LIST OF SCHEMES

Scheme 1.1: Synthesis of epoxy resins from di/polyols

Scheme 1.2: Synthesis of hyperbranched epoxy by end group modification of a hyperbranched polymer

Scheme 1.3: Synthesis of hyperbranched epoxy by proton transfer reaction

Scheme 1.4: Synthesis of hyperbranched epoxy by polycondensation reaction

Scheme 1.5: Preparation of polymer nanocomposite by solution technique

Scheme 1.6: Preparation of polymer nanocomposite by *in-situ* technique

Scheme 1.7: Preparation of polymer nanocomposite by melt mixing technique

Scheme 2A.1: Synthesis with possible general structure of PHE resins

Scheme 2B.1: Preparation of PAD by Michael addition reaction

Scheme 2B.2: Synthetic scheme along with possible general structure of TAHE resins

Scheme 2C.1: Synthesis of HBPP resin

Scheme 2C.2: Synthesis of hyperbranched epoxy from HBPP

Scheme 3A.1: Different physico-chemical interactions of modified clay with hyperbranched epoxy and hardener based on the Halpin-Tsai aligned parallel model

Scheme 4A.1: Possible mechanism for the formation of carbon dot particles

Scheme 4B.1: Crosslinking reactions among the hyperbranched epoxy, PAA hardener and carbon dot

Scheme 4B.2: Different physico-chemical interactions of carbon dot particles with hyperbranched epoxy and PAA hardener

Scheme 4C.1: (a) Chemical reactions of the reactants and carbon dot during the formation of CHE *in-situ* nanocomposite and (b) its general structure

Scheme 5A.1: Reduction mechanism for the preparation of carbon dot reduced Cu₂O nanohybrid

Scheme 5A.2: Photocatalytic mechanism for nanocomposite film

Scheme 5B.1: Formation of ECDCONC