List of Tables

Chapter	Table	Title	Page No.
3	3.1	Biosensor recovery study	64
	3.2	Comparison of the different parameters of the sensor with the surface immobilized PPy-AChE sensors.	64
	3.3	Comparison of the analytic performance of the sensor with few of the contemporary AChE sensors when applied to the same analyte.	65
4	4.1	Effect of potential on kinetic parameters and on LODs	77
	4.2	Effect of preconcentration on kinetic parameters and LODs	78
	4.3	LODs of thiocholine obtained during low potential oxidation under different methods. Response characteristics of thiocholine on different electrochemical transducers	82
	4.4	Correlation of concentration in segment 1	84
	4.5	Correlation of concentration in segment 2	85
	4.6	Correlation of concentration in segment 3	86
5	5.1	Correlation of concentration in segment 1	102
	5.2	Correlation of concentration in segment 2	103
	5.3	Correlation of concentration in segment 3	104
	5.4	Recovery of ethion using biosensor in the QET method	108
	5.5	Comparison of recovery from QET method by biosensor and by GC.	108

List of figures

Chapter	Figure	Title	Page No.
1	1.1	Four different immobilization techniques.	7
	1.2	Schematic representation of an electrochemical biosensor.	8
	1.3	Generation wise biosensor design. (A) First generation biosensor, (B) Second generation biosensor and (C) Third generation biosensor.	10
	1.4	Structure of some conducting polymers.	11
	1.5	Structure of polypyrrole.	11
	1.6	Schematic representation of AChE binding sites.	15
	1.7	Structure of acetylcholine.	16
	1.8	Pesticide inhibition.	20
	1.9	The general formula of OPs. 'X' represents the leaving group. R_1 and R_2 , the side, normally alkoxy group	21
	1.10	The general formula of OCs	22
2	2.1	Chemical structure of some reagents used in this study.	42-43
3	3.1	SEM images of (A) PPy film (B) AChE doped PPy film (C) PPy-AChE-Geltn ¹ -Glut ² film.	48
	3.2	Cyclic voltammograms at scan rate 20 mV/s of (a) Pt electrode in PBS (b) sensor in 2 mM ATChCl (c) sensor in PBS (d) Pt-PPy-Geltn- Glut electrode in 2 mM ATChCl (e) Pt-PPy- AChE electrode in 2 mM ATChCl. (f) Pt electrode in ATChCl (g) Pt-PPy electrode in 2 mM ATChCl. <i>Inset</i> : Fig. 2e.	49

2.2	Cruelie relterrence of the course in 0 M	50
3.3	Cyclic voltammograms of the sensor in 2 mM	50
	ATChCl at different scan rates. (a) 1 mV/s (b) 5	
	mV/s (c) 8 mV/s (d) 10 mV/s (e) 20 mV/s .	
	Inset I: Fig.3.3a; Inset II: Scan rate vs. peak	
	current.	
3.4	Cyclic voltammograms of Pt-PPy-AChE	51
	electrode in varying amount of ATChCl at scan	
	rate 1 mV/s, in the potential range from -1 V to	
	1 V. (a) 50 μ L (b) 100 μ L (c) 150 μ L (d) 200	
	$\mu L~$ (e) 250 μL . ATChCl stock solution 0.03M,	
	cycle sweep 3.	
3.5	Cyclic Voltammetric behaviour of the chloride	52
	doped PPy film towards 2mM ATChCl. (a)	
	Doped with 0.02 M KCl (b) doped with 0.05 M	
	KCl (c) doped with 0.1 M KCl	
3.6	Variation of sensor response with substrate	53
	concentration when the enzyme loading was	
	0.5U. Inset: Linewaver–Burk plot for	
	determination of K_m^{app}	
3.7	Variation of sensor response with substrate	54
	concentration measured in presence of	
	externally added enzyme (0.5U). Inset:	
	Linewaver-Burkplot for determination of K_m^{app}	
3.8	Effect of enzyme loading on sensor response	55
	when enzyme loading was (a) 1 μ L (b) 5 μ L (c)	
	10 μ L (d) 25 μ L (e) 50 μ L. Scan rate 20 mV/s.	
3.9	Effect of pH on the cyclic voltammetric	56
5.2	behaviour of the sensor towards 2 mM	50
	ATChCl when enzyme loading was 0.5U, and	
	scan rate 20 mV/s. (a) pH 7.8 (b) pH 7.4 (c) $pH 7.2$ (d) $pH 7.0$ (e) $pH 6.8$ (f) $pH 6.4$	
	pH 7.2 (d) pH 7.0 (e) pH 6.8 (f) pH 6.4.	

	3.10	Plot of peak current versus solution pH.	56
	3.11	Chronoamperometric response of the sensor	57
		towards: (a) 200 µL KCl (0.05 M) in PBS (b)	
		2 mMTChCl (c) 2 mMATChCl after incubation	
		for 30 minutes in a 60 ppb paraoxon solution	
	3.12	Real time monitoring of sensor response. (a) 2	58
		mM ATChCl was added at 300s (b) 2 Mm	
		ATChCl at 300s followed by 200 µL 100 ppb	
		paraoxon at 700s	
	3.13	Effect of incubation time and concentration of	59
		inhibitor on the activity of the immobilized	
		enzyme; bold lines (a) 12.5 ppb (b) 60 ppb (c)	
		150 ppb and (d) 250 ppb of paraoxon, dotted	
		lines (e) 5 ppb (f) 25 ppb (g) 60 ppb and (h) 100	
		ppb of carbofuran	
	3.14	Repeated sensor response to 2 mM ATChCl (a)	59
		in absence of inhibitor (b) in presence of 60 ppb	
		paraoxon solution (c) in presence of 60 ppb	
		carbofuran solution.	
	3.15	Sensor response to 2.0 Mm ATChCl in presence	62
		of 5% acetonitrile in PBS at each 30 minutes	
		interval	
	3.16	Calibration plot. (A) paraoxon in PB (B)	62
		Carbofuran in 5% acetonitrile. Inset: The	
		expanded plot of the lower ranges.	
4	4.1	Curves b through d, continuous cyclic	71
		voltammetric runs in (2.0 mM) ATChCl – PB	
		mixture at scan rate 1 mV /s using Pt-PPy-	
		AChE-Glut-Geltn electrode. Curve a, the same	
		in PBS.	
	4.2	Chronoamperometric current transient due to	72
		thiocholine (TCh) and acetylthiocholine (ATCh)	
	1	1	1]

	at 0.7 M and 0.2M and 1.	[]
	at 0.7 V and 0.2V under various conditions.	
	A.under preconcentration condition in which a.	
	TCh oxidation at 0.7 V, b. ATCh-PB charge	
	transfer current at 0.7 V, c. TCh oxidation at 0.2	
	V d. ATCh-PB charge transfer current at 0.2 V.	
	B. same as above under normal (non-	
	preconcentrated) condition. C and D for	
	repetition of above experiment A with non-	
	enzyme electrode and deactivated enzyme	
	electrode respectively.	
4.3	Cyclic voltammograms of TCh and ATCh	73
	solution using Pt-PPy-Glut-Gel electrode scan	
	rate of 10mV/s. Curve b is the CV of (2.0 mM)	
	ATCh, curve c is the CV of (2.0 mM) TCh and	
	curve a is the same in PBS	
4.4	Effect of preconcentration time on the CA	75
	current. A. Curves a-h are the CAs of (2.0 mM)	
	ATChCl solution using enzyme electrode for	
	different preconcentration time. B. expanded	
	CA plots to show the effect of preconcentration	
	time on the peak shape C. the plot of pre	
	concentration time vs. current while recording	
	the later at the end of the CAs, and D. the same	
	when recorded at the current transient.CA	
	parameters used were E_0 = -0.8 V, E_1 =0.7 V,	
	t_0 variable, t_1 =300 s	
4.5	Plot of preconcentration potentials vs peak	76
	currents when a constant preconcentration time	
	of 180 s was applied during CA experiment.	
	CA parameters used were E_0 variable, $E_0 = 0.7$	
	V, $t_0=180$ s, $t_1=300$ s	

16	Michaelie Menteen glote under normal and	77
4.6	Michealis-Menteen plots under normal and	//
	preconcentration conditions with a fixed amount	
	$(10\mu L)$ of enzyme loading. Parameters are (A)	
	$E_0 = 0.0 \text{ V: } t_0 = 60 \text{ s: } E_1 = 0.7 \text{ V : } t_1 = 10 \text{ s} \text{ (B-D)}$	
	$t_0=180$ s, $E_0=$ - 0.8V, $t_1=10$ s and $E_1=0.2$, 0.4	
	and 0.7 V, respectively.	
 4.7	Sensor response for successive addition of (50	79
	µl 2 mM) acetylthiocholine solution.	
4.8	Operational stability of the sensor at 0.2 V.	79
	Figure contains fifty continuous CA runs in	
	ATChCl with R.S.D 3.28%.	
4.9	Calibration curves for ethion at different	80
	chronoamperometric conditions. Parameters are	
	(A-C): $E_0=-0.8V$ t ₀ =180 s, t ₀ =10 s and E ₁ =0.2,	
	0.4 and 0.7 V respectively. $D.E_0 = 0.0 V t_0 = 60 s$,	
	t ₁ =10 s.	
4.10	Incubation time vs. % residual activity plots	80
	with 20 ppb ethion solution.	
4.11	Calibration curves for ethion at two different	82
	CA conditions. Parameters are A: $E_0 = 0.0 V$	
	$t_0 = 60 \text{ s}, t_1 = 10 \text{ s}, E_1 = 0.7 \text{ V}$ and B: $E_0 = -0.8 \text{ V},$	
	$t_0 = 180 \text{ s}, t_1 = 10 \text{ s}, E_1 = 0.4 \text{ V}$	
4.12	Segment 1of Fig.4.11before regression : a a'b b'	83
	A- 0.3 to 1.8 ppb, B- 0.5 to 2 ppb, I%= 10.2 to	
	17.0	
4.13	Segment 1 of Fig.4.11 after regression.	83
 4.13		83
4.14	plot of Common Concentration vs Shifted Concentration of B on curve A for segment 1	00
4.15	Segment 2 of Fig. 4.11 before regression: b b'cc',	84
	A= 1.8 to 5ppb, B- 2 to 10 ppb, I%= 17 to 26	
4.16	Segment 2 of Fig.4.11 after regression	84
4.17	plot of Common Concentration vs. Shifted	85
4.18	Concentration of B on curve A for segment 2 Segment 3 of Fig. 4.11 before regression cc dd:	85
- .10	Segment 5 of Fig. 4.11 octore regression to du.	05

		A= 5 to 40ppb, B- 10 to 40 ppb, I%= 26 to 43	
	4.19	Segment 3of Fig.4.11 after regression	86
	4.20	plot of Common Concentration vs. Shifted	86
		Concentration of B on curve A for segment 3	
5	5.1	Two different states of lipase treated ethyl	92
		acetate. A. Snap shot taken immediately after	
		mixing, B. after 8 h.	
	5.2	FT-IR spectra of Pure ethyl acetate (A),	96
		anhydrous sodium sulphate treated TM ₁₇ (B), L-	
		Serine(C) and anhydrous sodium sulphate	
		treated TM ₁₇ with L-Serine (D).	
	5.3	Effect of pure ethyl acetate on the CA response	97
		of AChE biosensor.	
	5.4	Inhibitory effect of different components of the	98
		transformed mixture in presence and absence of	
		pesticide on the activity of the immobilized	
		enzyme. A. TM_{17} with L-serine. B. TM_{17} with	
		ethion. C. TM_{17} with L-serine and ethion. D.	
		TM_{17} of QET with added L-serine. In each case,	
		a represent CA response of the sensor to 2.0	
		milli molar ATChCl before incubation in the	
		solution, b represents the same after 1 h	
		incubation in the same solution.	
	5.5	Inhibitory effect of different components of the	99
		transformed mixture in presence and absence of	
		pesticide on the activity of the immobilized	
		enzyme. A. TM_{17} with ethion. B. TM_{17} with L-	
		serine and ethion. C. TM_{17} with L-serine. In	
		each case, a represent CV obtained in 2.0 milli	
		molar ATChCl PB mixture before incubation of	
		the sensor in the solution concerned, b	
		represents the same after 1 h incubation in the	

	solution.	
5.6	Calibration curves of ethion by two different	100
	biosensing methods A- ethion standard solutions	
	prepared in 5% acetonitrile. B-ethion standard	
	solution prepared in acetonitrile converted to	
	'TM17 with L-serine' through QET. CA	
	parameters $E_0= 0.0 V$, $t_0= 60.0 sec$, $E_1= 0.7 V$, t	
	$_{1}=20$ sec.	
5.7	Segment 1of Fig.5.6before regression: a a'b b'	101
	A- 0.3 to 2 ppb, B- 2to 5 ppb, I%= 10.0 to 20	
5.8	Segment 1of Fig.5.6 after regression.	101
5.9	plot of Common Concentration vs Shifted	101
	Concentration of B on curve A for segment	
5.10	Segment 2 of Fig. 5.6 before regression: b b'cc',	102
	A= 2.5to 5ppb, B- 5to 15.6 ppb, I%= 20 to 26	
5.11	Segment 2of Fig.5.6 after regression	102
5.12	plot of Common Concentration vs Shifted Concentration of B on curve A for segment 2	103
5.13	Segment 2 of Fig. 5.6 after regression : cc'dd',	103
	A= 5 to 40 ppb B- 15.6 to 50 ppb, I%= 26 to 46	
5.14	plot of Common Concentration vs Shifted	104
	Concentration of B on curve A for segment 3	
5.15	Gas Chromatogram of 20 ppb ethion	107
5.16	Gas Chromatogram of 50 ppb ethion	106
5.17	Gas chromatogram of 100 ppb ethion	106
5.18	Gas chromatogram of 150 ppb ethion	107
5.19	Gas chromatogram of 200 ppb ethion	107

List of schemes

Chapter	Scheme	Title	Page No.
1	Scheme1.1	Michalies-Menten mechanism	2
	Scheme1.2	Synthesis of ACh	16
	Scheme1.3	The role of AChE in cholinergic transmission	17
	Scheme1.4	Catalytic hydrolysis of ACh in presence of AChE	18
	Scheme1.5	Mechanism of hydrolysis of ACh by acetylcholinesterase	18
	Scheme1.6	HydrolysisreactionofAcetylthiocholineinpresenceofAChE	19
	Scheme1.7	Thiocholine anodic oxidation	20
	Scheme1.8	The effect of an electron- withdrawing substituent on the reactivity of paraoxon	23
	Scheme1.9	Organophosphate Pesticide inhibition mechanism	23
4	Scheme 4.1	Michalies-Menten mechanism	78

Abbreviations used in the thesis

А	Ampere
ACh	Acetylcholine
AChE	Acetylcholinesterase
AChE*	Deactivated acetylcholinesterase
Ag/AgCl	Saturated Silver/Silver chloride reference electrode
Ar%	Percent Residual Activity
ATChCl	Acetylthiocholine chloride
ATChI	Acetylthiocholine Iodide
Au	Gold
BSA	Bovine Serum Albumin
⁰ C	Degrees celcius
cm	Centimetre
CA	Chronoamperometry
CV	Cyclic Voltammetry
DTNB	5, 5'-dithiobis (2-nitrobenzoic acid)
En	Enzyme
ET	Electron transfer
Fig.	Figure
FTIR	Fourier Transformed Infra-Red
g	Gram
gdl ⁻¹	Gram per decilitre
GC	Gas Chromatography
Gel	Gelatin
Glu	Gluteraldehyde
GOX	Glucose Oxidase
Ι	Current
I %	Inhibition degree or percentage inhibition
Imax	Maximum current
K_m^{app}	Apparent Michaelis-Menten constant
KCl	Potassium Chloride
LOD	Limit of Detection
Log P	Logarithm of the partition coefficient

М	Molar
mL	Mililitre
mA/M	Miliampere per mole
mM	Millimole
mmolL ⁻¹	Millimole per litre
mV/s	mille volt per second
NaF	Sodium Fluoride
OCs	Organocarbamates
OPs	Organophosphates
PANI	Polyaniline
PBS	Phosphate Buffer Saline
ppb	Parts per Billion
РРу	Polypyrrole
Pt	Platinum
рН	Acidity or alkalinity of a solution
QET	QuECHERS tandem ethyl aceate transformation
QuEChER	Quick, Easy, Cheap, Rugged, Safe
rpm	Rate per minute
RSD	Relative Standard Deviation
S	Second
S	Substrate
SEM	Scanning Electron Miscroscope
Т	Temperature
t	time
TM	Transformed mixture
U	Enzyme unit
UV-VIS	Ultra Violet Visible
V	Volt
Vmax	Maximal rate
WHO	World Health Organization