TABLE OF CONTENT

Contents	3	Page No.
ABSTRA	АСТ	i–viii
LIST OF	FIGURES	ix–xviii
LIST OF	TABLES	xix–xxi
LIST OF	SYMBOLS AND ABBREVIATIONS	xxii–xxvi
CHAPTE	ER 1: INTRODUCTION	1-1-1-29
1.1	Background	1-1
1.2	Layered double hydroxides (LDHs) and its structure	1-3
1.3	Synthetic procedures of LDHs	1-4
1.3.1	Co-precipitation method	1-5
1.3.2	Sonochemical method	1-6
1.3.3	Urea method	1-7
1.3.4	Sol-gel method	1-7
1.3.5	Hydrothermal method	1-7
1.3.6	Ion exchange method	1-8
1.3.7	Reconstruction method	1-8
1.3.8	Induced hydrolysis method	1-8
1.4	Properties of LDHs	1-9
1.5	Applications of LDHs	1-10
1.5.1	Waste water treatment	1-10
1.5.1.1	Organic dyes and their adverse effect on environment	1-10
1.5.1.2	Phenolic compounds and their adverse effect on	1-12
	environment	
1.5.1.3	Methods for treatments of organic pollutants	1-12
1.5.1.3.1	Adsorption	1-13
1.5.1.3.2	Photocatalysis	1-17

1.5.2	Organic transformations	1-23
1.5.2.1	Nitro-aldol condensation reaction	1-23
1.5.2.2	Microwave assisted organic reaction	1-27
1.6	Objectives of the research work	1-29
REFERE	NCES	1-30-1-44
CHAPTE	R 2: MATERIALS AND METHODS	2-1–2-19
2.1	Materials	2-1
2.2	Synthetic procedures	2-1
2.2.1	Synthesis of NiMgAl LDHs with variable composition	2-1
2.2.2	Synthesis of CuMgAl LDHs	2-2
2.2.3	Synthesis of NiAl LDHs using sonochemical method	2-3
2.2.4	Synthesis of ZnFe LDH	2-3
2.2.5	Synthesis of $M^{2+}MgAl$ ($M^{2+} = Ni^{2+}$ or Co^{2+}) LDHs and	2-4
	their derived mixed oxides	
2.2.6	Synthesis of NiMgAl LDHs derived mixed oxides	2-4
2.3	Characterization techniques	2-5
2.3.1	Powder X-ray diffraction (PXRD)	2-5
2.3.2	Inductively coupled plasma optical emission	2-5
	spectroscopy (ICP-OES)	
2.3.3	Atomic absorption spectroscopy (AAS)	2-6
2.3.4	Fourier transform infrared (FTIR) spectroscopy	2-5
2.3.5	Thermogravimetric analysis (TGA)	2-6
2.3.6	Scanning electron microscopy (SEM)	2-6
2.3.7	Transmission electron microscopy (TEM)	2-7
2.3.8	Brunauer-Emmett-Teller (BET) analysis	2-7
2.3.9	Ultraviolet-visible (UV-visible) spectroscopy	2-7
2.3.10	Diffused reflectance ultraviolet-visible (DRUV-vis)	2-7
	spectroscopy	
2.3.11	Raman spectroscopy	2-8

2.3.12	Nuclear magnetic resonance (NMR) spectroscopy	2-8
2.4	Typical procedures of catalytic reactions	2-8
2.4.1	Adsorption study of organic dye pollutants	2-8
2.4.1.1	Adsorption of methyl orange (MO) over various ternary	2-8
	NiMgAl LDHs	
2.4.1.2	Adsorption of various anionic and cationic dyes over	2-9
	CuMgAl LDHs	
2.4.1.3	Adsorption of congo red (CR) over NiAl LDHs	2-10
2.4.1.4	Adsorption kinetics study	2-10
2.4.1.5	Adsorption isotherm study	2-11
2.4.1.6	Adsorption thermodynamics study	2-12
2.4.2	Photocatlytic degradation of organic polllutants	2-13
2.4.2.1	Photocatalytic degradation of phenol and its compounds	2-13
	using ZnFe LDH	
2.4.2.2	Photocatalytic degradation of methylene blue and	2-14
	rhodamine B using ZnFe LDH	
2.4.2.3	Reaction kinetics study	2-14
2.4.3	Nitro-aldol condensation reaction	2-15
2.4.3.1	Nitro-aldol condensation reaction under mild condition	2-15
2.4.3.2	Nitro-aldol condensation reaction under microwave	2-15
	condition	
2.5	Computational details	2-16
REFERE	NCES	2-17-2-19
CHAPTE	R 3: BINARY AND TERNARY LAYERED DOUBLE	3-1-3-72
HYDROX	KIDES (LDHs) FOR ADSORPTIVE REMOVAL OF	
VARIOU	S ORGANIC DYE POLLUTANTS	
3.1 Pr	ologue	3-2
Section 3	A: Efficient removal of anionic organic dye pollutants	3-3-3-25

from aqueous solution by NiMgAl layered double hydroxides

3A.1	Results and discussion	3-3	
3A.1.1	Characterization of LDH samples	3-3	
3A.1.2	Effect of contact time, adsorbent dosage, initial dye	3-11	
	concentration and solution pH on adsorption of methyl		
	orange (MO) onto LDH adsorbents		
3A.1.3	Adsorption kinetics	3-14	
3A.1.4	Adsorption isotherm	3-17	
3A.1.5	Possible mechanism of adsorption	3-20	
Section 3	B: Preferential adsorption of various anionic and cationic	3-26-3-45	
dyes from	aqueous solution over ternary CuMgAl LDH		
3B.1	Results and discussion	3-26	
3B.1.1	Characterization	3-26	
3B.1.2	Adsorption of methyl orange (MO) over various LDH	3-30	
	adsorbents		
3B.1.3	Preferential adsorption of various anionic and cationic	3-32	
	dyes over CuMgAl4 LDH		
3B.1.4	Influence of contact time, adsorbent amount, solution	3-33	
	pH and dye concentrations		
3B.1.5	Adsorption kinetics	3-37	
3B.1.6	Adsorption isotherm	3-39	
3B.1.7	Selective adsorption of dye from a mixture of anionic	3-44	
	and cationic dyes		
Section 3	C: Adsorptive removal of congo red from aqueous	3-46-3-62	
solution	by sonochemically synthesized NiAl layered double		
hydroxide			
3C.1	Results and discussion	3-46	
3C.1.1	Characterization of the adsorbents	3-46	
3C.1.2	Adsorption experiments	3-49	
3C.1.3	Effect of contact time, adsorbent amount, initial dye	3-50	

concentration and solution pH on adsorption of CR3C.1.4Adsorption isotherms3-533C.1.5Adsorption kinetics3-553C.1.6Adsorption thermodynamics study3-563C.1.7Adsorption mechanism3-58REFERENCES3-63-3-72

CHAPTER 4: PHOTOCATALYTIC DEGRADATION OF 4-1-4-44 ORGANIC POLLUTANTS BY USING ZnFe LAYERED DOUBLE HYDROXIDE (LDH)

4.1	Prologue	4-2
4.2	Results and Discussion	4-3
4.2.1	Characterization of ZnFe LDH	4-3
4.2.2	Catalytic activity of ZnFe LDH	4-9

Section 4A: Photocatalytic Degradation of phenol and its 4-9–4-26 derivatives using ZnFe Layered Double Hydroxide (LDH)

4A.1	Photocatalytic degradation of phenol and its compounds	4-9	
4A.1.1	Optimization study	4-13	
4A. 1.2	Reaction kinetics	4-15	
4A.1.3	Proposed mechanism and degradation pathways	4-18	
4A.2	DFT investigation of Phenol + OH reaction	4-20	
4A.2.1	Electronic structures and vibrational frequency analysis	4-20	
4A.3	Recyclability of ZnFe LDH	4-25	
Section 4B: Photocatalytic degradation of methylene blue and 4-27-4-37			
rhodamine B using ZnFe layered double hydroxide			

4B.1	Photocatalytic degradation of MB and RhB	4-27
4B.1.1	Degradation of MB and RhB under UV light irradiation	4-27
4B.1.2	Degradation of MB and RhB under visible light	4-29
	irradiation	

4B.1.3	Optimization study	4-30
4B.1.4	Reaction kinetics	4-33
4B.1.5	Proposed degradation mechanism	4-34
4B.2	Reusability test of the photocatalyst	4-36
REFEREN	ICES	4-38-4-44
DERIVED	R 5: LAYERED DOUBLE HYDROXIDE (LDHs) D MIXED OXIDES FOR SOLVENT FREE NITRO- CONDENSATION REACTION	5-1-5-34
ALDOL C	CONDENSATION REACTION	
5.1	Prologue	5-1
Section 5A	A: Synthesis of high surface area mixed metal oxide from	5-3-5-16
NiMgAl L	DH precursor for nitro-aldol condensation reaction	
5A.1	Results and discussion	5-3
5A.1.1	Characterization	5-3
5A.1.2	Catalytic performance	5-8
Section 51	B: Effect of Ni on structural properties of NiMgAl-LDH	5-17-5-28
derived m	ixed oxides and their catalytic activity for nitro-aldol	
condensati	ion reaction	
5B.1	Results and discussion	5-17
5B.1.1	Characterization	5-17
5B.1.2	Catalytic performance	5-22
REFEREN	NCES	5-29-5-34
CHAPTER 6: CONCLUSIONS AND FUTURE SCOPES		6-1–6-6
6.1	Concluding remarks and outlook	6-1
6.2	Future scopes	6-6
LIST OF I	PUBLICATIONS	xxvii
LIST OF CONFERENCES ATTENDED xxvii		
APPENDIX		A-1–A-5