CONTENTS

	Page No.
ABSTRACT	i-vii
DECLARATION	viii
CERTIFICATE	ix
CERTIFICATE OF THE EXAMINER	Х
ACKNOWLEDGEMENTS	xi-xii
LIST OF TABLES	xviii-xix
LIST OF FIGURES	xx-xxii
ABBREVIATIONS/SYMBOLS USED	xxiii-xxv
GENERAL REMARKS	xxvi

CHAPTER 1

General introduction and review		1-1-1-80
1.1	General introduction	1-1—1-10
1.1.1	One pot reactions	
1.1.2	Significance of quinoline derivatives as N-heterocycles	
1.1.3	Significance of β -amino carbonyl compounds and β -nitro alcohols as reaction intermediates	
1.1.4	Ionic liquids as greener solvent or catalyst in organic synthesis	
1.1.5	Water as greener solvent in organic synthesis	
1.1.6	Solid acids or bases as greener catalysts	
1.2	Methods for the synthesis of -SO ₃ H functionalized Brønsted acidic ionic liquids (BAILs)	1-11—1-22
1.3	Review of ionic liquid mediated/catalyzed synthesis of quinoline derivatives from the Friedländer annulations	1-22—1-29
1.4	Reported methods for the synthesis of 2- styrylquinoline derivatives	1-29—1-45
1.5	Heterogeneous acid catalyzed synthesis of β - amino carbonyl compounds via Mannich-type reactions	1-45—1-57

1.6	Review on water mediated Henry reaction	1-57—1-65
	Objectives	1-66
	References	1-67—1-80

CHAPTER 2

Synthesis, characterization and applications of Brønsted acidic ionic liquids (BAILs) as catalyst/medium for the preparation of quinoline derivatives

Section 2A

Studies on Brønsted acidic imidazolium task- 2-1-2-30 specific ionic liquids (TSILs) for the synthesis of quinoline derivatives via Friedländer annulation

2A.1	Introduction	2-1-2-2
2A.2	Results and discussion	2-2-2-17
2A.2.1	Synthesis and characterization of ionic liquids	
2A.2.2	Applications of ILs for the quinoline synthesis	
2A.2.3	Single crystal X-ray characterization of quinoline derivative	
2A.2.4	Reusability of ionic liquid and trichloroacetic acid	
2A.2.5	Plausible mechanism of the quinoline synthesis	
2A.3	Conclusion	2-18
2A.4	Experimental section	2-18-2-20
2A.4.1	General information	
2A.4.2	General procedures for the synthesis of ionic liquids	
2A.4.3	General procedure for acidity determination and pKa of ionic liquids	
2A.4.4	General procedure for the synthesis of quinoline derivatives 3	
2A.5	Spectral and elemental data of ILs and quinoline derivatives	2-20-2-28
2A.5.1	Spectral data of ionic liquids	
2A.5.2	Spectral data of synthesized quinoline compounds	
	References	2-29—2-30

Section 2B

Studies on $-SO_3H$ functionalized Brønsted acidic 2-31-2-58imidazolium ionic liquids (BAILs) for one pot synthesis of 2-styrylquinolines via Friedländer annulation followed by Knoevenagel condensation

2B.1	Introduction	2-31—2-33
2B.2	Results and discussion	2-33—2-46
2B.2.1	Synthesis and characterization of ionic liquids	
2B.2.2	Applications of the ILs as catalyst in one pot synthesis of 2-styrylquinoline 4	
2B.2.3	Single crystal X-ray characterization of 2- styrylquinoline derivative	
2B.2.4	Reusability of ionic liquid medium	
2B.2.5	Plausible mechanism of the 2-styrylquinoline synthesis	
2B.3	Conclusion	2-46
2B.4	Experimental section	2-46-2-49
2B.4.1	General information	
2B.4.2	General procedures for the synthesis of ionic liquids	
2B.4.3	General procedure for acidity determination and pKa of ionic liquids	
2B.4.4	Typical procedure for the synthesis of 2- styrylquinoline derivatives 4	
2B.5	Spectral and elemental data of ILs and 2- styrylquinoline derivatives	2-49—2-56
2B.5.1	Spectral data of ionic liquids	
2B.5.2	Spectral data of quinoline derivatives	
2B.5.3	Spectral data of 2-styrylquinoline derivatives	
	References	2-57—2-58

CHAPTER 3

Designing of silica supported organocatalysts from 3-1-3-21 carboxylic acids for the Mannich-type synthesis of β -amino carbonyl compounds

3.1	Introduction	3-1-3-2
-----	--------------	---------

3.2	Results and discussion	3-2-3-12
3.2.1	Synthesis and characterization of silica supported organocatalysts	
3.2.2	Applications of the catalysts for the Mannich- type reaction	
3.2.3	Leaching test of the catalysts	
3.2.4	Reusability of supported catalysts	
3.2.5	Mechanistic pathway for the synthesis of β- amino carbonyl compounds	
3.3	Conclusion	3-12-3-13
3.4	Experimental section	3-13-3-14
3.4.1	General	
3.4.2	General procedures for the synthesis silica- supported organocatalysts based on carboxylic acids (SiO ₂ -TFA, SiO ₂ -TCA, SiO ₂ -AA)	
3.4.3	Typical procedure for the synthesis of β -amino carbonyl compound 4	
3.5	Spectral and elemental data of synthesized β- amino carbonyl compounds	3-14—3-19
	References	3-20

CHAPTER 4

Nitrogen bound polymers as heterogeneous basic 4-1-4-22 catalysts for the synthesis of β -nitroaldol in aqueous medium

4.1	Introduction	4-1-4-2
4.2	Results and discussion	4-2-4-12
4.2.1	Optimization of reaction condition	
4.2.2	Reaction observation with nitromethane	
4.2.3	Diastereoselective synthesis of β -nitroalkanol with nitroethane	
4.2.4	General mechanism of nitroaldol reaction	
4.2.5	Reusability of catalyst	
4.3	Conclusion	4-12
4.4	Experimental section	4-12-4-13
4.4.1	General information	
4.4.2	Preparation of polyaniline catalyst (PANI)	

4.4.3	General experimental procedure	
4.5	Spectral data of β -nitroalkanols	4-13-4-21
4.5.1	Compounds given in Table 4.3	
4.5.2	Compounds given in Table 4.4	
	References	4-22

CHAPTER 5

Summary	and future scopes of the present work	5-1-5-3
5.1	Conclusion	5-1-5-2
5.2	Future scopes of the present work	5-3

Appendices

xxvii-xxix

LIST OF TABLES

Table no.	Title	Page no.
2A.1	Calculation of the Hammett Function for various ILs in ethanol	2-6
2A.2	Optimization of the amount of acidic ILs/CCl ₃ COOH as catalyst at various temperatures	2-7
2A.3	Comparison of the activity of ILs methodology with traditional acids	2-8
2A.4	Syntheses of quinoline derivatives 3 under optimized conditions using ionic liquids and trichloroacetic acid as medium/catalyst at 100 °C	2-10-2-13
2A.5	Crystallographic parameters of the compound 3d	2-14-2-15
2B.1	Calculation of the Hammett Function for various ILs in ethanol	2-37
2B.2	Optimization of the amount of ionic liquids and temperature for the synthesis of 3a and 4a	2-38
2B.3	Evaluation of the catalytic activity of ILs 5 , 7 and 8 for the synthesis of 2- styrylquinoline derivatives 4	2-40-2-43
2B.4	Crystallographic parameters of the compound 4j	2-44-2-45
3.1	Optimization of the catalyst loading	3-3
3.2	OptimizationoftheMannich-typereactioncatalyzedbysilicasupportedacidsatroomtemperature	3-7
3.3	Synthesis of β -amino carbonyl compounds 4 catalyzed by SiO ₂ -TFA and SiO ₂ -TCA in solution	3-8—3-9
3.4	Synthesis of β -amino carbonyl compounds 4 under solvent-less condition	3-10

- 3.5 Recycling of SiO₂-TCA (c) and SiO₂-TFA (d) 3-11 catalysts in CH_2Cl_2
- 4.1 Studies on the efficiency of nitrogen bound 4-3 polymers as catalysts for the nitroaldol reaction of various aromatic aldehydes and nitromethane in aqueous medium at room temperature
- 4.2 Solvent effects for the nitroaldol reactions of *o* 4-4 nitrobenzaldehyde with nitromethane
- 4.3 P4VP catalyzed synthesis of nitroalkanols from 4-5-4-6 aldehydes with nitromethane (2) in aqueous medium
- 4.4 P4VP catalyzed diastereoselective synthesis of 4-8—4-9 nitroalkanols from aldehydes and nitroethane (4) in aqueous medium at room temperature

LIST OF FIGURES

Figure	Title	Page
no.		no.
1.1	Bioactive natural products with quinoline nucleus	1-2
1.2	Examples of quinoline derivatives with medicinal properties	1-3
1.3	Structure of bioactive 2-styrylquinoline derivatives	1-4
1.4	Structure of SCH48461, bestatine and taxol	1-4
1.5	Examples of bioactive β -amino carbonyl derivatives	1-5
1.6	Structure of some important antibiotics	1-6
1.7	Structure of room temperature ionic liquids	1-7
1.8	The structure of first -SO ₃ H functionalized IL	1-11
1.9	Structure of three ILs	1-12
1.10	Structures of TSILs	1-12
1.11	Structure of three sulfonic acid functionalized ILs	1-14
1.12	Structure of three HPA containing ILs	1-14
1.13	A group of benzimidazolium based ILs	1-16
1.14	Structure of BAIL bearing two alkyl sulfonic acid groups	1-17
1.15	Structure of synthesized ILs	1-18
1.16	Structure of two BAILs	1-19
1.17	Structure of geminal Brønsted acid ionic liquids	1-21
1.18	Structure of ionic liquid DSIMHS	1-29
1.19	Structure of MK-571	1-32
1.20	Structure of styrylquinoline L-708,738	1-32
1.21	Structure of 8-hydroxyquinaldine and their derivatives	1-33

1.22	Structure of quinaldine derivatives	1-34
1.23	Structure of styrylquinoline derivatives with quinaldine	1-34
1.24	Structure of styrylquinolin-7-yl-benzenesulfonamide	1-38
1.25	Structure of oxime derivatives of 2-furylnyl quinoline derivatives	1-39
1.26	Structure of bichromophoric dyad containing styrylquinoline moiety	1-40
1.27	The structure of 6,7-difluoro derivative of 2-styryl substituted 8-hydroxyquinoline and its Zn(II) complex	1-42
1.28	Structure of catalyst OMMT/PS-SO ₃ H	1-49
1.29	Structureofsulfonatedpoly(4-vinylpyridine)heteropolyacid salts	1-50
1.30	Structure of silica based tin(II) catalyst	1-52
1.31	Structure of catalyst [Zn(II)BHPPDAH]	1-55
1.32	Structure of catalyst PsTBAC	1-59
1.33	Structure of complex (<i>RRR</i>)-[Yb(H ₂ O) ₂ L] ³⁺	1-60
1.34	Catalyst copper(II) open cubane	1-61
1.35	Structure of catalyst used for Henry reaction	1-62
1.36	Structure of complex 10 and 11	1-63
1.37	Structure of [Ni ₂ (H ₂ L) ₂] .4MeOH	1-64
1.38	Structure of binuclear Cu(II) complexes	1-65
2A.1	FT-IR spectra of IL [Msim][OOCCCl ₃]	2-3
2A.2	TGA and DTGA diagram of ILs (4), (5) and (6)	2-4
2A.3	Absorption spectra of 4-nitroaniline for various acidic ILs in ethanol	2-5
2A.4	ORTEP of quinoline derivative 3d (CCDC-958618) with 50% probability ellipsoid	2-14

2A.5	Bar diagram for reusability of ILs and trichloroacertic acid	2-15
2A.6	FT-IR spectra of fresh and reused [Msim][OOCCCl ₃] (A-C) and [Hmim][HSO ₄] (D)	2-16
2B.1	Structure of three sulfoimidazolium BAILs	2-33
2B.2	FT-IR spectra of IL (6)	2-34
2B.3	TGA and DTGA analysis of the ionic liquids (5) and (6)	2-35
2B.4	Absorption spectra of basic indicator	2-36
2B.5	Single crystal structure of 4j with CCDC No 1053069. The displacement ellipsoids are drawn at the 50% probability level and H atoms are represented by circles of arbitrary radii	2-44
2B.6	Reusability of IL 8 as catalyst for the preparation of 4a	2-45
3.1	FT-IR spectra of SiO_2 (a), SiO_2 -AA (b), SiO_2 -TCA (c) and SiO_2 -TFA (d)	3-3
3.2	SEM images of silica (a), SiO_2 - AA (b), SiO_2 -TCA (c) and SiO_2 -TFA (d)	3-4
3.3	EDX spectra of SiO ₂ -TCA (c) and SiO ₂ -TFA (d)	3-5
3.4	TGA curve of SiO ₂ -AA (b), SiO ₂ -TCA (c) and SiO ₂ -TFA (d)	3-5
3.5	Powder XRD of silica (a), SiO_2 -AA (b), SiO_2 -TCA (c) and SiO_2 -TFA (d)	3-6
3.6	FT-IR spectra of SiO ₂ -TCA (a), SiO ₂ -TCA 3^{rd} run (b), SiO ₂ -TCA 5^{th} run (c), SiO ₂ -TFA (d), SiO ₂ -TFA 3^{rd} run (e), SiO ₂ -TFA 5^{th} run (f)	3-11
4.1	Recycling of catalyst P4VP without reactivation	4-11
4.2	FT-IR spectra of fresh P4VP (a), P4VP used in 1^{st} run (b) and P4VP used in 2^{nd} run (c)	4-11

ABBREVIATIONS/SYMBOLS USED

AA	Acetic acid
AcOH	Acetic acid
AIDS	Acquired immune deficiency syndrome
aq.	Aqueous
Approx.	Approximately
BAIL	Brønsted acidic ionic liquid
brs	Broad singlet (in NMR)
BET	Brunauer, Emmett and Teller
Bmim	1-Butyl-3-methyl imidazolium
BSPy	N-(4-hydroxsulfonylbutyl)pyridinium
BSA	Bovine serum albumin
°C	Degree centigrade
¹³ C	Carbon-13 isotope
CAN	Ceric ammonium nitrate
CBSA	Carbon based solid acid
CCDC	Cambridge crystallographic data centre
CDCl ₃	Deuterated chloroform (used as NMR solvent)
CHN	Carbon hydrogen nitrogen
CTACl	Cetyltrimethylammonium chloride
СТАОН	Cetyltrimethylammonium hydroxide
d	Doublet
DAIL	Dicationic acidic ionic liquid
DBU	1,8-Diazabicycloundec-7-ene
DDQ	2,3-Dichloro-5,6-dicyano-1,4-benzoquinone
de	Diastereomeric excess
DMF	Dimethylformamide
DMSO	Dimethyl sulfoxide
DMSO-d ₆	Deuterated dimethyl sulfoxide
DPA	Dodecylphosphonic acid
DSIMHS	1,3-Disulfonic acid imidazolium hydrogen sulfate
Dsim	1,3-Disulfonic acid imidazolium

DTG	Differential thermal gravimetric
EDX	Energy-dispersive X-ray spectroscopy
ESI-MS	Electrospray Ionization Mass Spectrometry
EtOH	Ethanol
¹⁹ F	Fluorine-19 isotope
FT-IR	Fourier transform infrared spectroscopy
h	Hour
1 H	Proton
HBV	Hepatitis B virus
Hbim	1-Butylimidazolium
HIV	Human immunodeficiency virus
HMG-CoA	3-Hydroxy-3-methyl-glutaryl-CoA
Hmim	1-Methylimidazolium
HPA	Heteropoly anion
HSA	Human serum albumin
HTW	High temperature water
IL	Ionic liquid
J	Coupling constant
m	Multiplet
MACIR	Microwave-assisted coupling-isomerization reaction
MCR	Multi component reaction
MeOH	Methanol
MHz	Mega hertz
min	Minute
Mp.	Melting point
MS	Mass spectrometry
Msim	3-Methyl-1-sulfonic acid imidazolium
MW	Microwave
NMR	Nuclear magnetic resonance
nm	Nanometer
NP	Nano particle
ORTEP	Oak Ridge Thermal Ellipsoid Plot
OTf	Triflate

OTs	Tosylate
PANI-PTSA	Polyaniline para toluene sulfonic acid
PEG	Polyethylene glycol
P4VP	Poly(4-vinylpyridine)
PPA	Polyphosphoric acid
ppm	Parts per million
PSPy	N-propane sulfone pyridinium
PsTBAC	Polystyrene-supported tributylammonium chloride
pTSA/ p-TsOH	Para toluene sulfonic acid
PTC	Phase transfer catalyst
r. t.	Room temperature
RTIL	Room temperature ionic liquid
S	Singlet
SEM	Scanning electron microscope
Simp	3-Sulfonic acid 1-imidazolopyridinium
SSA	Silica sulfuric acid
t	Triplet
TBAB	Tetrabutyl ammonium bromide
TCA	Trichloroacetic acid
TEBAC	Methyltrioctylammonium chloride
TFA	Trifluoroacetic acid
TGA	Thermogravimetric analysis
THF	Tetrahydrofuran
TSIL	Task specific ionic liquid
T.S.	Transition state
UV-vis	Ultraviolet-visible spectroscopy
XRD	X-ray powder diffraction
Å	Angstrom
δ	Chemical shift
))))	Ultrasound irradiation

GENERAL INFORMATION

- 1. All the chemicals used are commercially available and used without purification.
- 2. Reaction progress was monitored by using thin layer chromatography on glass baked plates using Merck silica gel G.
- 3. The ¹H and ¹³C NMR data of all products were recorded on a JEOL JNM ECS 400 MHz spectrometer using TMS as internal standard. The NMR samples were run in CDCl₃ and DMSO-d₆ solvent. The coupling constants (*J*) were expressed in Hertz (Hz).
- 4. FT-IR spectra were recorded on a Nicolet Impact-410 spectrometer.
- 5. The acidity measurement of the Brønsted acidic ILs was conducted on an UV 2550 spectrophotometer.
- 6. Melting points were recorded in Buchi-540 micro melting point apparatus using open capillary tube.
- Elemental analyses were performed using Perkin-Elmer series II CSNS/O Model 2400 machine calibrated against standard acetanilide.
- Scanning electron microscopy (SEM) analyses were done in JEOL JSM-6390 LV Scanning Electron Microscope equipped with energy dispersive X-ray detector.
- 9. Thermogravimetric analyses were performed in SHIMADZU TGA-50.
- The pKa values of the ionic liquids were determined using digital pH Meter 802.
- Single crystal X-ray diffraction datas were collected on a Bruker SMART APEX II CCD diffractometer.
- 12. The powder X-ray diffraction patterns were recorded on a Rigaku Multiflex instrument using a nickel-filtered CuK α (0.15418 nm) radiation source and scintillation counter detector.