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6A.1. Mulfunctionalized basic ionic liquids  

Multifunctionalized ionic liquids especially dicationic and tricationic liquids 

have been reported to have a wide range of tunable physical properties than most 

traditional, singly charged ILs such as higher density, melting point, viscosity, surface 

tension and glass transition temperature [1, 2]. These are possible only by variation of 

the chemical structures of suitable cation-anion pairs within the ionic liquid 

composition. More numbers of structural variations of ion-pairs are possible with the 

dicationic and tricationic ionic liquids. Different types of muiticationic ionic liquids 

were synthesized based on ammonium [3-5], imidazolium [6], pyridinium [7] and 

pyrrolidium [1] cations to explore their physical properties. 

Armstrong and co-workers [8, 9] studied the effect of various counter ions on the 

densities of symmetrical tricationic ILs that was in the order of NTf2
-
>PF6

-
>OTf

-
>BF4

-
 

They observed thermal decomposition temperatures of some of the ILs to be greater 

than 400 °C which was quite encouraging compared to the corresponding monocationic 

ILs. Their melting points depend on the flexibility of the central core unit. The flexible 

core structure of tricationic ILs possesses lower melting point when compared to the ILs 

with rigid core structure unit. 

The presence of three charges in very close contact on the flexible tricationic ILs 

can be described as possible reason for existence of high polarity in such ILs at room 

temperature [5]. Due to their tunable physicochemical properties, they have been 

utilized as novel solvent systems in organic synthesis and catalytic studies [10], 

electrochemistry [11], high temperature lubricants [12], selective gas chromatographic 

stationary phases [13], molecular pincers for anion recognition [14], ionic liquid crystals 

[15], host-guest complexes [16], gel phases [17] and so on.  

The development of environmentally benign task-specific basic ionic liquids and 

their uses in some base-catalyzed organic reactions offer a great potential for 

replacement of toxic, corrosive and water miscible inorganic/ organic bases in catalytic 

reactions [18]. They exhibit several advantages over inorganic bases such as water and 

air stability, immiscibility with many organic solvents, noncorrosive and nonvolatile, 

high catalytic efficiency and easy reusability after simple separation from the reaction 

mixture. 
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The acidity or basicity of an ionic liquid is governed by the nature of cation, 

anion, or by combination of cation and anion. Most of the basic mono cationic ionic 

liquids are made from combination of basic anions with most common N-

alkylimidazolium, alkylammonium or N-alkylpyridinium cations. Other cations include 

pyrrolidinium, pyrimidinium, pyrazolium, triazolium, pyridazinium, pyrazinium, 

oxazolium and thiazolium. A wide array of anions including carboxylates, fluorinated 

carboxylates, hydroxide sulfonates, fluorinated sulfonates, imides, borates, phosphates, 

antimonates, halides, halometallates etc. can be paired with chosen cation component 

for achieving Lewis Basic or Brönsted basic ionic liquids [19]. These basic ionic liquids 

may be classified as Brönsted or Lewis basic depending upon the type of anion used to 

formulate the ionic liquids. Another method for designing of strong basic ILs relied on 

attachment of specific basic functionalities to the cation. The ILs derived by this method 

sometimes exhibit greater thermal stability than those containing only basic anions [20]. 

The attachment of more number of basic anions in multi-charged ILs may 

influence the basicity, thermal stability, water sensitivity, viscosity, conductivity and 

solubility of the ILs in various solvents. The literature review reveals that the basic ionic 

liquids either work as efficient base catalyst or basic reaction medium for various types 

of base catalyzed condensation reactions such as Aldol condensation, Knoevenagel 

reaction, Claisen-Schmidt reaction etc. depending on the strength of basic sites i.e 

Brönsted basic or Lewis basic [21-23]. As compared to the functionalized acidic ILs, the 

reports related to the basic ILs are quite few. But, they have the ability to replace 

conventional basic reagents like NaOH, KOH, K2CO3, NaHCO3, NaOAc etc. in organic 

reactions by acting as reusable basic catalysts. These conventional bases produce 

excellent results only with stoichiometric amount of bases for any type of base 

promoted organic reactions. In industrial scale reactions, they release large amount of 

toxic and corrosive basic waste to the environment. From this point of view, the nature 

of basic ionic liquids serves its purpose much justifiably and their function to act as both 

solvent and catalyst make the process much easier to handle. Therefore, it is always an 

exciting challenge to develop novel Brönsted-type basic catalytic systems that are 

environment friendly, recyclable and cost effective in nature.  
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In next section, we include the literature review of pyridinium and imidazolium 

basic ILs and their applications as basic catalyst/solvents in various organic reactions till 

2016. 

6A.2. Imidazolium and pyridinium based basic ionic liquids and their 

uses in organic synthesis including Knoevenagel condensation 

In literature, a number of basic ionic liquids are found derived from complex 

halometallate anions and N-alkylpyridinium or N-alkylimidazolium cations [24]. The 

mole fraction of metal halides utilized to synthesize these ionic salts determines whether 

the resulting salt will be Lewis acidic or basic or neutral in nature. The most important 

example is the basic chloroaluminate(III) ionic liquid obtained through reactive 

dissolution of AlCl3 in excess of chloride-based ionic liquid [cation]Cl with mole 

fraction of AlCl3<0.5 according to equation (1) [25]. In this situation, the metal ion may 

be fully saturated with its coordination number and so will not act as Lewis acids. 

nCl
-
 + AlCl3 →AlCl4 + (n-1)Cl

-
 (χAlCl3

<0.5)                   (1) 

These chlorometallate systems have been found to act as good solvents in 

electrochemistry, spectroscopy and also in catalysis [26-28].  

The imidazolium based Brönsted-basic IL, 1-butyl-3-methylimidazolium 

hydroxide [bmim][OH] was prepared by Ranu and his co-worker in 2005 using a 

reaction mixture of [bmim]Br and KOH in dichloromethane under vigorous stirring at 

room temperature for 10 h [29]. This IL was explored as catalysts/and reaction medium 

in Michael addition reactions of 1, 3-dicarbonyl compounds, cyano esters, and nitro 

alkanes to a variety of conjugated ketones, carboxylic esters, and nitriles (Scheme 

6A.1). The respective mono and bis-addition products were formed in excellent yields 

within 0.5-4 h time duration. Overall, the method had various advantages over the 

existing protocols with regard to operational simplicity, reaction time and yield, general 

applicability, avoid of toxic organic solvent and catalyst etc. 
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Scheme 6A.1: Michael addition catalyzed by [bmim]OH 

Later in 2006, Ranu et al. [22] utilized this IL as catalyst in the Knoevenagel 

condensation reactions of aliphatic and aromatic aldehydes and ketones with diethyl 

malonate, malononitrile, ethyl cyanoacetate, malonic acid and ethyl acetoacetate in 

absence of any organic solvent (Scheme 6A.2). The desired products were obtained 

within short reaction times (10-30 min) at room temperature. With this protocol, the 

condensation of aliphatic aldehyde with diethyl malonate was easily achieved, which is 

otherwise a difficult job to achieve. 

R2
O

R1

E2

E1

[bmim]OH

(20 mol%)

r.t. R2

R1 E1

E2

R1, R2 = alkyl, aryl, H

E1, E2 = CN, COMe, COOMe, COOEt, COOH
 

Scheme 6A.2: Knoevenagel condensation catalyzed by [bmim]OH IL in absence of 

organic solvent 

A large number of studies on uses of [bmim][OH] ionic liquid have been 

reported in different type of organic reactions as catalyst/solvent/promoter. Some of the 

base catalyzed reactions include Knoevenagel condensation [22, 30], Markovnikov 

addition [31], Michael addition [32], aza Michael reactions [33], transesterification [34] 

and polymerization reaction [35]. It was also utilized for base catalyzed one pot 

synthesis of oxygen and nitrogen heterocycles. Few examples of such heterocycles are 

polyfunctionalized-4H-pyrans [36], quinazoline-2,4 (1H, 3H)-diones [37], quinoline 
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[38], 2-alkylsubstituted chromanones [39], benzo[g]chromene derivatives [40], pyrazolo 

[3, 4-b] pyridines [41], 2-aroylbenzofuran-3-ols [42], 2-Amino-4H-chromenes [43], 

benzo[a]pyrano[2, 3-c]phenazine derivatives [44], substituted benzofurans [45], 1, 4, 5-

trisubstituted-1, 2, 3-triazoles [46], polyhydroquinolines [47] etc. 

In the same year, Tai et al. [48] developed a Lewis basic 1-ethyl-3-

methylimidazolium chloride/tetrafluoroborate ionic liquid The authors studied the 

electrodeposition of palladium-silver alloy from the ionic liquid solutions containing 

Pd(II) and Ag(I) within a temperature range of 35-120 °C. Both the electrodeposition 

involved over potential driven nucleation process and Pd-Ag electrodeposits were 

obtained in nodular shapes.  

At the same time, Cai et al. [49] prepared two amino-functionalized imidazolium 

based ionic liquid: 1-aminoethyl-3-methylimidazolium hexafluorophosphate ([2-

aemim][PF6]) and 1-aminoethyl-3-methylimidazolium tetrafluoroborate ([2-

aemim][BF4]) (Fig. 6A.1) and explored their catalytic activity towards the Knoevenagel 

condensation of aromatic aldehydes with malononitrile and ethyl cyanoacetate in 

aqueous media. The combination of room temperature condition, aqueous media and 

use of recyclable IL as catalyst made this protocol an efficient eco-friendly one. The 

respective products were obtained in very good to excellent yields. 

N N
NH2

X-

X- = PF6
-, BF4

-

 

Fig. 6A.1: Structures of [2-aemim][PF6] and [2-aemim][BF4] 

In 2007, Guo-hua et al. [50] prepared 1-(2-amine-ethyl)-3-methyl-imidazolium 

boron tetrafluoride (Scheme 6A.3) as basic IL and used as catalyst for condensation of 

aldehydes/ketones with activated methylene compounds in aqueous media at 30-50 °C 

temperature. The IL was quite active and the desired products were formed within 

considerable time frame in 70-97% yields. It could be easily recycled till six times with 

little loss in activity. 
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Scheme 6A.3: Preparation of 1-(2-amine-ethyl)-3-methyl-imidazolium boron 

tetrafluoride IL 

In 2008, two basic ionic liquids, 1-butyl-3-methylimidazolium trifluoroacetate 

([bmim][CF3COO]) and 1-butyl-3-methylimidazolium acetate ([bmim][CH3COO]) were 

employed for measurement of heat capacities in the temperature range of 5-370 K using 

adiabatic calorimetry method by Strechan et al.[51]. They observed dependence of 

thermal behavior of [bmim][CF3COO] on crystallization procedure. 

Xiao et al. [52] explored hydrolysis of propylene carbonate to 1, 2-propylene 

glycol using a SBIL catalyst (Scheme 6A.4). The polystyrene based imidazolium basic 

catalyst was prepared by following the Scheme 6A.5. The effects of temperature, time, 

molar ratio of water to propylene carbonate, choice of catalyst, and amount of catalyst 

were investigated. In addition, the catalyst could be reused at least up to five times with 

slight loss of catalytic activity. 

O O

O

H2O

HO OH
SBIL

 

Scheme 6A.4: Hydrolysis of propylene carbonate to 1, 2-propylene glycol 
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N

Cl

N

N

OH

N

N

HCO3

KOH

KHCO
3

Scheme 6A.5: Preparation of supported ILs (SBIL) 

Zhao et al. described the immobilization of basic amino-functionalized task-

specific ILs: N-(3-aminopropyl), N(3)-(3-triethoxysilylpropyl)-4,5-dihydroimidazolium 

bromide hydrobromide on mesoporous silicas of MCM-41 and SBA-11 followed by 

neutralization of protonated amino group with KOH (Scheme 6A.6) [53]. The catalytic 

activity of this system was tested for the Knoevenagel condensation in aqueous medium 

(Scheme 6A.7). 

In 2010, an imidazolium based task-specific ionic liquid [IL-OPPh2] (Fig. 6A.2) 

was prepared by Valizadeh and Gholipour following a reported procedure [54] that 

bears a weak Lewis basic phosphinite group in its structure [55]. This IL was examined 

as reusable catalyst/solvent system for the condensation of arylaldehydes with 

malononitrile, dimethyl (diethyl) malonate, and ethyl cyanoacetate at 60 °C under 

solvent-free condition within 8-20 min reaction (Scheme 6A.8).  

Forsyth et al. [56] in a report described the synthesis of amino-functionalized 

imidazolium based IL according to Scheme 6A.9 along with other members of 

ammonium based ILs. The qualitative basicity of the ILs was evaluated from their 

interaction with a universal indicator. The catalytic activity of these ILs was evaluated 

for Heck and Knoevenagel reactions successively. 

In 2011, Kowsari and Mallakmohammadi [38] synthesized few basic ionic 

liquids (BILs) based on imidazolium cation in association with hydroxide anion (Fig. 

6A.3) and explored their catalytic efficiencies towards the synthesis of quinoline 

derivatives from the condensation reactions of isatin with ketones by ultrasonic 

irradiation in aqueous media (Scheme 6A.10).  
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Scheme 6A.6: Synthetic protocol for immobilized basic ILs: [APMIM]BF4 and amino 

functionalized mesoporous silicas 

O
H

R1

H2C
CN

R2

Catalyst H

R1

CN

R2

R1: Ph; 2-Cl-Ph; 4-OH-Ph; 4-OCH3-Ph; 4-NO2-Ph

R2: CN; COOCH2CH3
 

Scheme 6A.7: Knoevenagel condensation catalyzed by immobilized basic ILs, 

[APMIM]BF4 and amino functionalized mesoporous silicas  
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Fig. 6A.2: Structure of IL-OPPh2 
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Scheme 6A.8: IL-OPPh2 catalyzed Knoevenagel condensation reaction and synthesis of 

coumarin derivatives 

N
Cl

N
N

1. Na2CO3, MeCN

2. LiNTf2

N
N

N
[NTf2]

[iPr2N(CH2)2mim][NTf2]

 

Scheme 6A.9: Preparation of amino-functionalized imidazolium based IL 

The use of BILs and ultrasonic irradiation promote the reactions efficiently at 

room temperature and affect both the reaction time and yield remarkably. Among the 

BILs used for this study, reusability study for [bmim]OH was carried out and it was 

found quite promising. The BIL was continuously reused for five times without 

appreciable loss in catalytic activity. 
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Fig. 6A.3: Imidazolium based BILs containing hydroxide ion 
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Scheme 6A.10: Synthesis of quinolone derivatives catalyzed by BILs 

Chen et al. prepared a series of imidazolium based basic ionic liquids by 

following the reaction Scheme 6A.11 [57]. The prepared ILs displayed strong basicity 

and relatively good thermal stability. Satisfactory catalytic activities were explored for 

solvent-free aza-Markovnikov addition reactions at room temperature when 2 mol% of 

[Bmim]Im was used as catalyst in one h (Scheme 6A.12). Experimental results revealed 

that H-bond is not formed between imidazole [Bmim]Im/imidazole and vinyl ester in 

case of aza-Markovnikov reactions. The use of imidazolide ionic liquids in aza-Michael 

addition was also studied as well. 

N
N

R

Br n

48 h

N
N

R

n

Br

HN N
NaOH/MeOH

25 oC MeOH, 25 oC

Et2O, 25 oC

N N

R

n
N

N

a: R=H, n=1; b: R=H, n=3; c:R=Me, n=1; d: R=Me, n=3

N NNa

1

1

(i)

(ii)

 

Scheme 6A.11: Synthesis of imidazolide ILs 
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Scheme 6A.12: Markovnikov addition of imidazole to vinyl acetate catalyzed by 

[Bmim]Im 

In 2013, Pourjavadi et al. [58] prepared one heterogeneous Brönsted-type basic 

catalysts MNP@P[imEt][OH], based on Fe3O4 magnetic nanoparticle (MNP) coated 

with the multilayers of poly(ethylvinylimidazolium) hydroxide, which proved to be 

highly efficient for the synthesis of 4H-benzo[b]pyrans in water (Scheme 6A.13). The 

separation of the catalyst was readily achieved from the reaction mixture using simple 

magnetic decantation and the catalyst could be easily recycled with similar catalytic 

activity. The catalyst was prepared by distillation-precipitation-polymerization of 1-

vinyl-3-ethyl imidazolium in the presence of surface modified magnetic nanoparticles 

(Scheme 6A.14). 

CHO

X
CN

CN

O O

Me Me

Me

Me

CN

NH2

O

X

MNP@P[imEt][OH]

H2O, r.t.

15-45 min

X = electron withdrawing or donating group
 

Scheme 6A.13: Synthesis of 4H-benzo[b]pyrans catalyzed by MNP@P[imEt][OH] 

Wang et al. used six basic ILs: 1-butyl-3-methylimidazolium 

acetate([Bmim]OAc), 1-butyl-3-methylimidazolium bicarbonate([Bmim]HCO3), 1-

butyl-3-methylimidazolium hydroxide ([Bmim]OH), 1-ethyl-3-

methylimimethylimidazolium hydroxide ([Emim]OH), 1-butyl-3-

methylimidazoliumbenzoate ([Bmim]PhCOO), and 1-ethylamine-3-methylimidazolium 

tetrafluoroborate  ([Emim]BF4) according to the reported procedures [29, 59, 60] and 

evaluated their catalytic activity in one-pot synthesis of 2-amino-4H-chromenes 

derivatives [42].  
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Scheme 6A.14: General procedure for synthesis of MNP@P[imEt][OH] 
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Hongbing et al. [61] synthesized a pyrrolidine carboxylic functionalized ionic 

liquid: 1-butyl-3-methylimidazolium-(S)-2-pyrrolidinecarboxylic acid salt 

([bmim][Pro]) via an improved procedure (Scheme 6A.15). The catalytic activity of this 

IL was tested for the synthesis of α, β-unsaturated carbonyl compounds via 

Knoevenagel condensation reaction. Desired products were obtained in good yields 

from the reaction of active methylene compounds with aldehydes and ketones at room 

temperature in aqueous media. The IL could be reused efficiently for six cycles.  

N
H2

O

O

NaOH, CH3OH

N
H

ONa

O
[Bmim]Cl

CH3OH
N N

H
N

O

O

[bmim][Pro]

Scheme 6A.15: Preparation of [bmim][Pro] IL 

Shaterian and Azizi [62] utilized two weak basic imidazolium ILs namely 1-

butyl-3-methylimidazolium imidazolide and 1-ethyl-3-methylimidazolium acetate (Fig. 

6A.4) obtained from reported method [63, 64] as reusable catalyst for solvent free 

synthesis of 7-amino-1, 3-dioxo-1, 2, 3, 5-tetrahydropyrazolo[1, 2-a][1, 2, 4]triazole and 

6, 6-dimethyl-2-phenyl-9-aryl-6, 7-dihydro-[1, 2, 4]triazolo[1, 2-a]indazole-1, 3, 8(2H, 

5H, 9H)-trione derivatives (Fig. 6A.5) separately. 

Sun et al. [65] performed a direct synthesis of dimethyl carbonate (DMC) from 

methanol and carbon dioxide using a series of hydroxyl functionalized basic ionic 

liquids and compared their task-specific basic nature as catalysts /solvent systems. They 

utilized various basic ionic liquid namely choline hydroxide, [Etmim][OH] (1-ethoxyl-

3-methylimidazolium hydroxide), [Etmim][Br] (1-ethoxyl-3-methylimidazolium 

bromide), [Emim][OH] (1-ethyl-3-methylimidazolium hydroxide), and [Bmim][OH] (1-

butyl-3-methylimidazoliumhydroxide) which were obtained according to the reported 

literatures [30, 66]. Among the screened ILs, choline hydroxide was found to be an 

effective catalyst for the conversion of DMC. 
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Fig. 6A.4: Structures of basic imidazolium and pyrazolium ILs 
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Fig. 6A.5: Structures of synthesized derivatives 

Luo et al. [67] prepared a piperidine and imidazole functionalized PEG bridged 

Lewis basic dicationic IL according to Scheme 6A.16. The catalytic activity of the IL 

was probed in the four component Hantzsch reaction under solvent-free condition. 

Desired hydroquinolines were obtained with excellent yields within short reaction time. 

The IL could be recovered easily and recycled successfully for at least eight times. 

The dibromination of electron poor and electron-rich alkenes were carried out 

using catalytic amount of known targeted ILs functionalized with a basic amino-

aliphatic chain (Fig. 6A.6) [68-70] in aqueous medium by Primerano et al. [71]. The 

amine functionalized basic ILs effectively catalyzes the direct addition of bromine at 

ambient temperature. The protocol was both chemo- and regioselective in nature and 

allowed the recycling of ionic liquids.  
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Scheme 6A.16: Synthetic route for PEG800-DPIL(Cl)  
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Fig. 6A.6: Structures of amino-alkyl chain functionalized ILs 

Guo et al. [72] used three imidazolium based basic ILs with different branched 

alkyl side chains ([Cnmim]OH, n = 2, 3, 4) (Fig. 6A.7) and used them as catalysts for 

green biodiesel production via transesterification reaction under microwave irradiation 

conditions. Among the screened ILs, [C2mim]OH exhibited the best catalytic activity 

affording 96% yield. The method showed quite improvement over the conventional 

method and it formed clearly biphasic systems immediately after the completion of 

transesterification of soybean oil.  
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Fig. 6A.7: Structures of imidazolium based basic ILs 

In 2014, Al-Sabagh et al. [73] studied the glycolysis of poly(ethylene 

terephthalate) (PET) catalyzed by Lewis basic ionic liquid [Bmim][OAc] which was 

synthesized according to a reported procedure [74]. They examined the effect of 

different factors such as temperature, time, ethylene glycol dosage, PET amount, 

[Bmim][OAc] dosage over the glycolysis reaction. Under the optimum reaction 

conditions, using [Bmim][OAc], 100% PET and about 58.2% bis(2-

hydroxyethyl)terephthalate (BHET)yield was obtained. 

Luo et al. [75] prepared a molecular size and shape-selective catalyst, 

microporous metal-organic framework HKUST-1 immobilized amino-functionalized 

basic ionic liquid (ABIL-OH), through facile impregnation and activation (Scheme 

6A.17). Characterizations of the basic catalysts revealed uniform distribution of active 

species ABIL-OH in well-defined HKUST-1 nano cavities of copper-based MOFs 

[Cu3(BTC)2] (HKUST-1)(BTC = 1, 3, 5-benzenetricarboxylate). The catalytic efficiency 

was observed for the Knoevenagel condensation and reused for five times with the same 

efficiency. 

 

Scheme 6A.17: The schematic illustration for synthesizing ABIL-OH/HKUST-1 

catalyst 
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The catalytic uses of nine basic imidazolium functionalized dicationic ILs (1a-l) 

(Fig. 6A.8) were explored by Rizzo et al. [76] for mononuclear rearrangement of (Z)-

phenylhydrazone of 3-benzoyl-5-phenyl-1, 2, 4-oxadiazoles to triazoles at 363 K 

(Scheme 6A.18). The authors prepared these ILs according to a reported procedure 

[77].The basic strength of the ILs were measured by Hammett indicator method. The 

outcome of the reaction was found to be greatly affected by the nature of interactions 

operating between cation and anion of the ionic liquid used.  
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X= Br

X= [BF4]

X= [NTf2]1c

SO3

SO3

1d Y = [1,5-nds]

O3S

SO3

1e Y = [2,6-nds]

COO

COO

1f Y = [1,4-bdc]

OOC

COO

1g Y = [2, 6-ndc]

OOC
(CH2)6

COO
OOC

(CH2)4

COO

1h Y = [ad] 1l Y = [sub]

1a

1b

Fig. 6A.8: Structures of basic ILs used by Rizzo et al. 
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Scheme 6A.18: Rearrangement of (Z)-phenylhydrazone of 3-benzoyl-5-phenyl-1, 2, 4-

oxadiazoles to triazoles  
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Zicmanis and Anteina [78] investigated the influence of main structural elements 

of 1, 3-dialkylimidazolium salts with different anions methanesulfonate, para-

toluenesulfonate, and dimethyl phosphate (DMP)] on their catalytic activities in the 

Knoevenagel reaction between benzaldehyde and ethyl cyanoacetate. The synthetic 

strategy for the ILs is presented in Scheme 6A.19. The 1, 3-dialkylimidazolium 

dimethyl phosphate IL could be successfully used both as reaction media and catalysts. 

Additionally, it was reused for five cycles with significant retention of catalytic activity. 

Sayyahi et al. [79] described the synthesis of symmetrical 

dialkyltrithiocarbonates from alkyl halides using carbon disulphide and a novel basic IL: 

 bis-methyl-3, 3-methylene-bisimidazolium dihydroxide (Scheme 6A.20) as a-׳1 ,1

reagent and phase transfer catalyst. The reaction was simple, rapid and gave high 

product yields.  

In 2015, Luo and co-workers also used [bmim]OH and [bmim]Im alkaline ILs as 

catalysts in the glycerolysis of soybean oil for monoacyl glycerol synthesis at 200 °C 

[80]. The [bmim]Im exhibited better catalytic efficiency than the [bmim]OH because of 

strong basic character. The catalyst could be recycled successfully for six consecutive 

cycles. 

Shiran and co-workers [81] also employed basic ionic liquid 1-methyl-3-n-

octylimidazolium hydroxide ([omim]OH) (Fig. 6A.9) for synthesis of thiazol-2-imine 

derivatives from the regioselective one pot three-component reaction of aryl amine, 

alkylisothiocyanate, and various α-haloketones at room temperature(Scheme 6A.21). 

The method had several advantages over the conventional ones in terms of yield, 

reaction time, facile work up and greater economic benefits. 

N NR

R1

MeO-Y N NR

R1

Me
Y HClO4 / AcOH N NR

R1

Me
ClO4

R = Me, n-Bu, n-octyl

R1 = H, Me

Y = O2P(OMe)2; OMs; OTs

Scheme 6A.19: Synthesis of 1, 3-dialkylimidazolium salts with different anions 
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Scheme 6A.20: Synthesis of symmetrical dialkyltrithiocarbonates catalyzed by 1, 1׳-bis-

methyl-3, 3-methylene-bisimidazolium dihydroxide 

N N

OH
 

Fig. 6A.9: Chemical structure of 1-methyl-3-n-octylimidazolium hydroxide 
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Scheme 6A.21: Synthesis of thiazol-2-imine derivatives catalyzed by [omim]OH 

N N OH

OH-

[hpmim]OH
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[glymim]OH

 

Fig. 6A.10: Structure of [hpmim]OH and [glymim]OH 

Nowicki et al. [82] introduced two new imidazolium based basic ILs: 1-methyl-

3-alkylimidazolium hydroxide ([hpmim]OH and [glymim]OH (Fig. 6A.10). The 

catalytic activities of the ILs were explored in the transesterification of rapeseed oil with 

methanol and compared to the well explored [bmim]OH ionic liquid. Nearly 100% 
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conversion of rapeseed oil was achieved in case of [glymim]OH IL due to its structural 

similarity to glycerol.  

Shelke and Khadse [83] also utilized basic ionic liquid 1-benzyl-3-

methylimidazolium hydroxide([bnmim]OH) as catalyst in Knoevenagel condensation of 

4-oxo-(4H)-1-benzopyran-3-carbaldehydes and 2-chloroquinoline-3-carbaldehyde with 

various active methylene compounds viz. malononitrile, ethylcyanoacetate, cyanoacetic 

acid, cyanoacetamide and Meldrum’s acid (Scheme 6A.22). Desired products were 

obtained in short reaction time with excellent yields. Additionally, the IL could be 

recycled up to fourth consecutive cycle efficiently. 

Ar H

O

Z

CN [bnmim]OH

grinding Ar

H

Z

CN

Ar =

R1
O

or
N

R2

Cl

N N

OH-

[bnmim]OH

 

Scheme 6A.22: Knovenagel condensation catalyzed by [bnmim]OH 

Again, Yi et al. [84] utilized 1‐butyl‐3‐methylimidazolium imidazolide 

([Bmim]Im), 1‐butyl‐3‐methylimidazolium hydroxide ([Bmim]OH), 

1‐allyl‐3‐methylimidazolium imidazolide ([Amim]Im), and 

1‐allyl‐3‐methylimidazolium hydroxide ([Amim]OH) and used them as catalysts for 

synthesis of glycerol 1, 2‐carbonate from glycerol under solvent-free condition (Scheme 

6A.23). They prepared these ILs following a reported procedure [85] (Scheme 6A.24). 

Under optimized reaction conditions, using [Bmim]Im as catalyst, 98.4% glycerol 

conversion and up to 100% GC selectivity at 70 °C under ambient pressure was 

achieved. The ILs could be recycled and reused for three cycles with the same catalytic 

activity. 
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Scheme 6A.23: Synthesis of glycerol 1, 2‐carbonate from glycerol in presence 

of ILs as catalyst  
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Scheme 6A.24: Synthetic scheme for preparation of ILs used by Yi et al. 

In 2015, Mamaghani and Alavi [86] prepared fused α-pyrones from Baylis-

Hillman acetates and various cyclic dicarbonyl compounds in the presence of basic ionic 

liquid 1-butyl-2, 3-dimethylimidazoliumhydroxide ([bdmim]OH) under ultrasonic 

irradiation (Scheme 6A.25). Desired α-pyrones were obtained in good-excellent yields 

within short reaction times using this IL as catalyst. 
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Scheme 6A.25: Synthesis of fused α-pyrones in presence of [bdmim]OH as catalyst 

Ding et al. [87] reported the synthesis of a novel basic polymerized ionic liquid 

(BPIL): polymeric 1-[(4-ethenylphenyl)methyl]-3-propylimidazolium imidazolide and 

explored its catalytic efficiency in aqueous Knoevenagel reaction of a wide range of 

aldehydes and ketones with active methylene compounds at room temperature. The 

route for synthesis of the IL is presented in Scheme 6A.26. In comparison to the 

conventional inorganic bases, the basic IL effectively catalyzes the reactions due to 

intensive base sites and high surface activity. The catalytic system showed high catalytic 

activity up to fifth consecutive cycle.  

Chaugule et al. [88] demonstrated the synthesis and uses of a binary catalyst 

systems of tricationic imidazolium room temperature ILs such as 

[GLY(mim)3][NTf2]3IL/DBU, [GLY(mim)3][NTf2]3/MTBD and 

[GLY(mim)3][NTf2]3/TBD for direct preparation of dimethyl carbonate from CO2 and 

methanol without the need of a dehydration system (Scheme 6A.27). The 

[GLY(mim)3][NTf2]3 IL/1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) system was found 

to have 37% MeOH conversion and 93% DMC selectivity under mild reaction 

conditions. Moreover, the [GLY(mim)3][NTf2]3 IL/DBU catalytic system could be 

easily recovered and reused three times with similar  catalytic activity. 

Haidarizadeh and Taheri [89] developed polystyrene-supported 1, 4-bis(3-

methylimidazolium-1-yl)butane dihydroxide basic dicationic ionic liquid as 

heterogeneous catalyst for one-pot synthesis of chromene derivatives (Fig. 6A.11) 
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(Scheme 6A.28). The unique features of the catalyst were high thermal stability, 

recyclability, excellent catalytic activity in terms of yield and reaction time, high 

turnover number and turnover frequency, and also using water as a solvent. 
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Scheme 6A.26: Preparation of BPIL 

Chen et al. developed [90] an interesting observation for tuning of basicity of ILs 

with the change of substituted imidazolium or triazolium anions in combination with 

phosphonium cation (Fig. 6A.12) for efficient synthesis of alkylidene carbonates 

according to Scheme 6A.29 using atmosphere CO2. Excellent yields were obtained due 

to basic ionic liquids’ dual roles both as absorbents and as activators.  
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Scheme 6A.27: Preparation of tricationic imidazolium room temperature ILs 

Wang et al. [91] prepared basic morpholinium ionic liquid [Nbmm][OH] (Fig. 

6A.13) from a mixture of N-butyl morpholine, N-butyl bromide, and KOH by two-step 

method and was used to catalyze transesterification of soybean oil with methanol to 

biodiesel. The effects of molar ratio of methanol to oil, reaction temperature, and 

amount of catalyst on the biodiesel yield were investigated. The optimized condition 

yielded of 94.5% yield with catalyst amount of 3.0 wt%, and methanol to soybean oil 

molar ratio of 14:1 at reaction temperature of 60 °C for 6 h. The catalyst retained 

activity up to six consecutive cycles. 

Jiao et al. [92] prepared magnetic CoFe2O4 nanoparticles supported basic 

poly(ionic liquid)s catalysts (g-p[VRIm][OH]/MCFs) (Scheme 6A.30) through surface 

grafting method. The catalyst showed higher loading of ionic liquids, better stability and 

excellent paramagnetic property which could not be observed by conventional co-

polymerization method. The catalytic activities were evaluated for the transesterification 

and Knoevenagel condensation. Additionally, the catalysts could be easily separated 

with the assistance of an external magnetic field. The catalyst was reused for four times 

with slight loss of catalytic efficiencies. 
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Scheme 6A.28: Immobilization of basic IL PS-[C4(MIM)2][OH]2 on to the polystyrene 

 

O

CN

NH2

O

R

O

NH2

CN

R

O

CN

NH2

R

R= Electron withdrawing or donating
 

Fig. 6A.11: General structures of substituted 2-amino-4H-benzo[h]chromenes, 2-amino-

4H-benzo[f]chromenes, and 2-amino-4H-tetrahydrochromene derivatives synthesized 
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Fig. 6A.12: Structures of the anions and the cations in basic ILs 
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Scheme 6A.29: Synthesis of alkylidene carbonates catalyzed by basic ILs 
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Fig. 6A.13: Structure of morpholinium ionic liquid [Nbmm][OH] 

Scheme 6A.30: Synthetic procedure for preparation of g-p[VRIm][OH]/MCFs 
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6A.3. Base catalyzed Knoevenagel condensation reaction 

 The Knoevenagel condensation is an important, general and versatile C-C bond 

formation reaction in organic synthesis [93-95] which is usually catalyzed by a base, an 

acid, or a heterogeneous neutral support. The reaction is also considered as one of the 

modified version of Aldol condensation. 

 Classically, the Knoevanagel condensation occurs in between carbonyl or 

heterocarbonyl compound and any compound having an active methylene compound to 

produce α, β-unsaturated compounds using organic base such as piperidine, pyridine, 

amines or their salts [96, 97] in organic solvents such as benzene, toluene, THF, DCM 

etc. at different temperature (Scheme 6A.31). The use of excess amount of aliphatic 

aldehydes (4-6 times) is necessary for some reactions to produce sufficient yield of the 

products in less reaction time when the reaction rate is slow in presence of organic base 

catalyst [98]. The α, β-unsaturated product obtained in this path have been widely used 

in organic synthesis, in biological science, natural product chemistry, polymer 

chemistry, fine chemicals, medicine, agriculture and light emitting materials [1,13-15]. 

For example, the structural variation of benzylidenes or alkylidenes intermediates 

through the Knoevenagel reaction is possible by changing the structure of nucleophilic 

reagents such as β-keto ester [99, 100], diketones [99], ketothioesters [99], malonates, 

malononitriles [101], keto amides, and cyclic esters, along with different aromatic [102] 

or aliphatic aldehydes [103]. 
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X, Y = CN, COOEt, COOMe
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R1 X

Y
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Scheme 6A.31: General scheme for Knoevenagel condensation 
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The biological activity of alkylidene malonate was observed in case of long-

chain alkylidene malonates (LoCAM) namely pentadecylidene malonate, a simplified 

analogue of anacardic acid, exhibits a good modulation of the activity of histone 

acetyltransferases (Fig. 6A.14) [103]. 

OH

COOH

Anacardic acid (KAT inhibitor)

OEtEtO

O O

Pentadecylidenemalonate

KAT3A inhibitor/KAT2B activator

 

Fig. 6A.14: KAT inhibitors and activator: anacardic acid and pentadecylidene malonate 

Jung et al. [104] utilized the Knoevanagel condensation as key synthetic step for 

the total synthesis of anticoagulant flocoumafen. In addition to the above mentioned 

amino bases, a large number of modified basic catalytic systems have been developed 

for the Knœvenagel condensation in recent years which include Al2O3[105], fly ash 

supported CaO [106], NH4OAC [107], CdI2 [108], K2O-Al2O3 [109], zeolites [110], 

organic resins [111], mixed magnesium-aluminium oxides derived from hydrotalcites 

[112], sepiolites [113], aluminophosphonatesoxynitrides (AIPON) [114], synthetic 

phosphate Na2CaP2O7 [115], ion-exchange resins [116], potassium fluoride (KF) [117], 

layered silicate PLS-1 [118], silica gel [119], niobium chloride [120], MgO/ZrO2 [121], 

Yb(OTf)3 [122], chitosan [123], fluorapatite [121] and ionic liquids [27, 48, 52] etc.  

The use of task specific basic ILs as dual solvent-catalyst system is an attractive 

alternative of the above mentioned some non-reusable basic catalyst for the synthesis of 

benzylidene or alkylidene derivatives in absence of organic solvent at mild condition. 

Although, some of the ILs such as 1-butyl-3-methylimidazolium hexafluorophosphate 

([bmim]PF6) or 1-butyl-3-methylimidazolium tetrafluoroborate ([bmim]BF4) [124] and 

Lewis acidic chloroaluminate ILs were employed as medium/catalyst with or without 

any added catalyst for performing the condensation with many limitations [125]. 

The presence of one or more Brönsted/Lewis base sites within the basic ILs 

make them suitable for studying the catalytic efficiencies of basic ILs through the 

Knoevenagel condensation reactions using variety of aliphatic or aromatic carbonyl 

compounds and different active methylene compounds. The review of literature reveals 
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several applications of basic ILs based on TMG (tetramethyl guanidine) [126], cyclic 

guanidine [127], alkanolamine [128-133], methoxylpropylamine [134], DABCO [135, 

136], DBU [137], N, N, N׳, N׳-tetramethyl-N׳-hexyl-ethylenediamine (TMHEDA) 

[138], pyrrolidine [139-141], piperidine [142], N,N-dimethylethanolamnium (DMEA) 

[143], tetrabutylphosphonium [144], hexamethylenetetramine [145], 

tetrabutylammonium [146] for the Knoevenagel condensation under solvent free 

medium or in presence of other solvent at different temperatures and reaction time to 

produce low to high yields of products. Most of the tested ILs are monocationic 

possessing only one basic site which may cause reducing basicity of the IL to abstract 

the more acidic methylene proton for nucleophiic attack on the carbonyl group [137]. 

Only few reports are found for dicationic basic ILs catalyst [147] and no examples are 

found for the tricationic basic ILs.  

By considering the review of literature, we planned to synthesize new series of 

triethylamine bridged tricationic basic ILs containing imidazolium, pyridinium moiety 

as cations with variation of three anions such as hydroxide, acetate and imidazolide by 

following the reaction Scheme 6B.1 (6B.1. Results and discussion). As basic ionic 

liquids, they were tested as recyclable homogeneous catalysts for Knovenagel 

condensation of aromatic or aliphatic aldehydes/aliphatic ketone with active methylene 

compounds in absence of solvent and also in solution at room temperature. 
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6A.1. Mulfunctionalized basic ionic liquids  

Multifunctionalized ionic liquids especially dicationic and tricationic liquids 

have been reported to have a wide range of tunable physical properties than most 

traditional, singly charged ILs such as higher density, melting point, viscosity, surface 

tension and glass transition temperature [1, 2]. These are possible only by variation of 

the chemical structures of suitable cation-anion pairs within the ionic liquid 

composition. More numbers of structural variations of ion-pairs are possible with the 

dicationic and tricationic ionic liquids. Different types of muiticationic ionic liquids 

were synthesized based on ammonium [3-5], imidazolium [6], pyridinium [7] and 

pyrrolidium [1] cations to explore their physical properties. 

Armstrong and co-workers [8, 9] studied the effect of various counter ions on the 

densities of symmetrical tricationic ILs that was in the order of NTf2
-
>PF6

-
>OTf

-
>BF4

-
 

They observed thermal decomposition temperatures of some of the ILs to be greater 

than 400 °C which was quite encouraging compared to the corresponding monocationic 

ILs. Their melting points depend on the flexibility of the central core unit. The flexible 

core structure of tricationic ILs possesses lower melting point when compared to the ILs 

with rigid core structure unit. 

The presence of three charges in very close contact on the flexible tricationic ILs 

can be described as possible reason for existence of high polarity in such ILs at room 

temperature [5]. Due to their tunable physicochemical properties, they have been 

utilized as novel solvent systems in organic synthesis and catalytic studies [10], 

electrochemistry [11], high temperature lubricants [12], selective gas chromatographic 

stationary phases [13], molecular pincers for anion recognition [14], ionic liquid crystals 

[15], host-guest complexes [16], gel phases [17] and so on.  

The development of environmentally benign task-specific basic ionic liquids and 

their uses in some base-catalyzed organic reactions offer a great potential for 

replacement of toxic, corrosive and water miscible inorganic/ organic bases in catalytic 

reactions [18]. They exhibit several advantages over inorganic bases such as water and 

air stability, immiscibility with many organic solvents, noncorrosive and nonvolatile, 

high catalytic efficiency and easy reusability after simple separation from the reaction 

mixture. 
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The acidity or basicity of an ionic liquid is governed by the nature of cation, 

anion, or by combination of cation and anion. Most of the basic mono cationic ionic 

liquids are made from combination of basic anions with most common N-

alkylimidazolium, alkylammonium or N-alkylpyridinium cations. Other cations include 

pyrrolidinium, pyrimidinium, pyrazolium, triazolium, pyridazinium, pyrazinium, 

oxazolium and thiazolium. A wide array of anions including carboxylates, fluorinated 

carboxylates, hydroxide sulfonates, fluorinated sulfonates, imides, borates, phosphates, 

antimonates, halides, halometallates etc. can be paired with chosen cation component 

for achieving Lewis Basic or Brönsted basic ionic liquids [19]. These basic ionic liquids 

may be classified as Brönsted or Lewis basic depending upon the type of anion used to 

formulate the ionic liquids. Another method for designing of strong basic ILs relied on 

attachment of specific basic functionalities to the cation. The ILs derived by this method 

sometimes exhibit greater thermal stability than those containing only basic anions [20]. 

The attachment of more number of basic anions in multi-charged ILs may 

influence the basicity, thermal stability, water sensitivity, viscosity, conductivity and 

solubility of the ILs in various solvents. The literature review reveals that the basic ionic 

liquids either work as efficient base catalyst or basic reaction medium for various types 

of base catalyzed condensation reactions such as Aldol condensation, Knoevenagel 

reaction, Claisen-Schmidt reaction etc. depending on the strength of basic sites i.e 

Brönsted basic or Lewis basic [21-23]. As compared to the functionalized acidic ILs, the 

reports related to the basic ILs are quite few. But, they have the ability to replace 

conventional basic reagents like NaOH, KOH, K2CO3, NaHCO3, NaOAc etc. in organic 

reactions by acting as reusable basic catalysts. These conventional bases produce 

excellent results only with stoichiometric amount of bases for any type of base 

promoted organic reactions. In industrial scale reactions, they release large amount of 

toxic and corrosive basic waste to the environment. From this point of view, the nature 

of basic ionic liquids serves its purpose much justifiably and their function to act as both 

solvent and catalyst make the process much easier to handle. Therefore, it is always an 

exciting challenge to develop novel Brönsted-type basic catalytic systems that are 

environment friendly, recyclable and cost effective in nature.  
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In next section, we include the literature review of pyridinium and imidazolium 

basic ILs and their applications as basic catalyst/solvents in various organic reactions till 

2016. 

6A.2. Imidazolium and pyridinium based basic ionic liquids and their 

uses in organic synthesis including Knoevenagel condensation 

In literature, a number of basic ionic liquids are found derived from complex 

halometallate anions and N-alkylpyridinium or N-alkylimidazolium cations [24]. The 

mole fraction of metal halides utilized to synthesize these ionic salts determines whether 

the resulting salt will be Lewis acidic or basic or neutral in nature. The most important 

example is the basic chloroaluminate(III) ionic liquid obtained through reactive 

dissolution of AlCl3 in excess of chloride-based ionic liquid [cation]Cl with mole 

fraction of AlCl3<0.5 according to equation (1) [25]. In this situation, the metal ion may 

be fully saturated with its coordination number and so will not act as Lewis acids. 

nCl
-
 + AlCl3 →AlCl4 + (n-1)Cl

-
 (χAlCl3

<0.5)                   (1) 

These chlorometallate systems have been found to act as good solvents in 

electrochemistry, spectroscopy and also in catalysis [26-28].  

The imidazolium based Brönsted-basic IL, 1-butyl-3-methylimidazolium 

hydroxide [bmim][OH] was prepared by Ranu and his co-worker in 2005 using a 

reaction mixture of [bmim]Br and KOH in dichloromethane under vigorous stirring at 

room temperature for 10 h [29]. This IL was explored as catalysts/and reaction medium 

in Michael addition reactions of 1, 3-dicarbonyl compounds, cyano esters, and nitro 

alkanes to a variety of conjugated ketones, carboxylic esters, and nitriles (Scheme 

6A.1). The respective mono and bis-addition products were formed in excellent yields 

within 0.5-4 h time duration. Overall, the method had various advantages over the 

existing protocols with regard to operational simplicity, reaction time and yield, general 

applicability, avoid of toxic organic solvent and catalyst etc. 
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Scheme 6A.1: Michael addition catalyzed by [bmim]OH 

Later in 2006, Ranu et al. [22] utilized this IL as catalyst in the Knoevenagel 

condensation reactions of aliphatic and aromatic aldehydes and ketones with diethyl 

malonate, malononitrile, ethyl cyanoacetate, malonic acid and ethyl acetoacetate in 

absence of any organic solvent (Scheme 6A.2). The desired products were obtained 

within short reaction times (10-30 min) at room temperature. With this protocol, the 

condensation of aliphatic aldehyde with diethyl malonate was easily achieved, which is 

otherwise a difficult job to achieve. 

R2
O

R1

E2

E1

[bmim]OH

(20 mol%)

r.t. R2

R1 E1

E2

R1, R2 = alkyl, aryl, H

E1, E2 = CN, COMe, COOMe, COOEt, COOH
 

Scheme 6A.2: Knoevenagel condensation catalyzed by [bmim]OH IL in absence of 

organic solvent 

A large number of studies on uses of [bmim][OH] ionic liquid have been 

reported in different type of organic reactions as catalyst/solvent/promoter. Some of the 

base catalyzed reactions include Knoevenagel condensation [22, 30], Markovnikov 

addition [31], Michael addition [32], aza Michael reactions [33], transesterification [34] 

and polymerization reaction [35]. It was also utilized for base catalyzed one pot 

synthesis of oxygen and nitrogen heterocycles. Few examples of such heterocycles are 

polyfunctionalized-4H-pyrans [36], quinazoline-2,4 (1H, 3H)-diones [37], quinoline 
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[38], 2-alkylsubstituted chromanones [39], benzo[g]chromene derivatives [40], pyrazolo 

[3, 4-b] pyridines [41], 2-aroylbenzofuran-3-ols [42], 2-Amino-4H-chromenes [43], 

benzo[a]pyrano[2, 3-c]phenazine derivatives [44], substituted benzofurans [45], 1, 4, 5-

trisubstituted-1, 2, 3-triazoles [46], polyhydroquinolines [47] etc. 

In the same year, Tai et al. [48] developed a Lewis basic 1-ethyl-3-

methylimidazolium chloride/tetrafluoroborate ionic liquid The authors studied the 

electrodeposition of palladium-silver alloy from the ionic liquid solutions containing 

Pd(II) and Ag(I) within a temperature range of 35-120 °C. Both the electrodeposition 

involved over potential driven nucleation process and Pd-Ag electrodeposits were 

obtained in nodular shapes.  

At the same time, Cai et al. [49] prepared two amino-functionalized imidazolium 

based ionic liquid: 1-aminoethyl-3-methylimidazolium hexafluorophosphate ([2-

aemim][PF6]) and 1-aminoethyl-3-methylimidazolium tetrafluoroborate ([2-

aemim][BF4]) (Fig. 6A.1) and explored their catalytic activity towards the Knoevenagel 

condensation of aromatic aldehydes with malononitrile and ethyl cyanoacetate in 

aqueous media. The combination of room temperature condition, aqueous media and 

use of recyclable IL as catalyst made this protocol an efficient eco-friendly one. The 

respective products were obtained in very good to excellent yields. 

N N
NH2

X-

X- = PF6
-, BF4

-

 

Fig. 6A.1: Structures of [2-aemim][PF6] and [2-aemim][BF4] 

In 2007, Guo-hua et al. [50] prepared 1-(2-amine-ethyl)-3-methyl-imidazolium 

boron tetrafluoride (Scheme 6A.3) as basic IL and used as catalyst for condensation of 

aldehydes/ketones with activated methylene compounds in aqueous media at 30-50 °C 

temperature. The IL was quite active and the desired products were formed within 

considerable time frame in 70-97% yields. It could be easily recycled till six times with 

little loss in activity. 
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Scheme 6A.3: Preparation of 1-(2-amine-ethyl)-3-methyl-imidazolium boron 

tetrafluoride IL 

In 2008, two basic ionic liquids, 1-butyl-3-methylimidazolium trifluoroacetate 

([bmim][CF3COO]) and 1-butyl-3-methylimidazolium acetate ([bmim][CH3COO]) were 

employed for measurement of heat capacities in the temperature range of 5-370 K using 

adiabatic calorimetry method by Strechan et al.[51]. They observed dependence of 

thermal behavior of [bmim][CF3COO] on crystallization procedure. 

Xiao et al. [52] explored hydrolysis of propylene carbonate to 1, 2-propylene 

glycol using a SBIL catalyst (Scheme 6A.4). The polystyrene based imidazolium basic 

catalyst was prepared by following the Scheme 6A.5. The effects of temperature, time, 

molar ratio of water to propylene carbonate, choice of catalyst, and amount of catalyst 

were investigated. In addition, the catalyst could be reused at least up to five times with 

slight loss of catalytic activity. 

O O

O

H2O

HO OH
SBIL

 

Scheme 6A.4: Hydrolysis of propylene carbonate to 1, 2-propylene glycol 
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N

OH

N

N
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KHCO
3

Scheme 6A.5: Preparation of supported ILs (SBIL) 

Zhao et al. described the immobilization of basic amino-functionalized task-

specific ILs: N-(3-aminopropyl), N(3)-(3-triethoxysilylpropyl)-4,5-dihydroimidazolium 

bromide hydrobromide on mesoporous silicas of MCM-41 and SBA-11 followed by 

neutralization of protonated amino group with KOH (Scheme 6A.6) [53]. The catalytic 

activity of this system was tested for the Knoevenagel condensation in aqueous medium 

(Scheme 6A.7). 

In 2010, an imidazolium based task-specific ionic liquid [IL-OPPh2] (Fig. 6A.2) 

was prepared by Valizadeh and Gholipour following a reported procedure [54] that 

bears a weak Lewis basic phosphinite group in its structure [55]. This IL was examined 

as reusable catalyst/solvent system for the condensation of arylaldehydes with 

malononitrile, dimethyl (diethyl) malonate, and ethyl cyanoacetate at 60 °C under 

solvent-free condition within 8-20 min reaction (Scheme 6A.8).  

Forsyth et al. [56] in a report described the synthesis of amino-functionalized 

imidazolium based IL according to Scheme 6A.9 along with other members of 

ammonium based ILs. The qualitative basicity of the ILs was evaluated from their 

interaction with a universal indicator. The catalytic activity of these ILs was evaluated 

for Heck and Knoevenagel reactions successively. 

In 2011, Kowsari and Mallakmohammadi [38] synthesized few basic ionic 

liquids (BILs) based on imidazolium cation in association with hydroxide anion (Fig. 

6A.3) and explored their catalytic efficiencies towards the synthesis of quinoline 

derivatives from the condensation reactions of isatin with ketones by ultrasonic 

irradiation in aqueous media (Scheme 6A.10).  
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Scheme 6A.6: Synthetic protocol for immobilized basic ILs: [APMIM]BF4 and amino 

functionalized mesoporous silicas 

O
H

R1

H2C
CN

R2

Catalyst H

R1

CN

R2

R1: Ph; 2-Cl-Ph; 4-OH-Ph; 4-OCH3-Ph; 4-NO2-Ph

R2: CN; COOCH2CH3
 

Scheme 6A.7: Knoevenagel condensation catalyzed by immobilized basic ILs, 

[APMIM]BF4 and amino functionalized mesoporous silicas  
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Fig. 6A.2: Structure of IL-OPPh2 
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Scheme 6A.8: IL-OPPh2 catalyzed Knoevenagel condensation reaction and synthesis of 

coumarin derivatives 

N
Cl

N
N

1. Na2CO3, MeCN

2. LiNTf2

N
N

N
[NTf2]

[iPr2N(CH2)2mim][NTf2]

 

Scheme 6A.9: Preparation of amino-functionalized imidazolium based IL 

The use of BILs and ultrasonic irradiation promote the reactions efficiently at 

room temperature and affect both the reaction time and yield remarkably. Among the 

BILs used for this study, reusability study for [bmim]OH was carried out and it was 

found quite promising. The BIL was continuously reused for five times without 

appreciable loss in catalytic activity. 
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Fig. 6A.3: Imidazolium based BILs containing hydroxide ion 
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Scheme 6A.10: Synthesis of quinolone derivatives catalyzed by BILs 

Chen et al. prepared a series of imidazolium based basic ionic liquids by 

following the reaction Scheme 6A.11 [57]. The prepared ILs displayed strong basicity 

and relatively good thermal stability. Satisfactory catalytic activities were explored for 

solvent-free aza-Markovnikov addition reactions at room temperature when 2 mol% of 

[Bmim]Im was used as catalyst in one h (Scheme 6A.12). Experimental results revealed 

that H-bond is not formed between imidazole [Bmim]Im/imidazole and vinyl ester in 

case of aza-Markovnikov reactions. The use of imidazolide ionic liquids in aza-Michael 

addition was also studied as well. 

N
N

R

Br n

48 h

N
N

R

n

Br

HN N
NaOH/MeOH

25 oC MeOH, 25 oC

Et2O, 25 oC

N N

R

n
N

N

a: R=H, n=1; b: R=H, n=3; c:R=Me, n=1; d: R=Me, n=3

N NNa

1

1

(i)

(ii)

 

Scheme 6A.11: Synthesis of imidazolide ILs 
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Scheme 6A.12: Markovnikov addition of imidazole to vinyl acetate catalyzed by 

[Bmim]Im 

In 2013, Pourjavadi et al. [58] prepared one heterogeneous Brönsted-type basic 

catalysts MNP@P[imEt][OH], based on Fe3O4 magnetic nanoparticle (MNP) coated 

with the multilayers of poly(ethylvinylimidazolium) hydroxide, which proved to be 

highly efficient for the synthesis of 4H-benzo[b]pyrans in water (Scheme 6A.13). The 

separation of the catalyst was readily achieved from the reaction mixture using simple 

magnetic decantation and the catalyst could be easily recycled with similar catalytic 

activity. The catalyst was prepared by distillation-precipitation-polymerization of 1-

vinyl-3-ethyl imidazolium in the presence of surface modified magnetic nanoparticles 

(Scheme 6A.14). 

CHO

X
CN

CN

O O

Me Me

Me

Me

CN

NH2

O

X

MNP@P[imEt][OH]

H2O, r.t.

15-45 min

X = electron withdrawing or donating group
 

Scheme 6A.13: Synthesis of 4H-benzo[b]pyrans catalyzed by MNP@P[imEt][OH] 

Wang et al. used six basic ILs: 1-butyl-3-methylimidazolium 

acetate([Bmim]OAc), 1-butyl-3-methylimidazolium bicarbonate([Bmim]HCO3), 1-

butyl-3-methylimidazolium hydroxide ([Bmim]OH), 1-ethyl-3-

methylimimethylimidazolium hydroxide ([Emim]OH), 1-butyl-3-

methylimidazoliumbenzoate ([Bmim]PhCOO), and 1-ethylamine-3-methylimidazolium 

tetrafluoroborate  ([Emim]BF4) according to the reported procedures [29, 59, 60] and 

evaluated their catalytic activity in one-pot synthesis of 2-amino-4H-chromenes 

derivatives [42].  
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Scheme 6A.14: General procedure for synthesis of MNP@P[imEt][OH] 
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Hongbing et al. [61] synthesized a pyrrolidine carboxylic functionalized ionic 

liquid: 1-butyl-3-methylimidazolium-(S)-2-pyrrolidinecarboxylic acid salt 

([bmim][Pro]) via an improved procedure (Scheme 6A.15). The catalytic activity of this 

IL was tested for the synthesis of α, β-unsaturated carbonyl compounds via 

Knoevenagel condensation reaction. Desired products were obtained in good yields 

from the reaction of active methylene compounds with aldehydes and ketones at room 

temperature in aqueous media. The IL could be reused efficiently for six cycles.  

N
H2

O

O

NaOH, CH3OH

N
H

ONa

O
[Bmim]Cl

CH3OH
N N

H
N

O

O

[bmim][Pro]

Scheme 6A.15: Preparation of [bmim][Pro] IL 

Shaterian and Azizi [62] utilized two weak basic imidazolium ILs namely 1-

butyl-3-methylimidazolium imidazolide and 1-ethyl-3-methylimidazolium acetate (Fig. 

6A.4) obtained from reported method [63, 64] as reusable catalyst for solvent free 

synthesis of 7-amino-1, 3-dioxo-1, 2, 3, 5-tetrahydropyrazolo[1, 2-a][1, 2, 4]triazole and 

6, 6-dimethyl-2-phenyl-9-aryl-6, 7-dihydro-[1, 2, 4]triazolo[1, 2-a]indazole-1, 3, 8(2H, 

5H, 9H)-trione derivatives (Fig. 6A.5) separately. 

Sun et al. [65] performed a direct synthesis of dimethyl carbonate (DMC) from 

methanol and carbon dioxide using a series of hydroxyl functionalized basic ionic 

liquids and compared their task-specific basic nature as catalysts /solvent systems. They 

utilized various basic ionic liquid namely choline hydroxide, [Etmim][OH] (1-ethoxyl-

3-methylimidazolium hydroxide), [Etmim][Br] (1-ethoxyl-3-methylimidazolium 

bromide), [Emim][OH] (1-ethyl-3-methylimidazolium hydroxide), and [Bmim][OH] (1-

butyl-3-methylimidazoliumhydroxide) which were obtained according to the reported 

literatures [30, 66]. Among the screened ILs, choline hydroxide was found to be an 

effective catalyst for the conversion of DMC. 
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Fig. 6A.4: Structures of basic imidazolium and pyrazolium ILs 
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Fig. 6A.5: Structures of synthesized derivatives 

Luo et al. [67] prepared a piperidine and imidazole functionalized PEG bridged 

Lewis basic dicationic IL according to Scheme 6A.16. The catalytic activity of the IL 

was probed in the four component Hantzsch reaction under solvent-free condition. 

Desired hydroquinolines were obtained with excellent yields within short reaction time. 

The IL could be recovered easily and recycled successfully for at least eight times. 

The dibromination of electron poor and electron-rich alkenes were carried out 

using catalytic amount of known targeted ILs functionalized with a basic amino-

aliphatic chain (Fig. 6A.6) [68-70] in aqueous medium by Primerano et al. [71]. The 

amine functionalized basic ILs effectively catalyzes the direct addition of bromine at 

ambient temperature. The protocol was both chemo- and regioselective in nature and 

allowed the recycling of ionic liquids.  
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Scheme 6A.16: Synthetic route for PEG800-DPIL(Cl)  
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Fig. 6A.6: Structures of amino-alkyl chain functionalized ILs 

Guo et al. [72] used three imidazolium based basic ILs with different branched 

alkyl side chains ([Cnmim]OH, n = 2, 3, 4) (Fig. 6A.7) and used them as catalysts for 

green biodiesel production via transesterification reaction under microwave irradiation 

conditions. Among the screened ILs, [C2mim]OH exhibited the best catalytic activity 

affording 96% yield. The method showed quite improvement over the conventional 

method and it formed clearly biphasic systems immediately after the completion of 

transesterification of soybean oil.  
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Fig. 6A.7: Structures of imidazolium based basic ILs 

In 2014, Al-Sabagh et al. [73] studied the glycolysis of poly(ethylene 

terephthalate) (PET) catalyzed by Lewis basic ionic liquid [Bmim][OAc] which was 

synthesized according to a reported procedure [74]. They examined the effect of 

different factors such as temperature, time, ethylene glycol dosage, PET amount, 

[Bmim][OAc] dosage over the glycolysis reaction. Under the optimum reaction 

conditions, using [Bmim][OAc], 100% PET and about 58.2% bis(2-

hydroxyethyl)terephthalate (BHET)yield was obtained. 

Luo et al. [75] prepared a molecular size and shape-selective catalyst, 

microporous metal-organic framework HKUST-1 immobilized amino-functionalized 

basic ionic liquid (ABIL-OH), through facile impregnation and activation (Scheme 

6A.17). Characterizations of the basic catalysts revealed uniform distribution of active 

species ABIL-OH in well-defined HKUST-1 nano cavities of copper-based MOFs 

[Cu3(BTC)2] (HKUST-1)(BTC = 1, 3, 5-benzenetricarboxylate). The catalytic efficiency 

was observed for the Knoevenagel condensation and reused for five times with the same 

efficiency. 

 

Scheme 6A.17: The schematic illustration for synthesizing ABIL-OH/HKUST-1 

catalyst 
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The catalytic uses of nine basic imidazolium functionalized dicationic ILs (1a-l) 

(Fig. 6A.8) were explored by Rizzo et al. [76] for mononuclear rearrangement of (Z)-

phenylhydrazone of 3-benzoyl-5-phenyl-1, 2, 4-oxadiazoles to triazoles at 363 K 

(Scheme 6A.18). The authors prepared these ILs according to a reported procedure 

[77].The basic strength of the ILs were measured by Hammett indicator method. The 

outcome of the reaction was found to be greatly affected by the nature of interactions 

operating between cation and anion of the ionic liquid used.  
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Fig. 6A.8: Structures of basic ILs used by Rizzo et al. 
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Scheme 6A.18: Rearrangement of (Z)-phenylhydrazone of 3-benzoyl-5-phenyl-1, 2, 4-

oxadiazoles to triazoles  
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Zicmanis and Anteina [78] investigated the influence of main structural elements 

of 1, 3-dialkylimidazolium salts with different anions methanesulfonate, para-

toluenesulfonate, and dimethyl phosphate (DMP)] on their catalytic activities in the 

Knoevenagel reaction between benzaldehyde and ethyl cyanoacetate. The synthetic 

strategy for the ILs is presented in Scheme 6A.19. The 1, 3-dialkylimidazolium 

dimethyl phosphate IL could be successfully used both as reaction media and catalysts. 

Additionally, it was reused for five cycles with significant retention of catalytic activity. 

Sayyahi et al. [79] described the synthesis of symmetrical 

dialkyltrithiocarbonates from alkyl halides using carbon disulphide and a novel basic IL: 

 bis-methyl-3, 3-methylene-bisimidazolium dihydroxide (Scheme 6A.20) as a-׳1 ,1

reagent and phase transfer catalyst. The reaction was simple, rapid and gave high 

product yields.  

In 2015, Luo and co-workers also used [bmim]OH and [bmim]Im alkaline ILs as 

catalysts in the glycerolysis of soybean oil for monoacyl glycerol synthesis at 200 °C 

[80]. The [bmim]Im exhibited better catalytic efficiency than the [bmim]OH because of 

strong basic character. The catalyst could be recycled successfully for six consecutive 

cycles. 

Shiran and co-workers [81] also employed basic ionic liquid 1-methyl-3-n-

octylimidazolium hydroxide ([omim]OH) (Fig. 6A.9) for synthesis of thiazol-2-imine 

derivatives from the regioselective one pot three-component reaction of aryl amine, 

alkylisothiocyanate, and various α-haloketones at room temperature(Scheme 6A.21). 

The method had several advantages over the conventional ones in terms of yield, 

reaction time, facile work up and greater economic benefits. 

N NR

R1

MeO-Y N NR

R1

Me
Y HClO4 / AcOH N NR

R1

Me
ClO4

R = Me, n-Bu, n-octyl

R1 = H, Me

Y = O2P(OMe)2; OMs; OTs

Scheme 6A.19: Synthesis of 1, 3-dialkylimidazolium salts with different anions 



Chapter 6A 
 

6A|19 

 

2 R-X

N N N N

2OH-

CS2, reflux
R

S S

S

R

R = alkyl group
 

Scheme 6A.20: Synthesis of symmetrical dialkyltrithiocarbonates catalyzed by 1, 1׳-bis-

methyl-3, 3-methylene-bisimidazolium dihydroxide 
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Fig. 6A.9: Chemical structure of 1-methyl-3-n-octylimidazolium hydroxide 
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Scheme 6A.21: Synthesis of thiazol-2-imine derivatives catalyzed by [omim]OH 
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Fig. 6A.10: Structure of [hpmim]OH and [glymim]OH 

Nowicki et al. [82] introduced two new imidazolium based basic ILs: 1-methyl-

3-alkylimidazolium hydroxide ([hpmim]OH and [glymim]OH (Fig. 6A.10). The 

catalytic activities of the ILs were explored in the transesterification of rapeseed oil with 

methanol and compared to the well explored [bmim]OH ionic liquid. Nearly 100% 
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conversion of rapeseed oil was achieved in case of [glymim]OH IL due to its structural 

similarity to glycerol.  

Shelke and Khadse [83] also utilized basic ionic liquid 1-benzyl-3-

methylimidazolium hydroxide([bnmim]OH) as catalyst in Knoevenagel condensation of 

4-oxo-(4H)-1-benzopyran-3-carbaldehydes and 2-chloroquinoline-3-carbaldehyde with 

various active methylene compounds viz. malononitrile, ethylcyanoacetate, cyanoacetic 

acid, cyanoacetamide and Meldrum’s acid (Scheme 6A.22). Desired products were 

obtained in short reaction time with excellent yields. Additionally, the IL could be 

recycled up to fourth consecutive cycle efficiently. 

Ar H

O

Z

CN [bnmim]OH

grinding Ar

H

Z

CN

Ar =

R1
O

or
N

R2

Cl

N N

OH-

[bnmim]OH

 

Scheme 6A.22: Knovenagel condensation catalyzed by [bnmim]OH 

Again, Yi et al. [84] utilized 1‐butyl‐3‐methylimidazolium imidazolide 

([Bmim]Im), 1‐butyl‐3‐methylimidazolium hydroxide ([Bmim]OH), 

1‐allyl‐3‐methylimidazolium imidazolide ([Amim]Im), and 

1‐allyl‐3‐methylimidazolium hydroxide ([Amim]OH) and used them as catalysts for 

synthesis of glycerol 1, 2‐carbonate from glycerol under solvent-free condition (Scheme 

6A.23). They prepared these ILs following a reported procedure [85] (Scheme 6A.24). 

Under optimized reaction conditions, using [Bmim]Im as catalyst, 98.4% glycerol 

conversion and up to 100% GC selectivity at 70 °C under ambient pressure was 

achieved. The ILs could be recycled and reused for three cycles with the same catalytic 

activity. 
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Scheme 6A.23: Synthesis of glycerol 1, 2‐carbonate from glycerol in presence 

of ILs as catalyst  
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Scheme 6A.24: Synthetic scheme for preparation of ILs used by Yi et al. 

In 2015, Mamaghani and Alavi [86] prepared fused α-pyrones from Baylis-

Hillman acetates and various cyclic dicarbonyl compounds in the presence of basic ionic 

liquid 1-butyl-2, 3-dimethylimidazoliumhydroxide ([bdmim]OH) under ultrasonic 

irradiation (Scheme 6A.25). Desired α-pyrones were obtained in good-excellent yields 

within short reaction times using this IL as catalyst. 
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Scheme 6A.25: Synthesis of fused α-pyrones in presence of [bdmim]OH as catalyst 

Ding et al. [87] reported the synthesis of a novel basic polymerized ionic liquid 

(BPIL): polymeric 1-[(4-ethenylphenyl)methyl]-3-propylimidazolium imidazolide and 

explored its catalytic efficiency in aqueous Knoevenagel reaction of a wide range of 

aldehydes and ketones with active methylene compounds at room temperature. The 

route for synthesis of the IL is presented in Scheme 6A.26. In comparison to the 

conventional inorganic bases, the basic IL effectively catalyzes the reactions due to 

intensive base sites and high surface activity. The catalytic system showed high catalytic 

activity up to fifth consecutive cycle.  

Chaugule et al. [88] demonstrated the synthesis and uses of a binary catalyst 

systems of tricationic imidazolium room temperature ILs such as 

[GLY(mim)3][NTf2]3IL/DBU, [GLY(mim)3][NTf2]3/MTBD and 

[GLY(mim)3][NTf2]3/TBD for direct preparation of dimethyl carbonate from CO2 and 

methanol without the need of a dehydration system (Scheme 6A.27). The 

[GLY(mim)3][NTf2]3 IL/1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) system was found 

to have 37% MeOH conversion and 93% DMC selectivity under mild reaction 

conditions. Moreover, the [GLY(mim)3][NTf2]3 IL/DBU catalytic system could be 

easily recovered and reused three times with similar  catalytic activity. 

Haidarizadeh and Taheri [89] developed polystyrene-supported 1, 4-bis(3-

methylimidazolium-1-yl)butane dihydroxide basic dicationic ionic liquid as 

heterogeneous catalyst for one-pot synthesis of chromene derivatives (Fig. 6A.11) 
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(Scheme 6A.28). The unique features of the catalyst were high thermal stability, 

recyclability, excellent catalytic activity in terms of yield and reaction time, high 

turnover number and turnover frequency, and also using water as a solvent. 
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Scheme 6A.26: Preparation of BPIL 

Chen et al. developed [90] an interesting observation for tuning of basicity of ILs 

with the change of substituted imidazolium or triazolium anions in combination with 

phosphonium cation (Fig. 6A.12) for efficient synthesis of alkylidene carbonates 

according to Scheme 6A.29 using atmosphere CO2. Excellent yields were obtained due 

to basic ionic liquids’ dual roles both as absorbents and as activators.  
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Scheme 6A.27: Preparation of tricationic imidazolium room temperature ILs 

Wang et al. [91] prepared basic morpholinium ionic liquid [Nbmm][OH] (Fig. 

6A.13) from a mixture of N-butyl morpholine, N-butyl bromide, and KOH by two-step 

method and was used to catalyze transesterification of soybean oil with methanol to 

biodiesel. The effects of molar ratio of methanol to oil, reaction temperature, and 

amount of catalyst on the biodiesel yield were investigated. The optimized condition 

yielded of 94.5% yield with catalyst amount of 3.0 wt%, and methanol to soybean oil 

molar ratio of 14:1 at reaction temperature of 60 °C for 6 h. The catalyst retained 

activity up to six consecutive cycles. 

Jiao et al. [92] prepared magnetic CoFe2O4 nanoparticles supported basic 

poly(ionic liquid)s catalysts (g-p[VRIm][OH]/MCFs) (Scheme 6A.30) through surface 

grafting method. The catalyst showed higher loading of ionic liquids, better stability and 

excellent paramagnetic property which could not be observed by conventional co-

polymerization method. The catalytic activities were evaluated for the transesterification 

and Knoevenagel condensation. Additionally, the catalysts could be easily separated 

with the assistance of an external magnetic field. The catalyst was reused for four times 

with slight loss of catalytic efficiencies. 
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Scheme 6A.28: Immobilization of basic IL PS-[C4(MIM)2][OH]2 on to the polystyrene 
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Fig. 6A.11: General structures of substituted 2-amino-4H-benzo[h]chromenes, 2-amino-

4H-benzo[f]chromenes, and 2-amino-4H-tetrahydrochromene derivatives synthesized 
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Fig. 6A.12: Structures of the anions and the cations in basic ILs 
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Scheme 6A.29: Synthesis of alkylidene carbonates catalyzed by basic ILs 
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Fig. 6A.13: Structure of morpholinium ionic liquid [Nbmm][OH] 

Scheme 6A.30: Synthetic procedure for preparation of g-p[VRIm][OH]/MCFs 
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6A.3. Base catalyzed Knoevenagel condensation reaction 

 The Knoevenagel condensation is an important, general and versatile C-C bond 

formation reaction in organic synthesis [93-95] which is usually catalyzed by a base, an 

acid, or a heterogeneous neutral support. The reaction is also considered as one of the 

modified version of Aldol condensation. 

 Classically, the Knoevanagel condensation occurs in between carbonyl or 

heterocarbonyl compound and any compound having an active methylene compound to 

produce α, β-unsaturated compounds using organic base such as piperidine, pyridine, 

amines or their salts [96, 97] in organic solvents such as benzene, toluene, THF, DCM 

etc. at different temperature (Scheme 6A.31). The use of excess amount of aliphatic 

aldehydes (4-6 times) is necessary for some reactions to produce sufficient yield of the 

products in less reaction time when the reaction rate is slow in presence of organic base 

catalyst [98]. The α, β-unsaturated product obtained in this path have been widely used 

in organic synthesis, in biological science, natural product chemistry, polymer 

chemistry, fine chemicals, medicine, agriculture and light emitting materials [1,13-15]. 

For example, the structural variation of benzylidenes or alkylidenes intermediates 

through the Knoevenagel reaction is possible by changing the structure of nucleophilic 

reagents such as β-keto ester [99, 100], diketones [99], ketothioesters [99], malonates, 

malononitriles [101], keto amides, and cyclic esters, along with different aromatic [102] 

or aliphatic aldehydes [103]. 
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Scheme 6A.31: General scheme for Knoevenagel condensation 
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The biological activity of alkylidene malonate was observed in case of long-

chain alkylidene malonates (LoCAM) namely pentadecylidene malonate, a simplified 

analogue of anacardic acid, exhibits a good modulation of the activity of histone 

acetyltransferases (Fig. 6A.14) [103]. 

OH

COOH

Anacardic acid (KAT inhibitor)

OEtEtO

O O

Pentadecylidenemalonate

KAT3A inhibitor/KAT2B activator

 

Fig. 6A.14: KAT inhibitors and activator: anacardic acid and pentadecylidene malonate 

Jung et al. [104] utilized the Knoevanagel condensation as key synthetic step for 

the total synthesis of anticoagulant flocoumafen. In addition to the above mentioned 

amino bases, a large number of modified basic catalytic systems have been developed 

for the Knœvenagel condensation in recent years which include Al2O3[105], fly ash 

supported CaO [106], NH4OAC [107], CdI2 [108], K2O-Al2O3 [109], zeolites [110], 

organic resins [111], mixed magnesium-aluminium oxides derived from hydrotalcites 

[112], sepiolites [113], aluminophosphonatesoxynitrides (AIPON) [114], synthetic 

phosphate Na2CaP2O7 [115], ion-exchange resins [116], potassium fluoride (KF) [117], 

layered silicate PLS-1 [118], silica gel [119], niobium chloride [120], MgO/ZrO2 [121], 

Yb(OTf)3 [122], chitosan [123], fluorapatite [121] and ionic liquids [27, 48, 52] etc.  

The use of task specific basic ILs as dual solvent-catalyst system is an attractive 

alternative of the above mentioned some non-reusable basic catalyst for the synthesis of 

benzylidene or alkylidene derivatives in absence of organic solvent at mild condition. 

Although, some of the ILs such as 1-butyl-3-methylimidazolium hexafluorophosphate 

([bmim]PF6) or 1-butyl-3-methylimidazolium tetrafluoroborate ([bmim]BF4) [124] and 

Lewis acidic chloroaluminate ILs were employed as medium/catalyst with or without 

any added catalyst for performing the condensation with many limitations [125]. 

The presence of one or more Brönsted/Lewis base sites within the basic ILs 

make them suitable for studying the catalytic efficiencies of basic ILs through the 

Knoevenagel condensation reactions using variety of aliphatic or aromatic carbonyl 

compounds and different active methylene compounds. The review of literature reveals 
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several applications of basic ILs based on TMG (tetramethyl guanidine) [126], cyclic 

guanidine [127], alkanolamine [128-133], methoxylpropylamine [134], DABCO [135, 

136], DBU [137], N, N, N׳, N׳-tetramethyl-N׳-hexyl-ethylenediamine (TMHEDA) 

[138], pyrrolidine [139-141], piperidine [142], N,N-dimethylethanolamnium (DMEA) 

[143], tetrabutylphosphonium [144], hexamethylenetetramine [145], 

tetrabutylammonium [146] for the Knoevenagel condensation under solvent free 

medium or in presence of other solvent at different temperatures and reaction time to 

produce low to high yields of products. Most of the tested ILs are monocationic 

possessing only one basic site which may cause reducing basicity of the IL to abstract 

the more acidic methylene proton for nucleophiic attack on the carbonyl group [137]. 

Only few reports are found for dicationic basic ILs catalyst [147] and no examples are 

found for the tricationic basic ILs.  

By considering the review of literature, we planned to synthesize new series of 

triethylamine bridged tricationic basic ILs containing imidazolium, pyridinium moiety 

as cations with variation of three anions such as hydroxide, acetate and imidazolide by 

following the reaction Scheme 6B.1 (6B.1. Results and discussion). As basic ionic 

liquids, they were tested as recyclable homogeneous catalysts for Knovenagel 

condensation of aromatic or aliphatic aldehydes/aliphatic ketone with active methylene 

compounds in absence of solvent and also in solution at room temperature. 
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