Contents	
Abstract	i-iv
Declaration and Certificate	v-vii
Acknowledgement	viii-ix
List of tables	X
List of figures	xi-xvii
List of schemes	xviii
Abbreviations used in the thesis	xix-xx

Chapter 1:	Introduction	Page No
1.	General introduction	1-41
1.1	Introduction to biosensors	1
1.2	Component of a biosensor	1
1.2.1	The transducer element	1
1.2.2	The sensing element: Enzymes	1-2
1.2.2.1	The Michaelis-Menten Mechanism of Enzyme catalysis	2-3
1.2.2.2	The advantages of using enzymes in biosensor constructions	3-4
1.2.2.3	Disadvantages	4
1.3	The different techniques for immobilization of biomolecules	4-7
1.3.1	Physical Adsorption	5

1.3.2	Entrapment	6
1.3.3	Cross linking	6
1.3.4	Covalent binding	7
1.4	Electrochemical biosensors	7-10
1.4.1	Working principle of a electrochemical biosensor	8
1.4.2	Advancement from 1st to 3rd Generation	
	Electrochemical Biosensors	8-10
1.4.2.1	1 st generation biosensor	8
1.4.2.2	2 nd generation biosensor	9
1.4.2.3	3 rd generation biosensor	9
1.5	Conducting polymers	10-11
1.6	Polyprrole as versatile immobilization matrix in	
	biosensor architecture	11-14
1.6.1	Synthesis of Polypyrrole	13-14
1.7	Cholinesterase enzymes	14-17
1.7.1	Acetylcholinesterase: working principle	15
1.7.2	Acetyl choline	16
1.7.2.1	Synthesis of ACh	17
1.8	Mechanism of hydrolysis of acetylcholine (ACh)	
	by Acetylcholinesterase	18

1.9	Acetylthiocholine oxidation in biosensor fabrication	19-20
1.10	Pesticides	20
1.10.1	Pesticides Classification	20
1.11	Organophosphates	21
1.12	Carbamate	22
1.13	Mechanism of inhibition of organophosphates and carbamates	23-24
1.14	Cholinesterase reactivator	24
1.15	pH value of working solution and concentration of	
	supporting electrolyte	24-25
1.16	Pesticides measurements in organic media	25-26
1.17	Overview of the methodologies used for pesticide quantification	26-27
1.18	Review of few recent work on AChE biosensor fabrication	27-32
1.18.1	Nanomaterial-based AChE biosensors	27-28
1.18.2	Use of Carbon nano tube for AChE biosensor	28-29
1.18.3	Sol-gel-based AChE biosensors	29-30
1.18.4	Use of graphene and hybrid graphene in AChE	
	biosensor fabrication	30
1.18.5	Polymer supported AChE biosensor	30-32
1.19	Scopes, aim and objectives of the present investigation	32-33
1.20	Plan of work	33-34
References		35-41

Chapter 2: Meterials and methods

2.1	Reagents and Materials	42
2.2	Chemical structure of some reagents used in this study	43
2.3	Instrument	43
2.4	Methods	44
2.5	Pesticide Inhibition study	44
References		44

Chapter 3: Fabrication of AChE biosensor through electroentrapment in polypyrrole and optimisation

3.1	Introduction	45
3.2	Objectives	46
3.3	Experimental	46-47
3.3.1	Preparation of the sensor	46-47
3.3.2	Measurement procedure	47
3.4	Results and discussion	48-63
3.4.1	Confirmation of immobilization	48
3.4.1.1	SEM	48
3.4.2	Electrochemical (CV) behavior towards thiocholine oxidation	48-51
3.4.3	Enzyme leaching test	52
3.4.4	Optimum concentration of supporting electrolyte KCL during	

	film deposition	52
3.4.5	Optimization of the fabrication process	53
3.4.5.1	Saturated substrate concentration	53-54
3.4.6	Effect of enzyme loading	54-55
3.4.7	Effect of pH	55-56
3.4.8	Pesticide Inhibition study	57-59
3.4.8.1	Effect on chronoamperometric signal	57
3.4.8.2	Incubation time	58-59
3.4.9	Enzyme reactivation studies	59
3.4.10	Reproducibility and stability	59-61
3.4.10.1	Precision measurement	59
3.4.10.2	Operational Stability	60
3.4.10.3	Storage stability	61
3.4.11	Optimum solvent for non aqueous application	61-62
3.4.12	Application to pesticide analysis and validation checking	62-63
3.4.12.1	Calibration plot for pesticide	62-63
3.4.12.2	Validation study	63
3.5	Comparison with other AChE based biosensors	64-65
3.6	Conclusions	65
References		66-67

Chapter 4: Optimisation of low potential workability of the biosensor

4.1	Introduction	68-69
4.2	Objectives	69
4.3	Experimental	69-70
4.3.1	Preparation of the sensor	69
4.3.2	Analysis procedure	70
4.3.3	Sensor probe pretreatment and cleaning procedure	70
4.4	Results and Discussion	71-86
4.4.1	Cyclic voltammetric behavior	71
4.4.2	CA measurement	72-74
4.4.2.1	CA proof of low potential oxidation	72-74
4.4.3	Optimization of preconcentration parameters	75-77
4.4.4	Effect of polarized oxidation on kinetic parameter	77-78
4.4.5	Effect low potential oxidation on precision and stability	79
4.4.6	Effect of low potential operation on sensor operational stability	80
4.4.7	Application to Organophosphate analysis	80-81
4.4.8	Correlation between low and conventional high potential analysis	82-86
4.5	Conclusion	87
References		88-89

Chapter 5: Optimised process for application of the biosensor in organic solvent

5.1	Introduction	90-91
5.2	Experimental	91-95

5.2.1	Preparation of the assays	91-92
5.2.1.1	Assay 1	91-92
5.2.1.2	Assay 2	92
5.2.1.3	Assay 3	92
5.2.1.4	Assay 4	92
5.2.2	FTIR analysis	92
5.2.3	Preparation of the sensor	92-93
5.2.4	Enzyme sustainability study	93
5.2.5	Inhibition study	93
5.2.6	Method recovery and biosensor validation study	93
5.2.7	Calibration curves	94
5.2.7.1	Calibration curve 1	94
5.2.7.2	Calibration curve 2	94
5.2.7.3	Calibration curve 3	94
5.2.8	Recovery of QET method by GC	94-95
5.2.9	Recovery of QET method by biosensor	95
5.3	Results and Discussion	95
5.3.1	Enzyme sustainability in lipase treated ethylacetate in presence and absence of L-serine	95-96
5.3.2	FTIR analysis	96-97
5.3.3	Inhibition study	97-99

5.3.3.1	Inhibition of ethyl acetate on immobilized enzyme	97-98
5.3.3.2	Inhibition by different constituents	98-99
5.3.4	Calibration curves	100-104
5.3.5	Recovery and validation	104-109
5.4	Conclusions	109
References		110-111
Chapter 6:	Summery, conclusions and future scope	
6.1	Summery and conclusions	112-116
6.1.1	Chapter 1	112
6.1.2	Chapter 2	112

6.1.3.	Chapter 3	112-113
6.1.4	Chapter 4	113-114
6.1.5	Chapter 5	114
6.2	Significance of the work	115
6.3	Future scope	115-116
References		116-117