List of figures

Chapter	Figure	Figure caption	Page No.
Chapter 1:			
	1.1	Plant oils as renewable raw materials in chemistry	1 - 2
	1.2	Jatropha curcas as multipurpose crop	1 - 3
	1.3	Exploitation of Jatropha curcas components	1 - 5
	1.4	Different components of the Jatropha curcas plant	1 - 6
	1.5	Major distribution areas of Jatropha curcas (green)	1 - 8
		around the world	
	1.6	Extraction of Jatropha curcas oil	1 - 9
	1.7	Triglyceride structure of vegetable oils (R ₁ , R ₂ , R ₃	1 - 11
		represents fatty acid chains)	
	1.8	Chemical structure of common fatty acids present in	1 - 13
		vegetable oil	
	1.9	Structure of a typical alkyd resin (PA: polyalcohol, PAc:	1 - 18
		polyacid, FA: fatty acid)	
	1.10	Schematic drawings of three main processing techniques	1 - 29
		for the preparation of clay-containing polymer	
		nanocomposites: (a) in-situ polymerization, (b) solution	
		intercalation, and (c) melt intercalation	
Chapter 2:			
	2.1	Plots of acid value as a function of reaction time during	2 - 10
		polyesterification reaction	
	2.2	Plots of degree of polymerization as a function of reaction	2 - 11
		time for the alkyd resins	
	2.3	FT-IR spectra of jatropha oil (a), Resin 1 (b), Resin 2 (c),	2 - 13
		and Resin 3 (d)	
	2.4	¹ H NMR spectra of jatropha oil (a), Resin 1 (b), Resin 2	2 - 14

		(c), and Resin 3 (d)	
	2.5	SEM micrographs of (a) Blend A, (b) Blend B, and (c)	2 - 19
		Blend C	
	2.6	TGA thermograms for the blends (a) Blend A, (b) Blend	2 - 19
		B, and (c) Blend C	
Chapter 3:			
	3.1	FT-IR spectra of (a) jatropha oil, (b) EJO, (c) EAR, and	3 - 10
		(d) AJO30	
	3.2	¹ H NMR spectra of (a) jatropha oil, (b) EJO, (c) EAR,	
		and (d) AJO30	
	3.3	¹³ C NMR spectra of (a) jatropha oil, (b) EJO, (c) EAR,	3 - 12
		and (d) AJO30	
	3.4	Cross-linked polymer networks of EAR and EJO with	3 - 14
		citric acid	
	3.5	SEM micrographs of (a) AJO20, (b) AJO30, (c) AJO40,	3 - 15
		and (d) AJO50	
	3.6	TGA curves of (a) alkyd resin, (b) AJO20, (c) AJO30,	3 - 16
		(d) AJO40, and (e) AJO50	
	3.7	TGA (a) and DTG (b) curves of AJO20 cured at 120 °C	3 - 19
		and 160 °C	
Chapter 4:			
	4.1	FT-IR spectra of EG (a), alkyd/epoxy blend (b),	4 - 7
		biocomposites with 2.5 (c) and 5 (d) wt % EG	
	4.2	XRD patterns of EG (a), biocomposites with 5 (b), 4 (c),	4 - 8
		2.5 (d) and 1.5 (e) wt % EG, and neat polymer (f)	
	4.3	SEM micrographs of natural graphite (a), and EG (b) and	4 - 9
		(c) at different magnifications	

	4.4	SEM micrographs of the biocomposites with (a) 2.5,	4 - 10
		and (b) and (c) 5 wt % EG	
	4.5	TEM images of the biocomposites (1.5 wt % EG) at	4 - 10
		different magnifications	
	4.6	TGA thermogram of the biocomposites with different wt	4 - 11
		% EG loading	
	4.7	Effects of UG and EG content on tensile strength and	4 - 13
		elongation at break (%) of the biocomposites	
	4.8	Degradation curve of the biocomposites with different wt	4 - 14
		% of EG	
	4.9	Water absorption of the biocomposites with different wt	4 - 15
		% of EG	
Chapter 5:			
	5.1	Photograph of a alkyd/epoxy/GO bionanocomposite film	5 - 6
	5.2	FT-IR spectra of (a) alkyd/epoxy blend, (b) GO and (c)	5 - 8
		bionanocomposite (3 wt % GO)	
	5.3	XRD patterns of (a) GO, (b) BNC5, (c) BNC3, (d) BNC1	5 - 9
		and (e) pristine blend	
	5.4	TEM micrographs of the bionanocomposites at different	5 - 11
		magnifications, (a) 1 wt %, (b) & (c) 3 wt % and (d) 5 wt	
		% GO	
	5.5	SEM images of the fracture surface of (a) alkyd/epoxy	5 - 12
		blend and (b) & (c) BNC3	
	5.6	DSC traces of the pristine blend and the	5 - 13
		bionanocomposites. Inset is the T_{g} vs GO content (wt %)	
	5.7	TGA curves of (a) pristine blend, (b) BNC1, (c) BNC3,	5 - 14
		(d) BNC5, and (e) GO	
	5.8	Effect of GO content on the mechanical properties of the	5 - 16
		bionanocomposites, (a) elastic modulus, and (b) tensile	

strength

Chapter 6:

6.1	FT-IR spectra of (a) MWCNTs, (b) c-MWCNTs, (c)	6 - 11
	ESO-CA networks, and (d) bionanocomposites (CNTC1)	
6.2	X-ray diffraction of (a) CNTC0, (b) CNTC1, (c) CNTC2,	6 - 12
	and (d) CNTC3	
6.3	TEM micrographs of (a) c-MWCNTs, and (b)	6 - 13
	bionanocomposites (CNTC1)	
6.4	TGA (a), and DTG (b) curves for the bionanocomposites	6 - 16
	with different wt% of c-MWCNTs	
6.5	TGA curves for the postcured bionanocomposite films	6 - 19