List of Table Chapter Chapter 1:	s Table	Title	Page No.
Chapter 2:	1.1	The variation in the three forms of DNA	1-7
F	2.1	List of different substituents along with their pIC_{50} values for 1 st set	2-4
	2.2	Calculated values of all the selected descriptors for all compounds for 1 st set	2-5
	2.3	Results of MLR with different set of compounds using various descriptors using 1 st set of compounds	2-6
	2.4	List of different substituents along with their pIC_{50} values for 2^{nd} set	2-9
	2.5	Calculated values of all the selected descriptors for all compounds of 2^{nd} set	2-9
	2.6	Results of MLR with different set of compounds using various descriptors using 2 nd set of molecules	2-10
	2.7	P-values for each independent variables used in the studied model for the 1 st set	2-12
	2.8	P-values for each independent variables used in the studied model for 2^{nd} set	2-12
Chapter 3:			
-	3.1	List of compounds with different substituents and pIC50 values	3-4
	3.2	Calculated values of the selected descriptors for all compounds	3-6
	3.3	Results of MLR with different set of compounds using various descriptors	3-11
	3.4	Experimental and predicted pIC50 values of compounds in the test set	3-12
	3.5	P-values for each independent variables used in the studied model	3-13
	3.6	Observed and calculated values of pIC50 using E_{21} (best fit model)	3-14
Chapter 4	3.7	Docking score using Molegro Visual Docker (best six molecules)	3-16
Chapter 4:	4.1	Thermochemical data (kJ mol ⁻¹) for two steps hydrolysis reaction calculated at DFT (B3LYP)/6-	4-7

	4.2	311G(d,p)/Lanl2DZ level of theory Zero-point corrected total energy (Hartree) of species involved in hydrolysis reaction in gas and solvent phase calculated at DFT (B3LYP)/6-311G(d,p)/ Lanl2DZ level of theory	4-8
Chapter 5:			
	5.1	Calculated values of energies at different levels	5-4
	5.2	Binding energies of the final transDNA adduct	5-5
	5.3	Overall energy of the interacting species at different distances	5-8
	5.4	Change in Gibb's free energy (G) at different temperature	5-8
Chapter 6:			
-	6.1	Calculated values of all the selected descriptors for all compounds in gas phase	6-11
	6.2	QSAR models with the statistical parameters for the selected Au (III) complexes	6-16
	6.3	Computed P-values using F-statics for all the models	6-17
	6.4	Docking score using Molegro Visual Docker (best five compounds)	6-20
	6.5	Absorption profile of the gold compounds	6-24
	6.6	Distribution and metabolism profile of the gold compounds	6-26
	6.7	Excretion and Toxicity profile of the gold compounds	6-28

List of Figu			
Chapter Chapter 1:	Figure	Figure Caption	Page No.
	1.1	(a) Structure of deoxyribose nucleotides	1.0
		(b) The nitrogenous bases present in nature	1-3
	1.2	Hydrogen-bonding patterns in the base pairs defined by Watson and Crick	1-4
	1.3	(a) The conformation of a nucleotide is affected by rotation about seven different bonds in DNA	
		(b) The two conformations with respect to the attached ribose for purine bases and pyrimidines occur only in the anti conformation	1-6
	1.4	The comparision between the three forms of DNA	1-8
	1.5	Tautomeric forms of the four common DNA bases	1-9
	1.6	Mutation via tautomeric shift in the bases of DNA	1-10
	1.7	Frameshift mutation results from the addition or deletion of base pair	1-11
	1.8	Deamination of DNA base pairs	1-12
	1.9	Hydroxylamine resulted from Chemical mutagens	1-13
	1.10	Mutations results from the UV-induced light	1-14
	1.11	Distributation of Cancer Worlwide	1-15
	1.12	Molecular structure of cis platin analoges used in clinic (a) cisplatin, (b) carboplatin, (c) oxaliplatin and (d) satraplatin	1-20
	1.13	Hydrolysis of platinum based drugs under physiological condition	1-22
	1.14	Possible binding site for the platinum based drugs on DNA	1-24
	1.15	Schemetic representation of the modes of DNA-intra and inter stand CL by cisplatin and inter-stand CL by trans- [PtCl ₂ (NH ₃)L] (L=NH ₃ or planner amino ligands)	1-25
	1.16	Structural formula of <i>trans</i> -[PtCl ₂ (dimethylamine) (isopropylamine)]	1-26
	1.17	Structure of 20-S camptothecin	1-28
	1.18	Schematic of the interconversion between the lactone and carboxylic form of CPTs	1-28
	1.19	Structure of (a) Topotecan and (b) Irinotecan	1-29
	1.20	Structure of (a) Camptothecin, (b) 9-aminocamptotheci and (c) 9-nitrocamptothcin	1-30
	1.21	Topoisomerases I inhibitory activity of CPTs	1-31

	1.22	Annual occurrence of DFT in Journals	1-39
	1.23	Walter Kohn and John A. Pople received Nobel Prize in	1-40
		chemistry in 1998	
	1.24	Behavior of e^{Γ} , where $\Gamma = r$ (solid line, STO) and $\Gamma = r^2$	1-51
		(dashed line, GTO)	
	1.25	Example of split valence basis set	1-52
	1.26	Graphical representation of Hybrid QM/MM method	1-59
Chapter 2:			
I	Scheme2.1	Interconversion between the lactone and carboxylic form of camptothecin	2-1
	2.1	Structure of 7-X-10-Y-11 aza camptothecin	2-2
	2.2	Structure of 7-X-10-Y-11camptothecin	2-2
	2.3	Correlation plot between experimental and calculated	2-13
		values of pIC_{50} for the 1 st set of compounds (best fit model)	
	2.4	Correlation plot between experimental and calculated	2-13
		values of pIC_{50} for the 2 st set of compounds (best fit model)	
Chapter 3:		<i>'</i>	
•	3.1	Structure of Camptothecin	3-1
	3.2	Interconversion between the lactone and carboxylic form	3-1
		of camptothecin	
	3.3	Correlation plot between experimental and calculated	3-15
		values using E_{21} (best fit model)	
	3.4	Compound 30 at its highest bond cavity of 1T8I	3-16
Chapter 4:			
	4.1	Structural formula of <i>trans</i> -[PtCl ₂ (dimethylamine) (isopropylamine)]	4-2
	Scheme4.1	Reaction steps in trans-[PtCl ₂ (dimethylamine) (isopropylamine)] hydrolysis	4-3
	4.2	Optimized geometries of the reactant, transition state and product during hydrolysis	4-5
	4.3	Potential energy surface (PES) of the first and second hydrolysis steps of gas phase (black) and in aqueous phase (red)	4-9
Chapter 5:			
-	5.1	Structural formula of <i>trans</i> -[PtCl ₂ (dimethylamine) (isopropylamine)]	5-2
	5.2	Preferential binding site for the platinum based drugs on DNA	5-2

	5.3	Optimized structure of the final Pt-DNA adduct	5-6
	5.4	Optimized interacting structure of the complex with DNA at 5.0 Å apart	5-7
	5.5	Optimized interacting structure of the complex with DNA at 3.5 Å apart	5-7
Chapter 6:		•	
-	6.1	Sketch of the investigated Au (III) complexes	6-6
	6.2	Optimized geometries of Au (III) complexes with leveling	6-10
		of the elements obtained from BLYP/DNP calculation	
	6.3	Variation of the energy gap of the frontier orbitals of the	6-12
	<i>C</i> 1	complexes	c 12
	6.4	Variation of the chemical hardness () of all the complexes	6-13
	6.5	Variation of electrophilicity index () of all the complexes	6-14
	6.6	Variation of chemical potential (μ) of all the complexes	6-14
	6.7	Best fit model amongst the derived equations	6-18
	6.8	Protein sequences in hTrxR (PDB ID: 3QFA)	6-19
	6.9	Docking pose of compound 18 at its highly bound cavity	6-20
	6.10	Docking pose of compound 16 at its highly bound cavity	6-21
	6.11	Docking pose of compound 17 at its highly bound cavity	6-21
	6.12	Docking pose of compound 18 at its highly bound cavity	6-22
		(with different orientation)	
	6.13	Docking pose of compound 16 at its highly bound cavity	6-22
		(with different orientation)	

Abbreviations used in the Thesis

ADME	Absorption Distribution Metabolism Excretion
ADME-TOX	Absorption Distribution Metabolism Excretion and Toxicity
А	Adenine
BSSE	Basis set superposition errors
BLYP	Becke-Lee-Yang-Parr
BB	Blood Brain
CPT	Camptothecin
CNS	Central nervous system
CDDP	cis-diamiminedichloroplatinum(II)
CGF	Core contracted gaussain functions
R^2	Correlation coefficient
CLs	Cross-links
С	Cytosine
DFT	Density functional theory
DNA	Deoxyribonucleic acid
DNP	Double numeric polarization
DN	Double numerical
DND	Double-numerical + d-DNP basis
DZ	Double-zeta
ECP	Effective Core Potential
EA	Electron affinity
ESI	Electrospray Ionization
E _{LUMO}	Energy of lowest unoccupied orbital
E_{NL}	Energy of next LUMO
F	Fisher significance ratio
FMO	Frontier molecular orbital
FF	Fukui function
GTO	Gaussain Type Orbitals

GGA	Generalized Gradient Approximation
G	Guanine
HCTH	Handy's family of functionals
HF	Hartee-Fock Method
НОМО	Highest occupied molecular orbital
HIA	Human intestinal absorption
HE	Hydration energy
IR	Infrared
IM	Intermediate
ICLs	Interstrand cross-links
IRC	Intrinsic reaction coordinate
IP	Ionization potential
KS	Kohn-Sham
LOO	Leave one out
LCAO	Linear combination of atomic orbitals
LDA	Local Density Approximation
R^2_{CV}	LOO cross validated squared correlation coefficient
LANL2DZ	Los Alamos National Laboratory ECP plus Double-zeta
LUMO	Lowest unoccupied molecular orbital
MHP	Maximum hardness principle
MEP	Minimum electrophilicity principle
MR	Molar refractivity
MM	Molecular Mechanics
МО	Molecular orbital
MVD	Molegro Virtual Docker
MLR	Multiple linear regression
NMR	Nucler magnetic resonance
PBE	Perdew-Burke-Ernzerhof
PW91	Perdew-Wang 91
P-gp	<i>p</i> -glycoprotein
Pol	Polarizability

CPCM	Polarized continuum-model
PES	Potential energy surface
Q	Quality factor
QSAR	Quantitative structure-activity relationship
QSPR	Quantitative structure-property relationship
QSTR	Quantitative structure-toxicity relationship
QM	Quantum mechanics
QM/MM	Quantum mechanics/molecular mechanics
RHF	Restricted Hartee-Fock
ROHF	Restricted Open Shell Hartee-Fock
SE	Standard error
STO	Stater Type Orbitals
SAR	Structure Activity Relationship
SA	Surface area
Т	Thymine
TS	Transition states
TNP	Triple numeric polarization
TZ	Triple-zeta
UHF	Unrestriced Hartee-Fock
WHO	World Health Organization
ZPE	Zero-point energy

List of Symbols used in the Thesis

Å	Angstrom
У	Chemical hardness
~	Chemical potential,
	Electron Density
S	Electron spin
	Electronegativity
	Electrophilicity
$_{\rm r}{\rm H}^0$	Enthalpy of reaction

V	External potential
$f_{\rm k}^{\scriptscriptstyle +} { m and} f_{\rm k}^{\scriptscriptstyle -}$	Fukui functions
$G^{\#}$	Gibbs free energy of activation
\hat{H}	Hamiltonian operator
f	Pi
$_{\rm r}{ m G}^0$	Reaction free energies