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Bending height of bent access waveguides

Wave vector in free space

Wave vector in medium 1

Wave vector in medium 2

Wave vector in medium 3

Wave vector in dielectric medium

Wave vector in metallic medium

Wave vector in ¢th medium

Length of coupling region in SPTMI waveguide cou-
pler

Beat length

Width of PbS doped Silica absorber in cascaded

structure
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Symbols and Notations

LP,m

Lcascaded

Ly

712(0)
HQ(E)

N, real
nm,im
Nieff
Noerf

Meyy

il

Coupling length

Device length of basic SPTMI waveguide coupler
Distance of separation between the two mirrors in
mode locked laser

Transition length of access waveguides in SPTMI
waveguide coupler

Propagation length of mth mode in SPTMI coupler
Device length of cascaded structure for implementa-
tion of NOR, NAND and XOR logic gates

Length of coupling region of first SPTMI waveguide
coupler in cascaded structure

Length of coupling region of second SPTMI waveg-
uide coupler in cascaded structure

Length of coupling region of third SPTMI waveguide
coupler in cascaded structure

Mode number

Refractive index of silicon core in SPTMI waveguide
coupler

Refractive index of GaAsInP cladding in SPTMI
waveguide coupler before application of optical pulse
Refractive index of GaAsInP cladding in SPTMI
waveguide coupler after application of optical pulse
Refractive index of silver cladding in SPTMI waveg-
uide coupler

Real part of refractive index of silver

Imaginary part of refractive index of silver
Nonlinear coefficient of GaAsInP

Effective refractive index of medium with refrac-
tive index m; and thickness ¢ sandwiched between
medium with refractive index n,,

Effective refractive index of medium with refractive
index no(E) and thickness t sandwiched between
medium with refractive index n,,

Effective refractive index of medium with refractive
index n; and width Wy sandwiched between medium
with refractive index nsy(FE)

Effective refractive index for mth mode propagation
in SPTMI coupler
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Effective refractive index for mth mode propagation
in SPTMI coupler before application of optical pulse
Effective refractive index for mth mode propagation
in SPTMI coupler after application of optical pulse
Refractive index of dielectric media

Number of oscillating modes in mode locked laser
Numerical aperture of silicon core in SPTMI coupler
Numerical aperture of GaAsInP cladding in SPTMI
coupler

Power at access waveguide-1

Power at access waveguide-2

Power at access waveguide-3

Power at access waveguide-4

Power at access waveguide-5

Power at access waveguide-6

Power at access waveguide-7

Power at access waveguide-8

Power at Mth output access waveguide in MMI cou-
pler

Power of optical pulse at cladding of SPTMI waveg-
uide coupler

Power of optical pulse at cladding of first SPTMI
waveguide coupler in cascaded structure

Power of optical pulse at cladding of second SPTMI
waveguide coupler in cascaded structure

Power incident on a bent waveguide

Power at output end of a bent waveguide

Bending radius of access waveguides in SPTMI cou-
pler

Radius of optical fiber used to launch optical power
in SPTMI coupler

Arc length of S-bent waveguide

Core thickness in SPTMI coupler

Core thickness of first waveguide in directional cou-
pler

Core thickness of second waveguide in directional

coupler
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Tp

Full width at half maximum of optical pulse applied
at GaAsInP cladding

Bending loss in a waveguide with single bend
S-bending loss

Cavity round trip time in mode locked laser
Normalized frequency

Core width of access waveguides in SPTMI coupler
Core width of first waveguide in directional coupler
Core width of second waveguide in directional cou-
pler

Width of PbS doped Silica absorber in cascaded
structure

Width of GaAsInP cladding in SPTMI coupler
Effective width of coupling region in MMI waveguide
Width of core in MMI coupler

Width of optical pulse coupling channels in cascaded
structure

Core width of silicon core in SPTMI coupler
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