce a syntactic category < bmptypeexpression > for constructing

a type corresponding to a binary motion pattern. The following BNF grammar

shows how a type can be constructed for a binary motion pattern:

< bmptype > ::= < basictypeexpression >

< bmptype > ::= < bmptype > • < bmptype >

< bmptype > ::= < bmptype > | < bmptype >

Here, < bmptype > corresponds to a binary motion pattern type. A <

basictypeexpression > corresponds to a type for a single primitive pattern. The

first line of the BNF grammar specifies that a binary motion pattern can be a

single primitive pattern. The second line expresses the fact that a binary motion

pattern can be obtained by taking concatenation of primitive patterns. The •

operator is used to denote concatenation operation. The third line introduces the

union operator. In a program, an object in the pattern is treated as a variable.

Therefore, there should be language constructs that allow to declare a variable

to be of a binary motion pattern type. The syntax for declaring a variable type

is given below:

type < bmp name > = < bmptype >

var < object name >:< bmp name >

In the above declaration, type is a keyword. A binary motion pattern is

given a name and the syntactic category < bmp name > specifies this name.

< bmptype > denotes a binary motion pattern type. In the second line, the

object with name < object name > is declared to be of type < bmptype >.

Both, < bmp name > and < object name > are identifiers. Here, var is a

keyword.

107

Chapter 5. Design of a Qualitative Description Language

An Example

Let us assume that qualitative direction and distance are chosen as movement

parameters. Let Q be the set of qualitative direction relations as defined in

section 3.1. The set of distance relations is D = {veryclose, close, near, far}.

Then examples of some basictypes are (Same), (Same−), (close), (far) etc.

Basic type expression is a set of ordered pairs such that each ordered pair be-

longs to the set Q × D. Examples of basic type expressions are (Same, close),

(Same−, near), (lr, far) etc. Type expressions can be constructed by using the

concatenation operator and the union operator. Example of < bmptype > can be

(Same, close)•(lr, far), (Same, close)|(lr, far) etc. We declare below a binary

motion pattern type and a variable MoveTogether to be of that type.

type MoveTogether = (Same,Close)(Same−, Close)(Same, veryclose);

var X:MoveTogether ;

The concatenation operator is not explicitly shown. Declaration of the ref-

erence object is not shown in the example.

5.3.3 Type for Basic Multi Object Pattern

A basic multiobject object pattern can also be considered as a set of strings. In a

BMOP, we keep binary motion patterns between a number of primary-reference

pairs. The set of strings in a BMOP can be obtained by taking a union of the

strings belonging to each constituent binary motion pattern. In QDL, we intro-

duce a type for BMOP. It is important to mention here that a BMOP does

not have any hierarchy inside. This means that a BMOP does not contain any

BMOP inside it. Hierarchy within a BMOP creates difficulty in its learning.

Hierarchy is about grouping objects conceptually and specifying the temporal

relationships between these groups. There are many possible ways of grouping

objects in a BMOP conceptually. This perception of forming conceptual groups

and creating a hierarchy of these groups is related with human cognition. The

learning algorithm has no particular way of determining this hierarchy automat-

ically. Since a BMOP does not contain a hierarchy, its corresponding type in

108

Chapter 5. Design of a Qualitative Description Language

QDL does not allow nesting. Syntax for a BMOP type in BNF notation is

given below:

BMOP < bmop name >([< type par list >]) {

< object list >

[< reference >]

< bmp declarations >

< var declarations >

< temporal constraints >

< max hold time constraints >

}

The objects in the basic multiobject object pattern are generated using the

non terminal < object list >. This can be done as:

< object list > ::= Object < id list > | Object < type par list >

< id list > ::= < object id >; | < object id >,< id list >

< id list > ::= ;

< object id > ::= < identifier >

< type par list > ::=< type parameter >; |< type parameter >,< type par list >

< type parameter > ::= < identifier >

The reference can be declared using the syntax:

< reference > ::= Reference < object id >;

< object id > ::= < identifier >

109

Chapter 5. Design of a Qualitative Description Language

The semantics of this declaration is that the identities of the objects that

participate in the BMOP are recorded and associated with the name of the

basic multiobject object pattern. The basic multiobject object pattern type is

given a name and the the identifier < bmop name > specifies this name. The

identifier < reference > specifies the name of the reference. The non-terminal

< bmp declarations > generates the declarations of types corresponding to

constituent binary motion patterns. We have already defined a non-terminal

< bmptype > using which types for binary motion patterns can be defined.

Therefore, the following productions take care of the declarations of types corre-

sponding to constituent binary motion patterns:

< bmp declarations > ::= type < bmp typename > = < bmptype >; |

type < bmp typename > = < bmptype >; < bmp declarations >

< bmp typename > ::= < identifier >

In the productions listed above, type is a keyword. Each binary motion

pattern type is assigned a type name by the non-terminal bmp typename. The

semantics of these declarations is that each binary motion pattern type will be

stored as a sequence of terminals and all these types will be associated with the

basic multi object pattern under which they are defined.

We need to declare variables that are of binary motion pattern types. Each

variable is related with exactly one object. The association of objects with vari-

ables can be implicit or explicit. For an explicit association, we need to state

the name of the object that a variable is related with. In an implicit associ-

ation, the name of a variable has to be same as the name of its correspond-

ing object. In QDL, we have used an implicit association. The non terminal

< var declarations > generates the variable declarations:

< var declarations > ::= var < variable name > : < bmp typename >; |

var < variable name > : < bmp typename >; < var declarations >

< variable name > ::= < object id > | < type parameter >

110

Chapter 5. Design of a Qualitative Description Language

Temporal relationships between binary motion patterns is an important as-

pect. We have modeled these relationships using Allen’s interval algebra. The

interval algebra relations are specified between HoldIntervals of two binary mo-

tion patterns. Each interval algebra relation is represented in QDL by a binary

operator. HoldInterval is a property of a binary motion pattern. Since a variable

is declared to be of a binary motion pattern type, in language design, we can treat

HoldInterval to be a property of a variable. Syntactically, the HoldInterval is

written after a dot put at the end of a variable.The BNF grammar for temporal

constraints is presented below:

< temporal constraints > ::=< variable name >.< HI > < Allen Operator >

< variable name >.< HI >; |

< variable name >.< HI > < Allen Operator > < variable name >.<

HI >; < temporal constraints >

< variable name > ::= < object id > | < type parameter >

< Allen Operator > ::= p | pi | m | mi | o | oi | d | di | s | si | f | fi | eq

The interval algebra operator p corresponds to the interval algebra relation

precedes, pi corresponds to its inverse and so on. Each HoldInterval is denoted

by two integers, the first for the start time point of the interval and the second

for the end time point of the interval. Semantically, these temporal constraints

are part of a BMOP and these constraints need to be stored along with the

definition of a BMOP.

The maximum hold times for binary motion patterns are defined using the

non-terminal < max hold time constraints >. The maximum duration of time

for which each constituent binary motion pattern may hold is specified. The

maximum hold time for the entire BMOP can be computed from these indi-

vidual maximum hold times of the constituent BMPs. The corresponding BNF

productions will be like:

< max hold time constraints > ::= < max hold bmp >

111

Chapter 5. Design of a Qualitative Description Language

< max hold bmp > ::= < variable name >.MaxHoldTime = (< integer >,<

integer >); |< variable name >.MaxHoldTime = (< integer >,< integer >);

< max hold bmp >

< variable name > ::= < object id > | < type parameter >

A BMOP type can be parameterised. The type parameters are place holders

that can appear in the body of a BMOP definition. When the BMOP type is

instantiated, these type parameters are replaced by actual arguments passed in

instantiation. Each type parameter is an identifier and list of type parameters is

a list of identifiers separated by commas.

Semantics of BMOP Definition

A BMOP, declared in a QDL program, can be mapped to a training record

defined in section 4.3.1. This can be done using a syntax directed translation

scheme. Productions of the non-terminal < object list > fill the Object List and

No Of Objects fields of a training record. The non-terminals< bmp declarations >

and < variable name > fills the Object Id = Pattern Specification field. It

is important to note that the HoldInterval Start and HoldInterval End fields

will be computed during parsing of < max hold time constraints >. Once this

mapping from BMOP definition to training record format is done during pars-

ing, learning algorithm can be used on the training record so that the BMOP

definition can be converted to its representational form described in section 4.5.1.

In the representational form, the value of the Temporal Constraint List field

is computed using a syntax directed scheme with the productions of the non-

terminal < temporal constraints >. The last two fields in the representation

i.e. MaxHoldTime bmop and MaxHoldTimeList bmp are computed using pro-

ductions of the non-terminal < max hold time constraints >. Therefore, it is

possible to convert a BMOP definition to the representational form introduced

in section 4.5.1.

112

Chapter 5. Design of a Qualitative Description Language

5.3.4 Type for Multi Object Pattern

In language design, we introduce a type for a multi object pattern (to be abbre-

viated as MOP). A multi object pattern can contain a hierarchy inside. When

we write a program segment for specification or query, we can specify this hierar-

chy. In defining BMOP, we did not allow hierarchy because it is the basic multi

object pattern that we wish to learn automatically from training data and the

learning program presented in the thesis does not have the ability to determine

hierarchy without human intervention. Automatic detection of event hierarchy

is still an open research problem and some work is reported in [135] and also

in [136]. In this work, a constraint based graph mining technique is used to dis-

cover a partonomy of classes of sub graphs corresponding to event classes. As we

have not handled this issue in our work, we have chosen to use two different con-

structs BMOP and MOP in our language design. A multi object pattern type

simply allows us to group objects and to specify temporal constraints between

these groupings. A group inside a multi object pattern type may be some already

defined BMOP or some already defined MOP. Combination of BMOP and

MOP is also possible. We enforce the restriction that a type must be declared

before its use. Syntax for a multi object type is given below:

MOP < mop typename > {

< var decl list >

< temp constraints >

}

< var decl list > ::= < bmop var list > | < mop var list >

< bmop var list > ::= var < bmop declaration >

< bmop declaration > ::= < var name > : < bmop typename >; |

< var name > : < bmop typename >; < bmop var list >

< mop var list > ::= var < mop declaration >

113

Chapter 5. Design of a Qualitative Description Language

Figure 5.1: An Orientation Model for Point Objects

< mop declaration > ::= < var name > : < mop typename >; |

< var name > : < mop typename >; < mop var list >

< temp constraints > ::= < var name >.HI < Allen Op > < var name >.HI;

|

< var name >.HI < Allen Op > < var name >.HI; < temp constraints >

< Allen Op > ::= p | pi | m | mi | o | oi | d | di | s | si | f | fi | eq

< var name > ::= < identifier >

A MOP is used to create hierarchies among conceptual grouping of objects

and to express temporal constraints among these groups. A MOP declaration

starts with a declaration of variables. A variable may be of type BMOP or

MOP. Next comes an enumeration of temporal constraints between constituent

BMOPs and MOPs. In expressing temporal constraints, BMOPs and MOPs

are referred to by the corresponding variables. In a MOP definition, one may

specify the maximum hold time for the MOP. Since the MOP can be nested inside

other MOPs, the programmer may sometimes need to express the maximum

hold time of the MOP in absolute terms. This maximum hold time is necessary

because a MOP can be nested inside another.

114

Chapter 5. Design of a Qualitative Description Language

Semantics of MOP Definition

Like a BMOP, a MOP definition can also be converted into a representational

form during parsing. A representational form for a a MOP has a simple form

where we need to store temporal constraints between constituent BMOPs or

MOPs. This representational form can be like:

Pattern_Name

Variable_List

Temporal_Constraint_List

Maximum_Hold_Time

Variable List holds the names of the constituent BMOPs and MOPs. The

Temporal Constraint List is a enumeration of values where each value can be

form the form:

(Pattern AllenOperator Pattern)

Here, Pattern can be a BMOP or a MOP. The Maximum Hold Time filed

stores the maximum hold time of the multi object pattern. The value of this field

can be computed from the maximum hold times of the constituent BMOPs or

MOPs.

5.4 Execution Phases of QDL

A program, written in QDL, has different interpretations. Firstly, such a pro-

gram can be used to query the presence of certain patterns in input data. In this

case, we expect a ”yes/no” answer after the execution of the program depending

on whether the specified pattern is detected or not. Secondly, such a program

can be used to store user defined type definitions as part of language definition.

These stored types can be used as built-in types in writing programs. Thirdly,

it is possible to learn a motion pattern from input data and represent it in the

form of a QDL program. The different execution phases of a QDL program are

shown in the Figure 5.2.

115

Chapter 5. Design of a Qualitative Description Language

Figure 5.2: Execution Phases of QDL

The Syntactic Analyzer block checks for syntactic errors and it produces an

intermediate representation for a syntactically correct program. The program

may use built-in type definitions that are stored as part of language definition.

The Syntactic Analyzer parses each BMOP and MOP in the source program

using syntax directed translation schemes. If syntactically correct, then BMOPs

and MOPs are transformed into their representational forms. Therefore, the in-

termediate form refers to the representational forms of the BMOPs and MOPs.

The Interpreter takes this intermediate representational form and checks for the

presence of the defined pattern in input data. The Interpreter uses algorithm 5

to recognise basic multi object patterns in the program. A BMOP defined in a

QDL program has the same representational form as the one learned from train-

ing data. However, it is important to mention that only one BMOP is recognised

among the learned BMOPs;but in QDL definition, multiple BMOPs can be

recognised in a program. Once the processing status of the defined BMOPs

are known i.e. it is known whether each BMOP is recognised or not, the In-

terpreter can analyse the conceptual groupings defined through MOPs. Since a

MOP representation has information about constituent BMOPs and MOPs,

processing can be done in a bottom up manner in order to check for temporal

constraints. This means that we should start at lowest level of nesting for MOPs

and then move higher up for resolving the temporal constraints. If the MOP at

the highest level is recognised, then the entire motion pattern expressed by the

QDL program is also recognised.

If the QDL program is a specification of types, then there is no need for

any interpretation over input. The Syntactic Analyzer simply stores the type

116

Chapter 5. Design of a Qualitative Description Language

definitions as built-in types after successful parsing.

The intermediate representation of a BMOP is obtained after successful

parsing of a QDL program. It should contain all the details embodied in the

program. Such an intermediate form for a BMOP is given below:

Program_Element=BMOP

Name=...

Object_List=...

Binary_Motion_Pattern_List=(object,pattern_string),(object,pattern_string)...

Reference=...

Temporal_Constraints_List=...

Maximum_Hold_Time_BMOP=...

Here, the name of the BMOP is stored along with a list of symbolic object

names. These object names are declared inside the BMOP. In an enumeration

of binary motion patterns, each pattern is stored along with the name of the

object for which the pattern defines a type. The Reference field is optional. Its

value can be None to indicate that no reference is used;otherwise it will con-

tain name of the object that is declared as reference. Temporal constraint list

gives a listing of Allen relations that hold between variables. The last field i.e.

the maximum hold time for the BMOP is optional. Its value can be None to

indicate that inside the definition, no such maximum hold time was indicated

for the BMOP. Otherwise, the time is recorded as an ordered pair where the

first element indicates the start time and the second indicates the finish time

for the interval. We feel that sometimes, a programmer may need a mechanism

to express the maximum time for which a BMOP may hold in absolute terms.

This is the reason for including this in the syntax.

Intermediate representation for a MOP can be like:

Program_Element=MOP

Name=...

Object_List=(object,type,type_name),(object,type,type_name)...

117

Chapter 5. Design of a Qualitative Description Language

Temporal_Constraints_List=...

Maximum_Hold_Time_MOP=...

Inside a MOP, variables can be of type BMOP and MOP. The object

list gives enumerates the objects along with their types and type names. This

type value can be either BMOP or MOP. By type name, we mean name of the

BMOP or MOP. Temporal constraint list stores the Allen relations between

pairs of BMOPs and MOPs. For a MOP also, we have allowed a specification

of maximum hold interval in absolute terms and accordingly a field to store it in

the intermediate form.

5.5 Example

We discuss an example program for specification of a motion pattern using QDL.

Object declarations have global scope. The example is about movement of four

persons mentioned in chapter 1 and shown in Figure 1.1. We create two concep-

tual groupings. In one group, we place the two persons who are walking along the

street and approaching each other from opposite direction. In the other group,

we place the persons crossing the road from opposite direction. Among the per-

sons walking along the street, we assume the identity of the person facing the

camera as A and that of the other person as B. In the other group, the person

crossing the road from right to left is assigned the identity C. The other person,

crossing the road from left to right, is assigned the identity D. We choose to ab-

stract the objects as points. Spatial orientation, direction and distance are taken

as movement parameters. The spatial orientation model is shown in Figure 5.1.

The direction of movement of the object, abstracted as a point, is shown by the

arrow head. Frame of reference is egocentric and the direction of movement sets

up the Front. Other spatial orientation labels are assigned accordingly. Program

below is one possible representation of this movement pattern:

BMOP Group1(α,β) {

Reference β;

118

Chapter 5. Design of a Qualitative Description Language

type walk along= (opposite, FrontLeft, far) (opposite, FrontLeft, near) (oppo-

site, Left, near);

var α: walk along;

}

BMOP Group2(α,β,γ) {

Reference γ;

type walk across rl= (FrontRight, rl, (far | near)) (Front, rl, near) (FrontLeft,

rl, near) (FrontLeft, rl, far);

type walk across lr = (FrontLeft, lr, far) (FrontLeft, lr, near) (Front, lr, near)

(FrontRight, lr, near) (FrontRight, lr, far);

var α: walk across lr;

var β: walk across rl;

}

MOP Example {

var g1:Group1(B,A);

var g2:Group2(C,D,A);

g2.HI p g1.HI;

}

Scope Rules

In a QDL program, there are two types of variables. Variables represent objects

that participate in a motion pattern. Moreover, variables may also represent

BMOP or MOP. The scope of object variables is global. Therefore, all such

variables must be unique across the program. Variables for patterns have local

119

Chapter 5. Design of a Qualitative Description Language

scope i.e. their scope is limited to the BMOP or MOP within which they are

declared. In a QDL program, there are three kinds of type declarations. These

are for BMP, BMOP and MOP. Type names for BMOP and MOP have

global scope i.e. such a type name is visible in the entire program. Type names

for BMP have local scope confined to the BMOP within which the type is

defined. QDL does not support nested type definitions. A type must be defined

before its use. Since all types are defined at the same level, the scope rule for

resolving a type reference is very simple. Whenever a type name for a BMOP

or MOP is encountered, the Syntactic Analyzer tries to resolve it using the type

definitions encountered before.

In this chapter, we have presented the design of certain features of QDL, a

qualitative description language for motion pattern representation and recogni-

tion. Programs written in QDL can express patterns that we want to recognise

in input data stream. Otherwise, motion patterns can be learned and repre-

sented in the form of a QDL program. In the next chapter, we have shown how

the standard taxonomy, outlined in chapter 2, can be represented as program

segments in QDL. Moreover, a BMOP is learned and represented from video

data. In the QDL representation of this BMOP, the productions of the learned

grammar have been shown in Appendix A.

120

