Contents

C	onter	nts	i
Li	st of	Figures	v
Li	st of	Tables	xii
Li	st of	Abbreviations	xiv
Li	st of	Symbols	xv
1	Intr	roduction	1
	1.1	Introduction	2
	1.2	Motivation	2
	1.3	Research objectives	3
	1.4	Methodology adopted	4
	1.5	Research achievement	5
	1.6	Thesis organization	6
2		coretical foundation and review of SPP based optical waveged devices	. 9
	2.1	Introduction	10

	2.2	Surfac	e plasmon polariton	10
		2.2.1	Fundamentals of surface plasmon polariton	11
		2.2.2	Waveguiding of surface plasmon polaritons	17
	2.3	Planai	r waveguide couplers	19
		2.3.1	Directional Coupler (DC)	19
		2.3.2	Multimode interference coupler (MMI)	23
		2.3.3	Two-mode interference coupler (TMI)	29
		2.3.4	Comparison of beat length of DC, TMI and MMI $\ .\ .\ .\ .$.	30
	2.4	Review	w on all-optical waveguide devices	45
		2.4.1	Multimode interference (MMI) waveguide structures based on Surface plasmon polariton (SPP)	46
		2.4.2	All-optical logic gates	47
		2.4.3	Optically tunable power splitter	50
		2.4.4	Bent access waveguides of DC, TMI and MMI devices	52
		2.4.5	KCl : $\mathrm{Tl}^0(1)$ color center lasers	55
	2.5	Motiva	ation	58
	2.6	Conclu	usion	58
3	Two	o-mode	e interference coupler based on SPP waveguide	59
	3.1	Introd	uction	60
	3.2		e plasmon polariton based two-mode interference waveguide	60
	3.3	SPP n	node analysis in optical waveguide	62
		3.3.1	Effective index method	63

		3.3.2	Estimation of modes by effective index method	65
		3.3.3	Modes in SPP based waveguide	66
		3.3.4	Mode propagation of two-mode waveguide	69
	3.4	-	al pulse controlled surface plasmonic two-mode interference MI) waveguide coupler	73
		3.4.1	Wavelength dependence of SPTMI waveguide coupler	75
		3.4.2	Optical pulse controlled behavior of SPTMI waveguide coupler	77
		3.4.3	Power transferred to output waveguides	84
		3.4.4	Total length of SPTMI coupler	88
		3.4.5	Fabrication tolerance	90
		3.4.6	Optical power launching efficiency	91
	3.5	Values	s of device parameters of the proposed device	93
	3.6	Concl	usion	95
4	All-	optica	l logic gates based on SPTMI coupler	97
	4.1	Introd	luction	98
	4.2	Imple	mentation of fundamental logic operation	98
		4.2.1	All-optical NOT gate	101
		4.2.2	All-optical AND gate	103
		4.2.3	All-optical OR gate	105
	4.3	Demo	nstration of all-optical universal logic gates	108
		4.3.1	All-optical NOR gate	111
		4.3.2	All-optical NAND gate	114

	4.4	Demonstration of all-optical XOR logic gate	118
	4.5	Comparison of the proposed SPTMI based logic gates with previous works	121
	4.6	Conclusion	124
5 Optically controlled, tunable power splitter based on SPTM waveguide coupler			I 125
	5.1	Introduction	126
	5.2	Optical power splitter based on surface plasmonic TMI waveguide	126
	5.3	Optical pulse dependent variable splitting ratio in 3dB Optical power splitter	130
	5.4	Fabrication tolerance	132
	5.5	Design of bend of access waveguides	134
	5.6	Optical power launching efficiency to the SPTMI waveguide coupler	r 135
	5.7	Design summary for the 3dB optical power splitter with optical pulse controlled splitting ratio	137
	5.8	Comparison of proposed SPTMI based tunable power splitter with previous works	138
	5.9	Conclusion	140
6	Cor	nclusion and future scope	141
	6.1	Conclusion	142
	6.2	Scope for future work	144
	Bib	liography	156
	Pul	olications based on the Thesis Works	157

List of Figures

2.1	Schematic representation of propagation of SPP at metal- dielectric interface and the corresponding energy distribution	11
2.2	Geometry for propagation of surface plasmon polariton at metal-dielectric interface	13
2.3	Geometry for propagation of SPP in a three-layer system	15
2.4	Schematic geometry for a few waveguide structures for propagation of surface plasmon polaritons	17
2.5	3D schematic view of optical directional coupler	19
2.6	Operating principle of optical directional couplers	20
2.7	Three dimensional schematic view of a N×M MMI coupler	24
2.8	Three dimensional schematic view of a 2×2 MMI coupler	25
2.9	Two dimensional schematic view of a N×M MMI coupler	25
2.10	3D schematic view of optical two-mode interference coupler	29
2.11	2D schematic view of an optical directional coupler with identical waveguides	31
2.12	Schematic representation of simple effective index method along x -direction (SEIM- x)	32
2.13	Schematic representation of simple effective index method along y -direction (SEIM- y)	32

2.14	Basic optical waveguide structure consisting of core layer with width W , thickness T and refractive index n_{core} , cladding layer with refractive index n_{clad} and substrate layer with refractive index $n_{sub} cdots cdo$	36
2.15	Beat length of directional coupler (DC) versus separation gap for coupling gap refractive indices $n_3=1.45,\ 1.46,\ 1.47,\ 1.48,\ 1.49$ and $1.495.\ n_1=1.5,\ n_2=1.45,\ \Delta n=5\%,\ a=b=1.5\mu m$ and $\lambda=1.55\mu m.$	38
2.16	Beat length of directional coupler (DC) with index contrast for coupling gap $h=0.03\mu m,~0.3\mu m,~0.55\mu m$ and $1.0\mu m$ with $n_2=n_3=1.45,~a=b=1.5\mu m$ and $\lambda=1.55\mu m$	38
2.17	Two dimensional schematic view of a TMI coupler	39
2.18	Beat length of a TMI coupler versus index contrast with $a=b=1.5\mu m, n_2=1.45$ and $\lambda=1.55\mu m.$	41
2.19	Two dimensional schematic view of a 2×2 MMI coupler	41
2.20	Beat length of a MMI coupler versus separation gap h , with $n_1=1.5,\ n_2=1.45,\ \Delta n=5\%,\ a=b=1.5\mu m,$ and $\lambda=1.55\mu m.$	42
2.21	Beat length of a MMI coupler versus index contrast with $n_2=1.45,a=b=1.5\mu m$ and $\lambda=1.55\mu m$	43
2.22	Beat length versus h of directional coupler with $a=b=1.5\mu m$ and different coupling gap refractive indices $n_3=1.45,1.47,1.49$ and 1.495 (dotted curves), and MMI coupler with $a=b=1.5\mu m$ and $\Delta n=5\%$ (solid curve) at wavelength $\lambda=1.55\mu m$	44
2.23	Beat length versus index contrast for directional coupler with different coupling gap $h=0.03\mu m,~0.3\mu m,~0.55\mu m$ and $1.0\mu m,$ TMI coupler $(h=0)$ and MMI coupler with $h=3.0\mu m.$ Here, $n_2=1.45,~a=b=1.5\mu m$ and $\lambda=1.55\mu m.$	44
2.24	Schematic view of a conventional optical power splitter	50
2.25	Schematic view of a single bend in a waveguide	53
2 26	Schematic view of two S-bend used as transition waveguides	54

2.27	A laser pulse with peak power P_{max} and width T_P	56
2.28	Schematic view of ultrashort laser pulse generation by mode-locking	57
3.1	Schematic view of optically-controlled, surface plasmonic two mode interference (SPTMI) coupler with core width $2w$, thickness t and coupling length L_C	61
3.2	Schematic view of the SPTMI waveguide with core width W_T and core thickness t	63
3.3	x-method for effective index modeling of SPTMI waveguide	64
3.4	y-method for effective index modeling of SPTMI waveguide	65
3.5	Real part of propagation constant (β_m^r) versus core width with $t = 5.0\mu m, \ \lambda = 1.33\mu m, \ n_2(0) = 3.17, \ n_m = 0.394 + 8.2j$ and $n_1 = 3.5. \dots \dots$	67
3.6	Real part of effective refractive index $(n_{m,r}^{eff})$ versus core width with $t = 5.0 \mu m$, $\lambda = 1.33 \mu m$, $n_2(0) = 3.17$, $n_m = 0.394 + 8.2j$ and $n_1 = 3.5$	67
3.7	Imaginary part of propagation constant (β_m^{im}) versus core width with $t = 5.0\mu m$, $\lambda = 1.33\mu m$, $n_2(0) = 3.17$, $n_m = 0.394 + 8.2j$ and $n_1 = 3.5$	68
3.8	Propagation length $(L_{P,m})$ versus core width with $t=5.0\mu m$, $\lambda=1.33\mu m$, $n_2(0)=3.17$, $n_m=0.394+8.2j$ and $n_1=3.5.$	68
3.9	Real part of propagation constant (β_m^r) versus core thickness with $W_T = 0.48 \mu m, \ \lambda = 1.33 \mu m, \ n_2(0) = 3.17, \ n_m = 0.394 + 8.2j$ and $n_1 = 3.5. \dots \dots$	69
3.10	Real part of effective refractive index $(n_{m,r}^{eff})$ versus core thickness with $W_T = 0.48 \mu m$, $\lambda = 1.33 \mu m$, $n_2(0) = 3.17$, $n_m = 0.394 + 8.2j$ and $n_1 = 3.5$	70
3.11	Imaginary part of propagation constant (β_m^{im}) versus core thickness with $W_T = 0.48 \mu m$, $\lambda = 1.33 \mu m$, $n_2(0) = 3.17$, $n_m = 0.394 + 8.2j$ and $n_1 = 3.5 \dots$	70

3.12	Propagation length $(L_{P,m})$ versus core thickness with $W_T = 0.48\mu m$, $\lambda = 1.33\mu m$, $n_2(0) = 3.17$, $n_m = 0.394 + 8.2j$ and $n_1 = 3.5$	71
3.13	Difference of real part of propagation constants of fundamental and first order modes versus the core thickness with $n_1=3.5$, $n_2(0)=3.17$, $n_m=0.394+8.2j$ and $\lambda=1.33\mu m$ and for core width $W_T=0.48\mu m$, $0.55\mu m$ and $0.65\mu m$	71
3.14	Difference of imaginary parts of propagation constants of fundamental and first order modes versus core thickness with $n_1=3.5$, $n_2(0)=3.17,\ n_m=0.394+8.2j$ and $\lambda=1.33\mu m$ and for core width $W_T=0.48\mu m,\ 0.55\mu m$ and $0.65\mu m.$	72
3.15	Effective refractive index change for fundamental and first order modes versus core width with $t=5.0\mu m, \ \lambda=1.33\mu m, \ n_2(0)=3.17, \ \Delta n_2(E)=0.01, \ n_m=0.394+8.2j \ {\rm and} \ n_1=3.5. \ \ldots$	77
3.16	Difference of effective refractive index changes of fundamental and first order modes versus core width with $t=5.0\mu m,~\lambda=1.33\mu m,$ $n_2(0)=3.17,~\Delta n_2(E)=0.01,~n_m=0.394+8.2j$ and $n_1=3.5.$	78
3.17	Coupling length and propagation length of the different modes versus core width within two mode coupling region with $t = 5.0 \mu m$, $\lambda = 1.33 \mu m$, $n_2(0) = 3.17$, $\Delta n_2(E) = 0.01$, $n_m = 0.394 + 8.2j$ and $n_1 = 3.5$	79
3.18	Effective refractive index change for fundamental and first order modes versus core thickness with $W_T=0.48\mu m,~\lambda=1.33\mu m,$ $n_2(0)=3.17,~\Delta n_2(E)=0.01,~n_m=0.394+8.2j$ and $n_1=3.5.$.	79
3.19	Difference of effective refractive index changes of fundamental and first order modes versus core thickness with $W_T = 0.48\mu m$, $\lambda = 1.33\mu m$, $n_2(0) = 3.17$, $\Delta n_2(E) = 0.01$, $n_m = 0.394 + 8.2j$ and $n_1 = 3.5$	80
3.20	Coupling length and propagation length of the different modes versus core thickness within two mode coupling region with $W_T = 0.48\mu m$, $\lambda = 1.33\mu m$, $n_2(0) = 3.17$, $\Delta n_2(E) = 0.01$, $n_m = 0.394 + 8.2i$ and $n_1 = 3.5$	81

3.21	Effective refractive index change for fundamental and first order modes versus GaAsInP cladding refractive index change with $W_T = 0.48\mu m, \ t = 5.0\mu m, \ \lambda = 1.33\mu m, \ n_2(0) = 3.17, \ n_m = 0.394 + 8.2j \text{ and } n_1 = 3.5. \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots$	81
3.22	Difference of effective refractive index change of fundamental and first order modes versus GaAsInP cladding refractive index change with $W_T = 0.48 \mu m$, $t = 5.0 \mu m$, $\lambda = 1.33 \mu m$, $n_2(0) = 3.17$, $n_m = 0.394 + 8.2j$ and $n_1 = 3.5$	82
3.23	Phase change versus optical pulse energy for SPTMI coupler with $n_1=3.5,\ n_2(0)=3.17,\ n_m=0.394+8.2j,\ W_T=0.48\mu m,\ t=5.0\mu m,\ \lambda=1.33\mu m$ and $L_C=92.35\mu m$ and effective area of GaAsInP cladding $A_{clad}=1.0\mu m^2,\ 1.5\mu m^2,\ 2.0\mu m^2,\ 2.5\mu m^2$ and $3.0\mu m^2$	83
3.24	Difference of effective refractive index change for SPP fundamental and first order modes versus optical pulse energy for SPTMI coupler with $n_1=3.5,n_2(0)=3.17,n_m=0.394+8.2j,W_T=0.48\mu m,$ $t=5.0\mu m,\lambda=1.33\mu m$ and $L_C=92.35\mu m$ and effective area of GaAsInP cladding $A_{clad}=1.0\mu m^2,1.5\mu m^2,2.0\mu m^2,2.5\mu m^2$ and $3.0\mu m^2$	83
3.25	Normalized cross state power (P_4/P_1) and bar state power (P_3/P_1) vs coupling distance L for SPTMI coupler with $W_T=0.48\mu m,t=5.0\mu m,n_1=3.5,n_2(0)=3.17,n_m=0.394+8.2j$ and $\lambda=1.33\mu m.$	85
3.26	Normalized cross state power (P_4/P_1) and bar state power (P_3/P_1) versus optical pulse energy E for the SPTMI coupler with $W_T=0.48\mu m,~t=5.0\mu m,~L=92.35\mu m$ (cross state), $n_1=3.5,~n_2(0)=3.17,~n_m=0.394+8.2j$ and $\lambda=1.33\mu m$ and different cladding area $A_{clad}=2.0\mu m^2,~2.5\mu m^2$ and $3.0\mu m^2$ and a previously reported device with $L=778.5\mu m$ and $A_{clad}=0.8\mu m^2$	86
3.27	Normalized cross state power (P_4/P_1) and bar state power (P_3/P_1) versus optical pulse energy E for the SPTMI coupler with $W_T = 0.48\mu m$, $t = 5.0\mu m$, $L = 95.35\mu m$ (bar state), $n_1 = 3.5$, $n_2(0) = 3.17$, $n_m = 0.394 + 8.2j$ and $\lambda = 1.33\mu m$ and different cladding area $A_{clad} = 2.0\mu m^2$, $2.5\mu m^2$ and $3.0\mu m^2$	87

3.28	Normalized cross state power (P_4/P_1) and bar state power (P_3/P_1) versus optical pulse energy E for the SPTMI coupler with $W_T=0.48\mu m,\ t=5.0\mu m,\ L=93.85\mu m$ (3dB coupling), $n_1=3.5,\ n_2(0)=3.17,\ n_m=0.394+8.2j$ and $\lambda=1.33\mu m$ and different cladding area $A_{clad}=2.0\mu m^2,\ 2.5\mu m^2$ and $3.0\mu m^2$ 88
3.29	Top schematic view of SPTMI coupler
3.30	Power imbalance $(10\log_{10}P_3/P_4)$ versus width tolerance (δw) for SPTMI coupler with $W_T=0.48\mu m,\ t=5.0\mu m,\ L=92.35\mu m$ (cross state coupling), $n_1=3.5,\ n_2(0)=3.17,\ n_m=0.394+8.2j$ and $\lambda=1.33\mu m$ and for existing works
3.31	3D schematic view of SPTMI coupler showing power launching by optical fiber
4.1	SPTMI coupler for fundamental logic operations
4.2	Implementation of NOT logic operation using SPTMI coupler $$ 102
4.3	Implementation of AND logic operation using SPTMI coupler $$ 104
4.4	Implementation of OR logic operation using SPTMI coupler $$ 107
4.5	Schematic view of cascaded SPTMI device for implementation of logic operations
4.6	Implementation of NOR logic operation using SPTMI coupler $$ 113
4.7	Implementation of NAND logic operation using SPTMI coupler $$. 116
4.8	Implementation of XOR logic operation using SPTMI coupler $$ 119
5.1	Two dimensional schematic view of the optical power splitter based on 1×2 SPTMI waveguide coupler
5.2	Variation of normalized coupling power for SPTMI based optical power splitter versus length of two-mode region with $2w=0.48\mu m,\ t=5.0\mu m,\ n_1=3.5,\ n_2(0)=3.17,\ n_m=0.394+8.2j$ and $\lambda=1.33\mu m$

5.3	Variation of splitting ratio (P_4/P_3) of SPTMI based optical power splitter versus length of two-mode region with $2w = 0.48\mu m$, $t = 5.0\mu m$, $n_1 = 3.5$, $n_2(0) = 3.17$, $n_m = 0.394 + 8.2j$ and $\lambda = 1.33\mu m$	129
5.4	Normalized cross state power (P_4/P_1) and bar state power (P_3/P_1) versus energy of applied optical pulse for SPTMI waveguide coupler based 3dB optical power splitter with $2w=0.48\mu m,\ t=5.0\mu m,\ L=93.85\mu m,\ n_1=3.5,\ n_2(0)=3.17,\ n_m=0.394+8.2j$ and $\lambda=1.33\mu m$	131
5.5	Variation of power splitting ratio of SPTMI waveguide coupler based 3dB optical power splitter versus optical pulse energy with $2w = 0.48\mu m$, $t = 5.0\mu m$, $L = 93.85\mu m$, $n_1 = 3.5$, $n_2(0) = 3.17$, $n_m = 0.394 + 8.2j$, $\lambda = 1.33\mu m$ and $A_{clad} = 2.0\mu m^2$, $2.5\mu m^2$ and $3.0\mu m^2$	133
5.6	Power transmission versus width tolerance of the 1×2 SPTMI waveguide coupler based 3dB power splitter with $2w=0.48\mu m$, $t=5.0\mu m$, $L=93.85\mu m$, $n_1=3.5$, $n_2(0)=3.17$, $n_m=0.394+8.2j$, $\lambda=1.33\mu m$ and a previously reported device	134
5.7	Top schematic view of 1×2 SPTMI waveguide coupler based optical power splitter showing access waveguide bends	134
5.8	3D schematic view of 1×2 SPTMI waveguide coupler based optical power splitter showing power launching by optical fiber	136

List of Tables

3.1	Wavelength dependence of device parameters
3.2	Device parameters for the proposed device
4.1	Device parameters required for fundamental logic gate operation . 101
4.2	Truth table for a basic NOT gate
4.3	Truth table for all-optical NOT gate implemented with SPTMI coupler
4.4	Truth table for a basic AND gate
4.5	Truth table of all-optical AND gate implemented with SPTMI coupler
4.6	Truth table for a basic OR gate
4.7	Truth table of all-optical OR gate implemented with SPTMI coupler 108
4.8	Device parameters for cascaded SPTMI structure for logic operations 110
4.9	Truth table for a basic NOR gate
4.10	Implementation of NOR gate with cascaded SPTMI coupler $$ 112
4.11	Truth table for a basic NAND gate
4.12	Implementation of NAND gate with cascaded SPTMI coupler $$ 115
4.13	Truth table for a basic XOR gate

List of Tables

4.14	Implementation of XOR gate with cascaded SPTMI coupler	•	•	119
4.15	Comparison of implemented logic gates with previous works			122
5.1	Device parameters for 3dB optical power splitter			138
5.2	Comparison of proposed device with previous works			139

List of Abbreviations

ALU Arithmetic Logic Unit

BPM Beam Propagation Method

CW Continuous Wave

DC Directional Coupler

DLSPP Dielectric Loaded Surface Plasmon Polariton

FWM Four-wave Mixing

IGMPW Index Guided Multimode Plasmonic Waveguide

MFOD Multifunctional Optical Device

MIM Metal-Insulator-Metal MMI Multimode Interference

MZ Mach-Zehnder

MZ-MMI Mach-Zehnder based Multimode Interference

NDCMMI Nonlinear Directional Coupler based Multimode Interference

OTMI Optically-controlled Two-mode Interference

PhCWG Photonic Crystal Waveguide

SEIM Simple Effective Index Method

SEIM-x Simple Effective Index Method along x-direction SEIM-y Simple Effective Index Method along y-direction

SOA Semiconductor Optical Amplifier

SPP Surface Plasmon Polariton

SPTMI Surface plasmonic Two-mode Interference

TE Transverse Electric

TM Transverse Magnetic

TMI Two-mode Interference

List of Symbols and Notations

lpha	Bending loss coefficient
$lpha_P$	Propagation loss coefficient
$lpha_1$	Fraction of input power transferred to output access
	waveguide-3 in a optical power splitter
$lpha_2$	Fraction of input power transferred to output access
	waveguide-4 in a optical power splitter
eta_m	Propagation constant of m th mode propagating in
	SPTMI coupler
$\beta_m(n_1, n_2(E), n_m)$	Propagation constant of m th mode in SPTMI cou-
	pler as a function of refractive indices n_1 , $n_2(E)$ and
	n_m
$\beta_m(n_2(E))$	Propagation constant of m th mode in SPTMI cou-
	pler when optical pulse of energy E is applied
$\beta_m(n_2(0))$	Propagation constant of m th mode in SPTMI cou-
	pler when no optical pulse is applied
eta^r_m	Real part of propagation constant of m th mode prop-
	agating in SPTMI coupler
$\beta_m^r(n_1, n_2(E), n_m)$	Real part of propagation constant of mth mode in
	SPTMI coupler as a function of refractive indices n_1 ,
	$n_2(E)$ and n_m
$\beta_m^r(n_2(E))$	Real part of propagation constant of mth mode in
	SPTMI coupler when optical pulse of energy E is
- / / / /	applied
$\beta_m^r(n_2(0))$	Real part of propagation constant of mth mode in
a i u	SPTMI coupler when no optical pulse is applied
eta_m^{im}	Imaginary part of propagation constant of <i>m</i> th mode
	propagating in SPTMI coupler

$\beta_m^{im}(n_1, n_2(E), n_m)$	Imaginary part of propagation constant of m th mode
m (1) 2 () , m)	in SPTMI coupler as a function of refractive indices
	$n_1, n_2(E)$ and n_m
$\beta_m^{im}(n_2(E))$	Imaginary part of propagation constant of m th mode
	in SPTMI coupler when optical pulse of energy E is
	applied
$eta_m^{im}(n_2(0))$	Imaginary part of propagation constant of m th mode
	in SPTMI coupler when no optical pulse is applied
eta_e	Propagation constant of even mode in a directional
2	coupler
eta_o	Propagation constant of odd mode in a directional
δw	coupler Deviation of width in SPTMI coupler
$\Delta \beta_{m,r}^{eff}(n_2(E))$	Change in real part of propagation constant of m th
$\Delta \wp_{m,r}(m_2(D))$	order mode $(m = 0, 1)$ due to application of optical
	pulse energy
$\Delta n_{m,r}^{eff}(E)$	Effective real refractive index change of m th order
<i>III,I</i> ()	mode $(m = 0, 1)$ due to application of optical pulse
	energy
$\Delta n_2(E)$	Change in refractive index of GaAsInP cladding due
	to application of optical pulse
Δn	Index contrast between core and cladding in a waveg-
	uide
$\Delta\Phi_T(E)$	Phase difference between the fundamental and first
	order modes at the end of coupling region after ap-
()	plication of optical pulse of energy E
$\Delta\Phi(E)$	Additional phase shift induced between the excited
	SPP modes due to application of optical pulse of en-
	ergy E
ϵ	Dielectric constant of any medium Dielectric constant of free space
ϵ_0 ϵ_d	Dielectric constant of pure dielectric medium
ϵ_m	Dielectric constant of metal
$\epsilon_i(i=1,2,3)$	Dielectric constant of <i>i</i> th medium
ϵ_{eff}^{\prime}	Effective dielectric constant of dielectric medium
еј ј	with refractive index n_1 and width W_T sandwiched
	between layers of dielectric medium with refractive
	index $n_2(E)$

η_{core}	Optical power launching efficiency to silicon core of
	SPTMI waveguide coupler
η_{clad}	Optical power launching efficiency to the nonlinear
	GaAsInP cladding of SPTMI waveguide coupler
κ	Coupling coefficient in directional coupler
λ	Wavelength of incident light
λ_{spp}	Wavelength of surface plasmon polariton wave
ω	Angular velocity of incident light
ϕ	Bending angle
A_{clad}	Effective cross sectional area of GaAsInP cladding
A_{core}	Cross sectional area of access waveguide core
a(z)	Amplitude of mode in waveguide-1 in directional cou-
	pler
a_e	Amplitude of even mode
a_o	Amplitude of odd mode
b(z)	Amplitude of mode in waveguide-2 in directional cou-
	pler
b_I	Normalized guide index
b_i	Mode field excitation coefficient of the i th mode in
	MMI coupler
b_m^T	Field excitation coefficient for the m th order mode
	in the SPTMI coupler
c	Velocity of light
$c_{M,i}$	Contribution of i th mode to M th output access
	waveguide
$c_{3,m}^T$	Coefficient of field contribution of m th mode for third
	output access waveguide
$c_{4,m}^T$	Coefficient of field contribution of m th mode for
	fourth output access waveguide
C	Coupling coefficient estimated from coupled mode
	theory
d	Half of separation between waveguides in directional
	coupler
E	Energy of optical pulse applied to obtain index mod-
	ulation in SPTMI coupler
$E_x(z)$	Electric field component in the x -direction
$E_y(z)$	Electric field component in the y -direction
$E_z(z)$	Electric field component in the z -direction

h	Coupling gap in DC and MMI coupler
H(y,0)	Input field incident on access waveguide in MMI cou-
	pler
H(y,L)	Output field at $Z = L$ in MMI coupler
$H_M(y,L)$	Output field at $Z = L$ at M th output access waveg-
	uide in MMI coupler
$H_{M,i}(y,L)$	Field contribution of i th mode to M th output access waveguide
$H_i(y)$	Mode field distribution of the i th mode in MMI cou-
	pler
$H_1(x,0)$	Input field launched through input access waveguide-
	1 at z = 0
$H_3(x,L,E)$	Output fields at output access waveguide-3 at $z=L$
$H_4(x+w,L,E)$	Output fields at output access waveguide-4 at $z = L$
$H_5(L_1,E)$	Field at access waveguide-5
$H_6(L_2,E)$	Field at access waveguide-6
$H_7(L_3,E)$	Output field at access waveguide-7
$H_8(L_3,E)$	Output field at access waveguide-8
$H_m(x)$	Mode field of the <i>m</i> th excited mode in TMI region
	at $z = 0 \ (m = 0, 1)$
$H_x(z)$	Magnetic field component in the x-direction
$H_y(z)$	Magnetic field component in the y -direction
$H_z(z)$	Magnetic field component in the z -direction
H_S	Separation of bent access waveguides in SPTMI cou-
**	pler
H_T	Bending height of bent access waveguides
k_0	Wave vector in free space
k_1	Wave vector in medium 1
k_2	Wave vector in medium 2
k_3	Wave vector in medium 3
k_d	Wave vector in dielectric medium
k_m	Wave vector in metallic medium
$k_i (i=1,2,3)$	Wave vector in <i>i</i> th medium
L	Length of coupling region in SPTMI waveguide coupler
T	pler Boot longth
$L_{\pi} \ L_{A}$	Beat length Width of PhS doped Silica absorber in cascaded
L_A	Width of PbS doped Silica absorber in cascaded structure

L_C	Coupling length
L_D	Device length of basic SPTMI waveguide coupler
L_M	Distance of separation between the two mirrors in
	mode locked laser
L_T	Transition length of access waveguides in SPTMI
	waveguide coupler
$L_{P,m}$	Propagation length of m th mode in SPTMI coupler
$L_{cascaded}$	Device length of cascaded structure for implementa-
	tion of NOR, NAND and XOR logic gates
L_1	Length of coupling region of first SPTMI waveguide
	coupler in cascaded structure
L_2	Length of coupling region of second SPTMI waveg-
	uide coupler in cascaded structure
L_3	Length of coupling region of third SPTMI waveguide
	coupler in cascaded structure
m	Mode number
n_1	Refractive index of silicon core in SPTMI waveguide
	coupler
$n_{2}(0)$	Refractive index of GaAsInP cladding in SPTMI
	waveguide coupler before application of optical pulse
$n_2(E)$	Refractive index of GaAsInP cladding in SPTMI
	waveguide coupler after application of optical pulse
n_m	Refractive index of silver cladding in SPTMI waveg-
	uide coupler
$n_{m,real}$	Real part of refractive index of silver
$n_{m,im}$	Imaginary part of refractive index of silver
n_{nl}	Nonlinear coefficient of GaAsInP
$n_{1,eff}$	Effective refractive index of medium with refrac-
	tive index n_1 and thickness t sandwiched between
	medium with refractive index n_m
$n_{2,eff}$	Effective refractive index of medium with refractive
	index $n_2(E)$ and thickness t sandwiched between
	medium with refractive index n_m
$n_{eff}^{/}$	Effective refractive index of medium with refractive
	index n_1 and width W_T sandwiched between medium
	with refractive index $n_2(E)$
$n_{m,r}^{eff}$	Effective refractive index for m th mode propagation
	in SPTMI coupler

$n_{m,r}^{eff}(0)$	Effective refractive index for m th mode propagation			
	in SPTMI coupler before application of optical pulse			
$n_{m,r}^{eff}(E)$	Effective refractive index for m th mode propagation			
	in SPTMI coupler after application of optical pulse			
$n_i (i = 1, 2, 3, 4)$	Refractive index of dielectric media			
N	Number of oscillating modes in mode locked laser			
NA_{core}	Numerical aperture of silicon core in SPTMI coupler			
NA_{clad}	Numerical aperture of GaAsInP cladding in SPTMI			
	coupler			
P_1	Power at access waveguide-1			
P_2	Power at access waveguide-2			
P_3	Power at access waveguide-3			
P_4	Power at access waveguide-4			
P_5	Power at access waveguide-5			
P_6	Power at access waveguide-6			
P_7	Power at access waveguide-7			
P_8	Power at access waveguide-8			
P_{M}	Power at M th output access waveguide in MMI cou-			
	pler			
P_C	Power of optical pulse at cladding of SPTMI waveg-			
	uide coupler			
P_{C1}	Power of optical pulse at cladding of first SPTMI			
	waveguide coupler in cascaded structure			
P_{C2}	Power of optical pulse at cladding of second SPTMI			
	waveguide coupler in cascaded structure			
P_{in}	Power incident on a bent waveguide			
P_{out}	Power at output end of a bent waveguide			
R	Bending radius of access waveguides in SPTMI cou-			
	pler			
r	Radius of optical fiber used to launch optical power			
	in SPTMI coupler			
S	Arc length of S-bent waveguide			
t	Core thickness in SPTMI coupler			
t_1	Core thickness of first waveguide in directional cou-			
	pler			
t_2	Core thickness of second waveguide in directional			
	coupler			

T_P	Full width at half maximum of optical pulse applied
	at GaAsInP cladding
T_B	Bending loss in a waveguide with single bend
T_S	S-bending loss
T_R	Cavity round trip time in mode locked laser
V_{I}	Normalized frequency
w	Core width of access waveguides in SPTMI coupler
w_1	Core width of first waveguide in directional coupler
w_2	Core width of second waveguide in directional cou-
	pler
W_A	Width of PbS doped Silica absorber in cascaded
	structure
W_C	Width of GaAsInP cladding in SPTMI coupler
W_e	Effective width of coupling region in MMI waveguide
w_{MMI}	Width of core in MMI coupler
w_P	Width of optical pulse coupling channels in cascaded
	structure
W_T	Core width of silicon core in SPTMI coupler