LIST OF FIGURES

Chapter	Figure	Title	Page No.
1	1.1	Schematic diagram for structural representation of	1-4
		layered double hydroxide (LDH)	
	1.2	Various synthetic methodologies of LDH	1-5
	1.3	Schematic diagram of co-precipitation method for	1-6
		preparation of LDH	
	1.4	Various properties of LDHs	1-9
	1.5	Various applications of LDH	1-10
	1.6	Various methods for treatment of organic pollutants	1-13
	1.7	Maximum adsorption capacities $(q_m, mg/g)$ for DB,	1-15
		RY, AR, DR and BB dyes at 298 K using LDHs-SDS	
	1.8	Dye removal (%) of methyl blue from aqueous	1-16
		solution over LDH and LDH-carbon dots adsorbents	
	1.9	Schematic diagram of the proposed mechanism for	1-19
		photocatalytic degradation of organic pollutants	
	1.10	Degradation (%) of rhodamine B (RB) on	1-21
		photodegradation by Zn/M–NO ₃ -LDHs	
	1.11	Photocatalytic efficiencies of Ni/Ti LDH and various	1-22
		commercially available catalysts for degradation of	
		methylene blue in aqueous solution under visible light	
	1.12	Degradation (%) of phenol over ZnTi-LDH and	1-23
		derived mixed oxides calcined at different	
		temperatures	
	1.13	Schematic diagram for nitro-aldol condensation	1-23
		(Henry) reaction	
	1.14	Schematic diagram for general mechanism of nitro-	1-24
		aldol condensation (Henry) reaction	
	1.15	Schematic representation for various applications of	1-25
		Henry reaction product, 2-nitro-alkanol	

1.16	Difference between conventional and microwave heating	1-28
3.1	The molecular structure of various organic dye pollutants used in the present investigation	3-1
3A.1	(a) PXRD patterns and (b) High angle 2θ value, (c) Relative Intensity and (d) Crystallinity (%) at some 2θ angles of all the LDH samples	3-4
3A.2	Relationship of nickel content with unit cell parameters in LDH samples	3-4
3A.3	FTIR spectra of all the LDH samples	3-6
3A.4	(a) TGA graphs, (b) Micro–Raman spectra, (c) UV-visDRS spectra and (d) Band gap energy calculated fromUV-vis DRS of all LDH samples	3-7
3A.5	SEM images of (a) LDH1, (b) LDH2, (c) LDH3 and (d) LDH4	3-9
3A.6	TEM images at different resolution (a), (b) & (c) and SAED patterns (d) of LDH3	3-9
3A.7	N_2 adsorption-desorption isotherms and pore size distribution (inset) of (a) LDH1, (b) LDH2, (c) LDH3 and (d) LDH4	3-10
3A.8	Effect of (a) contact time, (b) adsorbent dosage, (c) initial dye concentration and (d) solution pH on adsorption of MO onto LDH adsorbents (Optimized adsorption conditions: MO concentration = 20 mg/L, adsorbent dose = 5 mg, equilibrium time = 90 min, pH = 6 and $T = 25$ °C)	3-12
3A.9	UV-vis spectra for adsorption of MO onto (a) LDH1, (b) LDH2, (c) LDH3 and (d) LDH4 at various time intervals	3-14
3A.10	Pseudo-first order kinetic plots for adsorption of MO onto (a) LDH1, (b) LDH2, (c) LDH3 and (d) LDH4	3-15

List of Figures | xi

3A.11	Pseudo-second order kinetic plots for adsorption of	3-16
	MO onto (a) LDH1, (b) LDH2, (c) LDH3 and (d)	
	LDH4	
3A.12	Intraparticle diffusion plot for adsorption of MO onto	3-16
	all the LDH samples	
3A.13	Langmuir isotherm plots for the adsorption of MO	3-18
	onto (a) LDH1, (b) LDH2, (c) LDH3 and (d) LDH4	
3A.14	Freundlich isotherm plots for the adsorption of MO	3-19
	onto (a) LDH1, (b) LDH2, (c) LDH3 and (d) LDH4	
3A.15	D-R isotherm plots for adsorption of MO onto (a)	3-19
	LDH1, (b) LDH2, (c) LDH3 and (d) LDH4	
3A.16	Schematic diagram for efficient removal of MO over	3-20
	LDH3 adsorbent	
3A.17	(a) UV-vis spectra of MO before and after adsorption	3-21
	onto LDH3 and inset is photographs of MO before	
	(left) and after adsorption (right), (b) PXRD patterns	
	of LDH3 before and after adsorption of MO	
3A.18	SEM images of LDH3 (a) before and (b) after	3-21
	adsorption of MO	
3A.19	(a) FTIR spectra of LDH3 after adsorption of MO and	3-22
	inset is enlarged view of the spectra in the	
	wavenumber range of 1000–1300 cm^{-1} and (b) FTIR	
	spectra of pure MO and LDH3	
3A.20	% Dye uptake of various anionic dye pollutants over	3-23
	LDH3 (Optimized conditions: MO concentration = 20	
	mg/L, adsorbent dose = 5 mg, equilibrium time = 90	
	min, pH = 6 and $T = 25$ °C)	
3A.21	Reusability of LDH3 for adsorption of MO	3-24
3B.1	(a) PXRD patterns and (b) FTIR spectra of LDH	3-27
	samples	
3B.2	(a) TGA graphs and (b) UV-vis DRS spectra of LDH	3-28

samples

3B.3	SEM images of LDH samples	3-29
3B.4	(a-c) TEM images at different resolution and (d)	3-29
	SAED patterns of CuMgAl4 LDH	
3B.5	N2 adsorption-desorption isotherms of LDH samples	3-30
3B.6	Dye removal (%) of MO over various LDHs ($V_{\text{solution}} =$	3-31
	20 mL, $C_o = 20$ mg/L, adsorbent amount = 5 mg, $T =$	
	25 °C, pH = 7)	
3B.7	Dye removal (%) of different anionic and cationic	3-32
	dyes over CuMgAl4 LDH ($V_{\text{solution}} = 20 \text{ mL}, C_o = 20$	
	mg/L, adsorbent amount = 5 mg, $T = 25$ °C, pH = 7)	
3B.8	UV-vis spectra of the anionic dyes after adsorption	3-33
	over CuMgAl4 LDH ($V_{\text{solution}} = 20 \text{ mL}, C_o = 20 \text{ mg/L},$	
	adsorbent amount = 5 mg, $T = 25$ °C, pH = 7)	
3B.9	Influence of (a) contact time (min) and (b) adsorbent	3-34
	amount (mg) on dye removal (%) of MO, BTB, EBT	
	and CR over CuMgAl4 LDH ($V_{\text{solution}} = 20 \text{ mL}, C_o =$	
	20 mg/L, $T = 25 \text{ °C}$, pH = 7)	
3B.10	Influence of pH on dye removal (%) of MO, BTB,	3-35
	EBT and CR over CuMgAl4 LDH ($V_{\text{solution}} = 20$ mL,	
	$C_o = 20 \text{ mg/L}$, adsorbent amount = 5 mg, $T = 25 \text{ °C}$)	
3B.11	Influence of initial dye concentrations on dye removal	3-36
	(%) of MO, BTB, EBT and CR over CuMgAl LDH	
	$(V_{solution} = 20 \text{ mL}, \text{ adsorbent amount} = 5 \text{ mg}, T = 25$	
	°C, pH = 7)	
3B.12	Pseudo-first order kinetic plots for adsorption of MO,	3-37
	BTB, EBT and CR over CuMgAl4 LDH ($V_{\text{solution}} = 20$	
	mL, $C_o = 20$ mg/L, adsorbent amount = 5 mg, $T = 25$	
	°C, pH = 7)	
3B.13	Pseudo-second order kinetic plots for adsorption of	3-38
	MO, BTB, EBT and CR over CuMgAl4 LDH (V_{solution}	

= 20 mL, C_o = 20 mg/L, adsorbent amount = 5 mg, T= 25 °C, pH = 7)

- 3B.14 Intraparticle diffusion kinetic plot for adsorption of MO, BTB, EBT and CR over CuMgAl4 LDH ($V_{solution}$ = 20 mL, C_o = 20 mg/L, adsorbent amount = 5 mg, T = 25 °C, pH = 7)
- 3B.15 Langmuir isotherm plots for adsorption of MO, BTB, 3-40 EBT and CR over CuMgAl4 LDH ($V_{solution} = 20$ mL, adsorbent amount = 5 mg, T = 25 °C, pH = 7)
- 3B.16 Freundlich isotherm plots for adsorption of MO, BTB, 3-41 EBT and CR over CuMgAl4 LDH ($V_{solution} = 20$ mL, adsorbent amount = 5 mg, T = 25 °C, pH = 7)
- 3B.17 FTIR spectra for adsorption of MO, BTB, EBT and 3-43 CR over CuMgAl4 LDH
- 3B.18 Multicyclic adsorption of MO, BTB, EBT and CR 3-43 over CuMgAl4 LDH ($V_{solution} = 20 \text{ mL}$, $C_o = 20 \text{ mg/L}$, adsorbent amount = 5 mg, T = 25 °C, pH = 7)
- 3B.19 Selective adsorption of dye from a mixture of anionic 3-44 and cationic dyes over CuMgAl4 LDH ($V_{\text{solution}} = 20$ mL, $C_o = 20$ mg/L, adsorbent amount = 5 mg, T = 25°C, pH = 7 for MO and 11 for MB)
- 3C.1Powder X-ray diffraction patterns of all the samples3-47
- 3C.2 (a) FTIR spectra and (b) TGA curves of all the 3-48 samples
- 3C.3 (a) SEM image, (b) TEM image, (c) lattice fringes of
 (003) plane and (d) SAED pattern of NiAl-S₁ LDH
- 3C.4 Dye removal (%) of CR on various LDHs with time 3-50 (10 mg/L CR, 10 mg adsorbent, T = 25 °C)
- 3C.5 (a) UV-vis spectra of CR on adsorption with different 3-51 time (10 mg/L CR, 10 mg adsorbent), (b) effect of time (10 mg adsorbent), (c) effect of adsorbent amount

List of Figures | xiv

ng adsorbent) and (d) effect of initial dye	
rations (10-60 mg/L CR, 10 mg adsorbent) on	
on of CR onto NiAl-S ₁ LDH at $T = 25 ^{\circ}\text{C}$	
noval (%) of CR on NiAl-S ₁ LDH at various	3-53
es	
orption isotherm, (b) Langmuir, (c) Freundlich	3-54
D-R isotherm models for adsorption of CR on	
LDH (10 mg adsorbent, $T = 25 $ °C)	
ndo-first order, (b) pseudo-second order, (c)	3-56
icle diffusion and (d) van't Hoff plot for	
on of CR on NiAl-S ₁ LDH (10 mg adsorbent)	
atterns of NiAl-S1 LDH before and after	3-58
on of CR	
mages of NiAl-S ₁ LDH before and after	3-59
on of CR	
pectra of CR, bare NiAl-S1 LDH and CR	3-59
l NiAl-S ₁ LDH	
noval (%) of CR with number of cycles on	3-61
LDH (10 mg/L CR, 10 mg adsorbent, $T = 25$	
XRD patterns of ZnFe LDH	4-4
ectrum of ZnFe LDH	4-5
ermogram of ZnFe LDH	4-6
hages at (a) lower and (b) higher resolutions,	4-7
image and (d) SAED patterns of ZnFe LDH	
r-vis diffuse reflectance spectra and (b)	4-7
nding band gap energy of ZnFe LDH	
dsorption-desorption isotherms, and (b) pore	4-9
ribution (PSD) curve of ZnFe LDH	
ble spectra for photocatalytic degradation of	4-11
under (a) visible and (b) UV light irradiation;	
	ations (10–60 mg/L CR, 10 mg adsorbent) on on of CR onto NiAl-S ₁ LDH at $T = 25$ °C toval (%) of CR on NiAl-S ₁ LDH at various es orption isotherm, (b) Langmuir, (c) Freundlich D–R isotherm models for adsorption of CR on LDH (10 mg adsorbent, $T = 25$ °C) do-first order, (b) pseudo-second order, (c) icle diffusion and (d) van't Hoff plot for on of CR on NiAl-S ₁ LDH (10 mg adsorbent) atterns of NiAl-S ₁ LDH before and after on of CR mages of NiAl-S ₁ LDH before and after on of CR bectra of CR, bare NiAl-S1 LDH and CR NiAl-S ₁ LDH noval (%) of CR with number of cycles on LDH (10 mg/L CR, 10 mg adsorbent, $T = 25$ XRD patterns of ZnFe LDH extrum of ZnFe LDH ages at (a) lower and (b) higher resolutions, image and (d) SAED patterns of ZnFe LDH -vis diffuse reflectance spectra and (b) nding band gap energy of ZnFe LDH observed for photocatalytic degradation of

(c) Photocatalytic degradation of phenol as a function of irradiation time under different light irradiation; (d) Photocatalytic degradation of various phenolic compounds as a function of irradiation time under visible light irradiation (Condition: $C_o = 0.5$ mM, V =20 mL, catalyst amount = 10 mg, pH = 7)

- 4A.2 UV-visible spectra for photocatalytic degradation of 4-12 (a) 2CP, (b) 3CP and (c) 4CP; (d) Degradation (%) of 2CP, 3CP and 4CP with irradiation time over ZnFe LDH under visible light irradiation (Condition: $C_o = 0.5$ mM, V = 20 mL, catalyst amount = 10 mg, pH = 7)
- 4A.3 Effect of amount of ZnFe LDH on photocatalytic 4-13 degradation of phenol, 2CP, 3CP and 4CP under visible light irradiation (Condition: $C_o = 0.5$ mM, V =20 mL, pH = 7)
- 4A.4 Effect of initial concentration of phenol, 2CP, 3CP and 4-14 4CP on photocatalytic activity of ZnFe LDH for degradation under visible light irradiation (Condition: V = 20 mL, catalyst amount = 10 mg, pH = 7)
- 4A.5 Effect of pH on photocatalytic activity of ZnFe LDH 4-15 for degradation of phenol and its compounds under visible light irradiation (Condition: $C_o = 0.5$ mM, V =20 mL, catalyst amount = 10 mg)
- 4A.6 Pseudo-first order kinetic plots for photocatalytic 4-17 degradation of phenol, 2CP, 3CP and 4CP over ZnFe-LDH under visible light irradiation (Condition: $C_o =$ 0.5 mM, V = 20 mL, catalyst amount = 10 mg, pH = 7)
- 4A.7 Schematic diagram of the proposed mechanism for 4-18 photocatalytic degradation of phenol over ZnFe-LDH
- 4A.8 Proposed degradation pathway for photocatalytic 4-20 degradation of phenol initiated by 'OH radical

List of Figures | xvi

- 4A.9 Optimized structures of all species involved in the 4-21 Phenol + 'OH reaction at B3LYP/6-31+G(d,p) level of theory
- 4A.10 Potential energy surface (PES) diagram for the 4-24 degradation of Phenol + 'OH reaction at B3LYP/6-31+G(d,p)
- 4A.11 Recyclability of ZnFe LDH for photocatalytic 4-25 degradation of phenol under visible light irradiation
- 4B.1 Photolysis, adsorption and photocatalysis of MB and 4-28 RhB over ZnFe LDH under UV light irradiation (Conditions: $C_0 = 10$ mg/L, $V_{\text{solution}} = 50$ mL, catalyst amount = 5 mg for MB and 10 mg for RhB, pH = 7)
- 4B.2 UV-visible spectra for phocatalytic degradation of MB 4-28 and RhB over ZnFe LDH under UV light irradiation $(C_o = 10 \text{ mg/L}, V_{\text{solution}} = 50 \text{ mL}, \text{ catalyst amount} = 5$ mg for MB and 10 mg for RhB, pH = 7)
- 4B.3 Photolysis, adsorption and photocatalysis of MB and 4-29 RhB over ZnFe LDH under visible light irradiation (Conditions: $C_0 = 10$ mg/L, $V_{\text{solution}} = 50$ mL, catalyst amount = 5 mg for MB and 10 mg for RhB, pH = 7)
- 4B.4 UV-visible spectra for phocatalytic degradation of MB 4-30 and RhB over ZnFe LDH under visible light irradiation ($C_0 = 10 \text{ mg/L}$, $V_{\text{solution}} = 50 \text{ mL}$, catalyst amount = 5 mg for MB and 10 mg for RhB, pH = 7)
- 4B.5 Effect of catalyst amount on photocatalytic 4-31 degradation of MB and RhB with irradiation time under UV light irradiation (Conditions: $C_0 = 10 \text{ mg/L}$, $V_{\text{solution}} = 50 \text{ mL}$, catalyst amount = 5 mg for MB and 10 mg for RhB, pH = 7)
- 4B.6 Effect of initial dye concentrations on photocatalytic 4-32 degradation of MB and RhB with irradiation time

under UV light irradiation (Conditions: $V_{\text{solution}} = 50$ mL, catalyst amount = 5 mg for MB and 10 mg for RhB, pH = 7)

- 4B.7 Effect of pH on photocatalytic degradation of MB and 4-33 RhB with irradiation time under UV light irradiation (Conditions: $C_0 = 10$ mg/L, $V_{\text{solution}} = 50$ mL, catalyst amount = 5 mg for MB and 10 mg for RhB)
- 4B.8 Kinetic plots of ln (C_o/C) as a function of time for 4-33 photodegradation of MB and RhB under UV light irradiation
- 4B.9 Recyclability test for photocatalytic degradation of 4-36 MB and RhB over ZnFe LDH. (Conditions: $C_0 = 10$ mg/L, $V_{\text{solution}} = 50$ mL, catalyst amount = 5 mg for MB and 10 mg for RhB, pH = 7)
- 4B.10 XRD patterns of fresh and reused ZnFe LDH 4-37 photocatalyst
- 5A.1 X-ray powder diffraction patterns of a) MgAl, 5-4 NiMgAl and CoMgAl LDHs and; (b) NiMgAl (O) and CoMgAl (O) mixed oxides
 - 5A.2 FTIR spectra of (a) MgAl, NiMgAl and CoMgAl 5-6 LDHs and; (b) NiMgAl (O) and CoMgAl (O) mixed oxides
 - 5A.3 TGA curves of MgAl, NiMgAl and CoMgAl LDHs 5-6
 - 5A.4 SEM images of (a) MgAl, (b) NiMgAl and (c) 5-7 CoMgAl LDHs
 - 5A.5 (a) N₂ adsorption-desorption isotherms and (b) pore 5-8 size distribution curves of MgAl (O), NiMgAl (O) and CoMgAl (O) mixed oxides
 - 5A.6 N₂ adsorption-desorotion isotherms of NiMgAl (O) 5-13 mixed oxide at different calcination temperatures
 - 5A.7 Turnover frequency (TOF) of MgAl (O), NiMgAl (O) 5-14

and CoMgAl (O) mixed oxides

Watt), Temperature 50 °C)

5B.1	Powder XRD patterns of (a) LDHs and (b) LDH	5-18	
	derived mixed oxides (o - NiO, * - MgO and ^ -		
	MgAl ₂ O ₄); and FTIR spectra of (c) LDHs and (d)		
	LDH derived mixed oxides		
5B.2	Thermogravimetric analysis curves of LDHs	5-19	
5B.3	SEM images of LDHs and inset shows for LDH	5-20	
	derived mixed oxides		
5B.4	$N_{\rm 2}$ adsorption-desorption isotherms of LDH derived	5-21	
	mixed oxides		
5B.5	Recyclability test of the catalyst LDH3 (O) (Reaction	5-27	
	conditions: 1 mmol 4-nitrobenzaldehyde, 10 mmol		
	nitromethane, 10 mg catalyst, 40% MW power (280		

LIST OF TABLES

Chapter	Table	Title	Page No.
1	1.1	Advantages of heterogeneous catalysts over homogeneous catalysts	1-2
	1.2	Various adsorption parameters for removal of reactive	1-16
	1.2	brilliant red X-3B using three different LDH	1-10
		adsorbents	
	1.3	Adsorption efficiencies of various adsorbent in terms	1-17
	110	of degradation (%) and maximum adsorption capacity,	
		$q_m (mg/g)$ for removal of EBT	
	1.4	Degradation (%) and K_{app} values for photodegradation	1-20
		of MV and MG over various anion intercalated ZnFe	
		LDH photocatalysts	
3	3A.1	Elemental analyses, unit cell parameters and average	3-5
		crystallite sizes of the LDH samples	
	3A.2	Band gap energy and textural properties of LDH	3-8
		samples	
	3A.3	Pseudo-first order and pseudo-second order kinetic	3-15
		parameters for adsorption of MO onto various LDHs	
	3A.4	Langmuir, Freundlich and Dubinin-Radushkevich (D-	3-17
		R) isotherm parameters of MO onto various LDHs	
	3A.5	Comparison of adsorption of MO onto LDH3 with	3-23
		earlier reports	
	3B.1	Chemical composition, unit cell parameters and	3-27
		textural properties of various LDH samples	
	3B.2	Pseudo-first order and second order kinetic parameters	3-38
		for adsorption of different dyes over CuMgAl4 LDH	
	3B.3	Langmuir, Freundlich and Dubinin-Radushkevich (D-	3-41
		R) isotherm parameters for adsorption of different	
		dyes over CuMgAl4 LDH	

3C.1	Unit cell parameters and average crystallite sizes of all	3-47
	the samples	
3C.2	Langmuir, Freundlich and D-R adsorption isotherm	3-54
	parameters for adsorption of CR on NiAl-S ₁ LDH	
3C.3	Adsorption kinetic parameters for adsorptive removal	3-56
	of CR on NiAl-S ₁ LDH	
3C.4	Thermodynamic parameters for adsorptive removal of	3-57
	CR over NiAl-S ₁ LDH	
3C.5	Comparison of adsorption efficiency of NiAl-S ₁ LDH	3-60
	for removal of CR with various reported adsorbents	
4.1	The list of various organic pollutants used in the	4-1-4-2
	present investigation	
4.2	Lattice parameters, crystallite size, band gap energy,	4-4
	BET surface area, pore volume and pore diameter of	
	ZnFe LDH	
4A.1	% Degradation and pseudo first order kinetic	4-16
	parameters for photocatlytic degradation of phenol,	
	2CP, 3CP and 4CP over ZnFe LDH under different	
	light irradiations	
4A.2	Reaction enthalpy $(\Delta_r H^0)$ and Gibbs free energy	4-23
	$(\Delta_r G^0)$ for the photocatalytic degradation of phenol	
4A.3	Total energy (Hartree) and relative energies (kcal/mol)	4-23
	of all species involved in the reaction calculated at	
	B3LYP/6-31+G (d,p) levels of theory	
4B.1	Degradation (%), K_{app} and linear regression value for	4-29
	photodegradation of MB and RhB over ZnFe LDH	
	under UV light irradiation	
4B.2	Comparison of photocatalytic activity of ZnFe LDH	4-35
	with reported catalysts	
5A.1	Chemical analysis, crystallographic data and crystallite	5-5
	size of mixed oxides	

List of Tables | xxi

5A.2	Textural properties of LDH derived mixed oxides	5-8
5A.3	Nitroalkylation of 4-nitrobenzaldehyde with	5-9
	nitromethane over various catalysts at room	
	temperature	
5A.4	Effect of temperature on nitro-aldol condensation	5-10
	reaction of 4-nitrobenzaldehyde and nitromethane	
	catalyzed by NiMgAl mixed oxide	
5A.5	Effect of catalyst amount (NiMgAl mixed oxide) on	5-11
	nitro-aldol condensation reaction of 4-	
	nitrobenzaldehyde and nitromethane	
5A.6	Nitro-aldol condensation reaction of nitromethane with	5-11
	different aldehydes using NiMgAl (O) mixed oxide	
5A.7	Effect of calcination temperature on nitro-aldol	5-13
	condensation reaction of 4-nitrobenzaldehyde and	
	nitromethane catalyzed by NiMgAl (O) mixed oxide	
5A.8	Recyclability of NiMgAl (O) mixed oxide	5-15
5B.1	Chemical analyses of the precursor LDHs	5-20
5B.2	Textural properties of various mixed oxides derived	5-22
	from LDHs	
5B.3	Nitro-aldol condensation of 4-nitrobenzaldehyde with	5-23
	nitromethane over various mixed oxides derived from	
	LDHs	
5B.4	Effect of catalyst amount on conversion (%) of nitro-	5-24
	aldol condensation reaction over LDH3 (O)	
5B.5	Effect of MW power (%) on conversion (%) of nitro-	5-25
	aldol condensation reaction over LDH3 (O)	
5B.6	Nitro-aldol condensation reaction of nitromethane with	5-25-5-26
	different aldehydes over LDH3 (O)	