Contents

Abstract	i
Preface	vii
Acknowledgement	viii
Table of contents	X
List of tables	XV
List of figures	xvii
Abbreviations	xxi
Chapter 1: General introduction	
1.1 Motivation and research background	1 - 1
1.2 The Jatropha curcas plant	1 - 6
1.2.1 Ecology, distribution, and production of Jatropha curcas	1 - 7
1.2.2 Extraction, purification, and storage of Jatropha curcas oil	1 - 9
1.2.3 Chemical compositions of Jatropha curcas oil	1 - 11
1.2.4 Products and uses of jatropha seed oil	1 - 14
1.3 Inside the world of alkyd resins	1 - 19
1.3.1 Classification	1 - 20
1.3.2 Raw materials	1 - 20
1.3.3 Methods of preparation	1 - 23
1.3.4 Modification of alkyd resins	1 - 25
1.4 Nanocomposite perspective	1 - 28
1.5 Applications	1 - 31
1.6 Scope and objectives	1 - 34

Chapter 2: Synthesis, characterization, and performance characteristics of *Jatropha curcas* oil based alkyd resins and their blends with epoxy resins

2.1 Introduction 2 - 1

2.2.2 Preparation of jatropha oil based alkyd resins	2 - 3
2.2.3 Preparation of alkyd/epoxy blends	2 - 5
2.2.4 Determination of extent of reaction and average degree of	2 - 5
polymerization	
2.3 Instruments and methods	2 - 5
2.4 Results and discussion	2 - 9
2.4.1 Kinetics of polyesterification reaction	2 - 9
2.4.2 Spectroscopic (FT-IR and ¹ H NMR) analysis	2 - 12
2.4.3 Physicochemical properties of jatropha oil based alkyd	2 - 15
resins	
2.4.4 GPC analysis	2 - 16
2.4.5 Curing study of the resins	2 - 16
2.4.6 Coating performance of the resins	2 - 17
2.4.7 Chemical resistance	2 - 18
2.4.8 Blend morphology	2 - 18
2.4.9 Thermal and mechanical properties	2 - 19
2.5 Conclusion	2 - 21
Chapter 3: Blends of epoxidized alkyd resins based on jatropha oil	and the
epoxidized oil cured with aqueous citric acid solution: A green technology ap	proach
3.1 Introduction	3 - 1
3.2 Experimental	3 - 3
3.2.1 Materials	3 - 3
3.2.2 Preparation of jatropha oil modified alkyd resins	3 - 3
3.2.3 Preparation of epoxidized jatropha oil (EJO)	3 - 4
3.2.4 Epoxidation of alkyd resin	3 - 5
3.2.5 Preparation of the blends	3 - 6

2 - 3

2 - 3

2.2 Experimental

2.2.1 Materials

3.3 Instruments and methods	3 - 6
3.4 Results and discussion	3 - 9
3.4.1 Spectroscopic (FT-IR and NMR) study	3 - 9
3.4.2 Curing study of the blends	3 - 13
3.4.3 Morphology	3 - 15
3.4.4 Thermogravimetric analysis	3 - 15
3.4.5 Performance of the blends	3 - 17
3.4.6 Chemical resistance test	3 - 18
3.4.7 Effect of postcure on the thermal and mechanical	3 - 19
properties	
3.5 Conclusion	

Chapter 4: *Jatropha curcas* oil based alkyd/epoxy resin/expanded graphite (EG) reinforced bio-composite: Evaluation of the thermal, mechanical, and flame retardant properties

4.1 Introduction	4 - 1
4.2 Experimental	4 - 3
4.2.1 Materials	4 - 3
4.2.2 Preparation of jatropha oil based alkyd resin	4 - 3
4.2.3 Preparation of expanded graphite (EG)	4 - 3
4.2.4 Preparation of alkyd/epoxy/EG biocomposites	4 - 4
4.3 Instruments and methods	4 - 4
4.4 Results and discussion	4 - 7
4.4.1 FT-IR analysis	4 - 7
4.4.2 X-ray diffraction analysis	4 - 8
4.4.3 Morphology study	4 - 9
4.4.4 Thermogravimetric analysis	4 - 10
4.4.5 Mechanical properties	4 - 12
4.4.6 In vitro degradation	4 - 14

4.4.8 Limiting oxygen index (LOI)	4 - 16
4.5 Conclusion	4 - 17
Chapter 5: Jatropha curcas oil based alkyd/epoxy/graphene	oxide (GO)
bionanocomposites: Effect of GO on curing, mechanical, and thermal p	roperties
5.1 Introduction	5 - 1
5.2 Experimental	5 - 3
5.2.1 Materials	5 - 3
5.2.2 Preparation of graphene oxide (GO)	5 - 3
5.2.3 Preparation of alkyd/epoxy/GO bionanocomposite	5 - 3
5.3 Instruments and methods	5 - 4
5.4 Results and discussion	5 - 6
5.4.1 Rheological and curing study of the bionanocomposite	es 5 - 6
5.4.2 FT-IR analysis	5 - 8
5.4.3 X-ray diffraction (XRD) analysis	5 - 9
5.4.4 Morphological studies	5 - 10
5.4.5 Thermal characterization of the bionanocomposites	5 - 12
5.4.6 Mechanical properties	5 - 15
5.5 Conclusion	5 - 17
Chapter 6: In situ synthesis of green bionanocomposites based on aque	ous sitris said
cured epoxidized soybean oil-carboxylic acid functionalized MWCNTs	ous chi ic aciu
cureu epoxidized soybean on-carboxync acid functionalized with CN 18	
6.1 Introduction	6 - 1
6.2 Experimental	6 - 4
6.2.1 Materials	6 - 4
6.2.2 Preparation of epoxidized soybean oil (ESO)	6 - 4
6.2.3 Functionalization of MWCNTs	6 - 5

4.4.7 Water absorption

4 - 15

6.2.4 Preparation of ESO-CA networks and their	6 - 6
bionanocomposites with c-MWCNTs	
6.3 Instrumentation and methods	6 - 6
6.4 Results and discussion	6 - 8
6.4.1 Plausible mechanism of formation of the	6 - 8
bionanocomposites	
6.4.2 Spectroscopic analysis of the bionanocomposites	6 - 10
6.4.3 XRD analysis	6 - 11
6.4.4 Morphology of the bionanocomposites	6 - 12
6.4.5 Curing study and mechanical properties	6 - 13
6.4.6 Thermogravimetric analysis	6 - 15
6.4.7 Chemical resistance	6 - 17
6.4.8 Effect of postcuring on thermal and mechanical properties	6 - 18
of the bionanocomposites	
6.5 Conclusion	6 - 20
Chapter 7: Conclusion and future scope	
7.1 Conclusion	7 - 1
7.2 Future prospects of the present investigation	7 - 4