List of Figure

2.1	A cross sectional view of a myelinated axon	11
2.2	Nerve conduction study with Medicaid EMG machine	16
	Model No EMG-2000.	
2.3	Nerve biopsy of (a) Patient's id: 015 and (b) Patient's id:	16
	058, collected from Pathology Lab, GNRC Hospital,	
	Guwahati, Assam, India.	
2.4	Skin biopsy of (a) Patient's id: 023 and (b) Patient's id: 027,	17
	collected from Pathology Lab, GNRC Hospital, Guwahati,	
	Assam, India	
2.5	An equivalent electric circuit of H-H model.	24
2.6	An electric circuit of a single myelinated axon.	28
2.7	An electric circuit of a single demyelinated axon.	29
2.8	NCV versus demyelination factor (γ).	30
2.9	An electric circuit of a coupled model of axon.	31
2.10	NCV versus demyelination factor (γ) in a coupled model of	32
	axons.	
3.1	(a) A bundle of myelinated nerve fibers, (b) SEM image of a	48
	bundle of axons in a myelinated nerve and (c) schematic	
	representation of a bundle of axons.	
3.2	An equivalent electric circuit of a myelinated nerve fiber	49
3.3	(a) Estimation of NCV in terms of alignment factor and (b)	55
	variance of NCV with increasing alignment of axons in the	
	bundle.	
3.4	Duttaphrynus melanostictus	56
3.5	AD instrument with nerve chamber used to record nerve signals.	57
3.6	Electric neuro signal of a normal sciatic nerve of toad	58
3.7	SEM image of a myelinated nerve fiber.	59
4.1	(a) A bundle of axons in a demyelinated nerve fiber with	65
	degraded myelin sheath, (b) image representing a bundle of	
	axons in a demyelinated nerve obtained from scanning electron	
	microscope (SEM) and (c) schematic representation of bundle of	

	axons corresponding to SEM image.	
4.2	Electric circuit model of a demyelinated nerve.	66
4.3	Estimation of NCV in terms of demyelination factor with	71
	alignment parameter A .	
4.4	Electric neuro signals of (a) control, and nerves treated with (b)	74
	$0.1\mu g/ml$, (c) $1.0\mu g/ml$ and (d) $10\mu g/ml$ of crude venom	
	concentrations respectively	
4.5	SEM images of (a) control, and nerves treated with (b) 0.1µg/ml,	75
	(c) $1.0\mu g/ml$ and (d) $10\mu g/ml$ of crude venom concentrations	
	respectively	
4.6	A graphical representation of NCV versus demyelinating factor	77
	with an inset of degree of demyelination versus crude venom	
	concentration.	
4.7	Effect of purified Nk-PLA2 with different concentration on	78
	sciatic nerves of toad and their nerve conduction signals	
	(proximal and distal action potential) with corresponding SEM	
	images of their sciatic nerves.	
4.8	Effect of purified 3Ftx with different concentration on nerve	79
	conduction signals.	
4.9	Mechanism of channel blocking in cell membrane	81
5.1	(a) A myelinated nerve (nerve I) being coupled with a	87
	demyelinated nerve (nerve II) and (b) image of nerve I and nerve	
	II to be coupled for the formation of coupled nerve model	
	obtained from scanning electron microscope (SEM).	
5.2	An electric circuit model of a couple nerve fibers.	88
5.3	Estimation of NCV in the coupled nerve for aligned (A=1) and	93
	misaligned ($A=1/2$) axons in the model.	
5.4	A coupled nerve in a nerve chamber.	93
5.5	Electro neuro signals in demyelinated and coupled nerve.	97
5.6	Theoretical estimation of NCV in demyelinated and coupled	99
	nerve in terms of alignment factor at (a) $A=1/2$ and (b) $A=1$.	
5.7	Comparison of AP in demyelinated and coupled nerve.	100
5.8	Blocking mechanism and coupling effect in coupled nerve.	101