LIST OF FIGURES

Figur	e	Page No.
1.1	Structural classification of metal-dioxygen complexes (L = Ligand).	1.5
1.2	The structure of the $[Nb(O_2)_4]^{3-}$ anion in $Na_3[Nb(O_2)_4] \cdot 13H_2O$	1.7
	showing the disorder in the peroxo oxygen atom positions. Two	
	different conformations are shown in black and white lines.	
1.3	Environment of the metal atom reported for halide-free homometallic	1.11
	heteroleptic peroxo complexes of niobium derived from the	
	corresponding tetraperoxoniobate.	
1.4	Structure and atom numbering of [Nb(O ₂) ₃ (quin-2-c)] ²⁻ . Thermal	1.12
	ellipsoids are drawn at the 50% probability level.	
1.5	ORTEP plot of the molecular anion, $[Nb_2(O_2)_4(tart)(Htart)]^{5-}$ (50%)	1.13
	probability).	
1.6	The peroxoniobium complexes tested for (A) insulin-like activity:	1.14
	$[Nb(O_2)_4]^{3-}$ and $[Nb(O_2)_3(quin-2-c)]^{2-}$ and (B) anti-cancer activity:	
	$[Nb(Asc)(O_2)_3]^{3-}$.	
1.7	Selected oxidations of organic compounds by Nb-peroxo systems in	1.17
	the presence of hydrogen peroxide.	
1.8	Type I: Metal ions, complexes, chelates at macromolecules.	1.22
1.9	(A) Type II: Ligand of metal complexes, chelates as part of linear or	1.23
	crosslinked macromolecules. (B) Type III: Metal as part of a linear	
	chain or network. (C) Type IV: Physical incorporation of metal	
	complexes, chelates.	
1.10	Some water-soluble polymer used for metal ion interaction.	1.26
1.11	"Metallic-arrows" tailored with targeting vectors which will	1.30
	efficiently shot to the cancer cells.	
3.1	Scanning electron micrographs of (a) PA, (b) PANb (3.1) and	3.8
	(c) PSS, (d) PSSNb (3.2).	
3.2	EDX spectra of (a) PANb (3.1) and (b) PSSNb (3.2) .	3.8
3.3	IR spectra of (a) PA and (b) PANb.	3.12
3.4	(a) IR & (b) Raman spectra of PANb .	3.12
3.5	IR spectra of (a) PSS and (b) PSSNb .	3.13

3.6	(a) IR & (b) Raman spectra of PSSNb .	3.13
3.7	TGA-DTG plots of PANb .	3.15
3.8	TGA-DTG plot of PSSNb .	3.15
3.9	¹³ C NMR spectra of (a) PA and (b) PANb in D_2O .	3.17
3.10	¹³ C NMR spectra of (a) PSS and (b) PSSNb in D_2O .	3.17
3.11	⁹³ Nb NMR spectra of 0.2 mM solution of (a) NaNb , (b) PANb and	3.19
	(c) PSSNb in D_2O .	
3.12	Proposed structures of soluble polymer anchored pNb complexes,	3.20
	(A) PANb (3.1) and (B) PSSNb (3.2) . PA = poly(sodium acrylate),	
	PSS = poly(sodium styrene sulfonate) and "~~ " represents	
	polymer chain.	
3.13	Optimized geometry of PANb complex obtained by using density	3.22
	functional theory (DFT). The numerical numbers represent the	
	labeling of the atoms as in Table 3.4. (Colors: light blue is niobium,	
	red is oxygen, grey is carbon and dark blue lines represent hydrogen).	
3.14	Optimized geometry of PSSNb complex obtained by using density	3.22
	functional theory (DFT). The numerical numbers represent the	
	labeling of the atoms as in Table 3.4. (Colors: light blue is niobium,	
	red is oxygen, yellow is sulfur, grey is carbon, dark blue is hydrogen	
	and purple lines represent sodium).	
3A.1	Raman spectrum of PANb .	3.25
3A.2	IR spectrum of the residue after TGA of PANb up to 700 °C.	3.25
4.1	A view of the asymmetric unit of [Cu(arg) ₂ (H ₂ O)]NaNO ₃ , showing	4.3
	displacement ellipsoids drawn at the 30% probability level.	
4.2	IR spectrum of KNb .	4.9
4.3	IR spectra of (a) alanine and (b) NbAla.	4.11
4.4	(a) IR & (b) Raman spectra of NbAla .	4.11
4.5	IR spectra of (a) valine and (b) NbVal.	4.12
4.6	(a) IR & (b) Raman spectra of NbVal .	4.12
4.7	IR spectra of (a) arginine and (b) NbA.	4.13
4.8	(a) IR & (b) Raman spectra of NbA.	4.13
4.9	IR spectra of (a) nicotinic acid and (b) NbN.	4.15
4.10	(a) IR & (b) Raman spectra of NbN.	4.15

4.11	¹ H NMR spectrum of NbAla in D_2O .	4.18
4.12	¹ H NMR spectrum of NbVal in D_2O .	4.18
4.13	¹ H NMR spectrum of NbA in D_2O .	4.19
4.14	¹ H NMR spectrum of NbN in D_2O .	4.19
4.15	¹³ C NMR spectra of (a) alanine and (b) NbAla in D_2O .	4.22
4.16	¹³ C NMR spectra of (a) valine and (b) NbVal in D_2O .	4.22
4.17	¹³ C NMR spectra of (a) arginine and (b) NbA in D_2O .	4.23
4.18	¹³ C NMR spectra of (a) nicotinic acid and (b) NbN in D_2O .	4.23
4.19	⁹³ Nb NMR spectra of (a) KNb, (b) NbAla (4.1), (c) NbVal (4.2), (d)	4.24
	NbA (4.3) and (e) NbN (4.4) in D ₂ O.	
4.20	TGA-DTG plot of KNb	4.25
4.21	TGA-DTG plot of NbAla .	4.27
4.22	TGA-DTG plot of NbVal .	4.27
4.23	TGA-DTG plot of NbA .	4.28
4.24	TGA-DTG plot of NbN .	4.28
4.25	Proposed structure of (a) NbAla (4.1), (b) NbVal (4.2), (c) NbA	4.30
	(4.3) and (d) NbN (4.4).	
4.26	Optimized geometry of (a) NbAla (4.1), (b) NbVal (4.2), (c) NbA	4.31
	(4.3) and (d) NbN (4.4). The numerical numbers represent the	
	labeling of the atoms as in Table 4.6 .	
4.27	ORTEP of KNb with 50% probability ellipsoid [asymmetric unit].	4.33
5.1	Catalyst regeneration up to 6 th reaction cycle. Recyclability of NbA	5.21
	(used as representative catalyst) for the selective oxidation of MPS to	
	(a) sulfoxide or (b) sulfone.	
5.2	Catalyst regeneration up to 6 th reaction cycle. Recyclability of	5.21
	PSSNb (used as representative catalyst for macro pNb complex) for	
	the selective oxidation of MPS to (a) sulfoxide or (b) sulfone.	
5.3	IR spectra of (a) NbA, (b) Regenerated NbA after the 2 nd cycle of	5.22
	reaction and (c) Diperoxoniobate complex recovered after oxidation	
	of MPS by NbA , in absence of H_2O_2 .	
5.4	Schematic representation of reactions occurring with pNb catalysts,	5.24
	NbA (4.3) as representative.	
5A.1	¹ H NMR spectra of methyl phenyl sulfoxide.	5.25

- 5A.2 ¹³C NMR spectra of methyl phenyl sulfoxide.
 5A.3 ¹H NMR spectra of methyl phenyl sulfone.
 5A.4 ¹³C NMR spectra of methyl phenyl sulfone.
 5.26
- 6.1 The ¹H NMR spectra of NbA in D₂O. The spectra were recorded as 6.5 follows: (a) NbA in D₂O immediately after preparation, (b) solution of (a) 12 h later.
- 6.2 The ¹³C NMR spectra of NbA in D_2O . The spectra were recorded as 6.6 follows: (a) NbA in D_2O immediately after preparation, (b) solution of (a) 12 h later.
- 6.3 Stability of compound NaNb at different pH values: (▲) compound 6.7 solution in distilled water, pH of the solution = 10.0, (X) solution of complexes in phosphate buffer (50 mM, pH 7.0). Stability of compound NbA (3.3) at different pH values: (■) compound solution in distilled water, pH of the solution = 9.0, (౫) solution of complexes in phosphate buffer (50 mM, pH 7.0). Effect of catalase on (x) NaNb, (▲) KNb, (◆) PANb (3.1), (■) PSSNb (3.2), (+) NbAla (4.1), (-) NbVal (4.2), (౫) NbA (4.3) and (●) NbN (4.4).
- 6.4 Effect of catalase on (a) NaNb, (b) NbVal (4.2), (c) NbA (4.3) and 6.10 (d) NbN (4.4). The test solution contained (*) phosphate buffer or (■) HEPES buffer (50 mM, pH 7.0) and the catalase (40 µg/mL) which was incubated at 30 °C for 5 min.
- 6.5 ⁹³Nb NMR spectra of a 0.2 mM solution of PANb, its catalase 6.11 degradation products. The spectra were recorded as follows: (a) aqueous solution of PANb in water immediately after preparation, (b) PANb (20 mM) incubated with catalase (40 mg/mL) after 30 min incubation, (c) solution of (b) 1 h later and (d) solution of (b) 2 h later.
- 6.6 The viability of Raw 264.7 murine macrophage cells as measured by 6.12 the MTT assay. Cells were treated with the monomeric pNb compounds (NaNb and 4.1-4.4) and incubated for 24 h. MTT was added to the cells and incubated for 4 h. The cell viability was assessed by measuring the absorbance at 580 nm and expressed as mean (± SE) from three separate experiments.

- 6A.1 The ¹H NMR spectra of NbAla in D₂O. The spectra were recorded as 6.14 follows: (a) NbAla in D₂O immediately after preparation, (b) solution of (a) 12 h later.
- **6A.2** The ¹³C NMR spectra of NbAla in D_2O . The spectra were recorded 6.14 as follows: (a) NbAla in D_2O immediately after preparation, (b) solution of (a) 12 h later.
- 6A.3 The ¹H NMR spectra of NbVal in D₂O. The spectra were recorded as 6.15 follows: (a) NbVal in D₂O immediately after preparation, (b) solution of (a) 12 h later.
- **6A.4** The ¹³C NMR spectra of NbVal in D_2O . The spectra were recorded 6.15 as follows: (a) NbVal in D_2O immediately after preparation, (b) solution of (a) 12 h later.
- 6A.5 The ¹H NMR spectra of NbN in D₂O. The spectra were recorded as 6.16 follows: (a) NbN in D₂O immediately after preparation, (b) solution of (a) 12 h later.
- **6A.6** The ¹³C NMR spectra of NbN in D_2O . The spectra were recorded as 6.16 follows: (a) NbN in D_2O immediately after preparation, (b) solution of (a) 12 h later.
- **6A.7** The ¹³C NMR spectra of **PANb** in D_2O . The spectra were recorded 6.17 as follows: (a) **PANb** in D_2O immediately after preparation, (b) solution of (a) 12 h later.
- **6A.8** The ¹³C NMR spectra of **PSSNb** in D_2O . The spectra were recorded 6.17 as follows: (a) **PSSNb** in D_2O immediately after preparation, (b) solution of (a) 12 h later.
- 7.1 General structures of plant (A) and animal (B) PAPs. Most of the 7.3 plant PAPs reported to date are homodimeric with 55 kDa subunits whereas the animal PAPs studied to date are 35 kDa monomers. Each subunit has two domains viz., an N-terminal domain without known function and a C-terminal domain that contains the active site.
- 7.2 Schematic of the active site of kidney bean purple acid phosphatase 7.4 based on the 2.65-Å resolution structure described by Klabunde *et al.*
- **7.3** The effect of synthesized pNb compounds and free ligand on the 7.7 activity of ACP.

- 7.4 Lineweaver-Burk plots for the inhibition of ACP activity in the 7.9 absence and presence of (A) NaNb, (B) KNb, (C) NbAla and (D) NbVal. The inset represents the secondary plot of the initial kinetic data of the Lineweaver-Burk plot.
- 7.5 Lineweaver-Burk plots for the inhibition of ACP activity in the 7.10 absence and presence of (A) NbA, (B) NbN (C) PANb and (D)
 PSSNb. The inset represents the secondary plot of the initial kinetic data of the Lineweaver-Burk plot.

8.1 The structure of Ca^{2+}/CaM -CN complex. 8.3

- 8.2 Schematic of the active site of human calcineurin based on the 2.1-Å
 8.3 resolution structure described by Kissinger *et al.*
- **8.3** Inhibitors of calcineurin (a) cyclosporine A (CsA) and (b) FK506 8.4 (tactolimus).
- 8.4 The effect of pNb compounds and H₂O₂ on calcineurin activity, (a) 8.8 effect of NaNb and PANb (3.1) on calcineurin activity with RII-phosphopeptide as substrate, (b) effect of NaNb and PANb (3.1) on calcineurin activity with p-NPP as substrate and (c) effect of H₂O₂ on calcineurin activity.
- 8.5 Lineweaver-Burk plots for inhibition of calcineurin activity in 8.10 absence and presence of (A) NaNb, (B) PANb (3.1) and (C) H₂O₂. The inset represents the secondary plot of the initial kinetic data of the Lineweaver-Burk plot.

LIST OF SCHEMES

Scheme		Page No.
1.1	pH-dependence of the substitution of fluoro ligands by peroxo) 1.7
	groups in niobate complexes.	
1.2	An illustration of the green synthetic approach for preparation of	1.15
	KNN powders from aqueous solutions through (a) niobium(V)-	
	peroxo-citrate (b) niobium(V)-peroxo-glycine precursors.	
1.3	Plausible mechanism for the epoxidation using pre-treated	l 1.19
	Nb(salan)(OiPr) ₃ as a catalyst.	
1.4	Proposed mechanism for epoxidation of allylic alcohols with H ₂ O ₂	1.20
	catalyzed by the monomeric peroxoniobate anion of IL.	

LIST OF TABLES

Tabl	e	Page No.
1.1	Some homoleptic and heteroleptic peroxoniobate (pNb) complexes	1.9 & 1.10
	described in the literature	
1.2	The summary of combinations of metal complexes and	1.24
	macroligands, as well as catalyzed reactions most commonly used	
	in practice	
3.1	Analytical data for the polymer-bound peroxoniobate compounds	3.9
3.2	Experimental and theoretical infrared and Raman spectral data	3.11
	(cm ⁻¹) for PANb (3.1) and PSSNb (3.2)	
3.3	¹³ C NMR spectral data for PANb and PSSNb	3.18
3.4	Selected bond lengths (Å) and bond angles (degree) for $PANb$ and	3.23
	PSSNb complexes calculated using density functional theory	
	(DFT) as implemented in the DMol ³ package	
4.1	Analytical data for the synthesized peroxo-niobium complexes	4.8
4.2	Experimental and theoretical infrared and Raman spectral data	4.16
	(in cm ⁻¹) for the compounds, NbAla, NbVal, NbA and NbN	
4.3	¹ H NMR chemical shifts for ligands and heteroligand peroxo-	4.20
	niobate complexes	
4.4	¹³ C NMR chemical shift for ligands and the developed	4.21
	triperoxoniobium complexes	
4.5	Thermogravimetric data of peroxoniobium compounds, KNb and	4.29
	4.1-4.4	
4.6	Selected bond lengths (in Å) and bond angles (in degree) for the	4.32
	pNb complexes calculated at B3LYP/LANL2DZ level of theory	
4.7	Crystallographic data of $K_3[Nb(O_2)_4]$ (KNb), compared with	4.34
	reported Sodium tetraperoxoniobate $Na_3[Nb(O_2)_4] \cdot 13H_20$ (NaNb)	
4.8	Description of crystal data	4.35 & 4.3
5.1	Optimization of reaction conditions for selective oxidation of	5.8
	methyl phenyl sulfide (MPS) by 30% H_2O_2 catalyzed by pNb	
	complexes	

5.2	Selective oxidation of sulfides to sulfoxides catalyzed by NbA and	5.10
	NbN	
5.3	Selective oxidation of sulfides to sulfoxides catalyzed by PANb	5.12
	and PSSNb	
5.4	Optimization of reaction conditions for NbA catalyzed selective	5.15
	oxidation of methyl phenyl sulfide (MPS) to sulfone	
5.5	Selective oxidation of sulfides to sulfones catalyzed by NbA and	5.16
	NbN	
5.6	Selective oxidation of sulfides to sulfones catalyzed by PANb and	5.18
	PSSNb	
6.1	Catalase-dependent oxygen release from niobiumperoxo	6.8
	compounds	
6.2	Effect on Raw 264.7 murine macrophage cells when treated with	6.12
	peroxoniobium complexes at 200 μ M concentration of pNb	
	compounds	
7.1	Half-maximal inhibitory concentration (IC ₅₀) and inhibitor	7.11
	constants (K_i and K_{ii}) values for pNb compounds	
8.1	Half-maximal inhibitory concentration (IC ₅₀) and inhibitor	8.11
	constant (K _{iu}) values for pNb compounds and H_2O_2 against	
	calcineurin	

LIST OF ABBREVIATIONS

ACP	acid phosphatase
ALP	alkaline phosphatase
CTS	chitosan
Ср	cyclopentadienyl
DBT	dibenzothiophene
DMF	dimethyl formamide
dipy	dipyridyl
CSDVB	cross-linked poly(styrene-divinyl benzene)
DFT	density functional theory
DNA	deoxyribonucleic acid
DSSCs	dye sensitized solar cells
DTG	differential thermogravimetry
EDTA	ethylenediaminetetraacetic acid
EDX	energy dispersive X-Ray analysis
GC	gas chromatography
gu	guanidinium
HEPES	4-(2-hydroxyethyl)-1-piperazineethanesulfonic
	acid
H2salen	bis(salicylaldehyde)ethylenediamine
H2hned	bis(2-hydroxy-1-naphthaldehyde)ethylenediamine
H2acen	bis(acetylacetonate)ethylenediamine
H2salphen	bis(salicylaldehyde)phenylenediamine
H2anac	acetylacetonatebis(anthranilic acid)
H2salpren	bis(salicylaldehyde)propylenediamine
H2sap	salicylaldehyde o-aminophenol
H2hntrien	bis(2-hydroxy-1-naphthaldehyde)1,2-aminopropane
H3mal	malic acid
H4edta	ethylenediaminetetraacetic acid
H4pdta	propylenediaminetetraacetic acid
H5dtpa	diethylenetriaminepentaacetic acid
H6ttha	triethylenetetraaminehexaacetic acid
H2dipic	dipicolinic acid

H4tart	tartaric acid
H2ox	oxalic acid
H4cit	citric acid
H2glyc	glycolic acid
HIV	human immunodeficiency virus
HPLC	high Performance Liquid Chromatography
hq	8-quinolinolate
IC ₅₀	half-maximal inhibitory concentration
IR	infra red
KNb	$K_3[Nb(O_2)_4]$
LD ₅₀	Lethal Dose, 50%
MPS	methyl phenyl sulfide
MR	Merrifield resin
NaNb	$Na_3[Nb(O_2)_4]$ ·13H ₂ O
NbA	$Na_2[Nb(O_2)_3(arg)] \cdot 2H_2O$
NbAla	Na ₂ [Nb(O ₂) ₃ alaninato]
NbN	$Na_2[Nb(O_2)_3(nic)(H_2O)] \cdot H_2O$
NbVal	Na ₂ [Nb(O ₂) ₃ valinato]
NMR	nuclear magnetic resonance
PA	poly(sodium acrylate)
PAA	polyacrylic acid
PAC	polyaminocarboxylate
PAm	poly(acryl amide)
PAN	poly(acrylonitrile)
PANb	[Nb ₂ (O ₂) ₆ (carboxylate) ₂]-PA
PAV	$Na_3[V_2O_2(O_2)_4(carboxylate)]-PA$
PEG	poly(ethylene glycol)
PEI	polyethyleneimine
PEO	poly(ethylene oxide)
phen	1,10-phenantroline
pic	picolinato
picO	picolinato N-oxide
PMA	sodium polymethacrylate
PMAA	poly(methacrylamide)

PMMA	poly(methylmethacrylate)
рМо	peroxomolybdate
pNb	peroxoniobate
PS	poly(styrene)
PSNa	poly(sodium vinyl sulfonate)
PSS	poly(sodium 4-styrene sulfonate)
PSSNb	[Nb(O ₂) ₃ (sulfonate) ₂]-PSS
p-NPP	p-nitrophenyl phosphate
p-NP	p-nitrophenol
PTC	phase transfer catalyst
pzdc	pyrazine 2,5-dicarboxylate
pV	peroxovanadate
PVA	polyvinyl alcohol
pW	peroxotungstate
PTPase	phosphotyrosine phosphatase
quin-2-c	quinoline-2-carboxylate ion
RT	room temperature
RNA	ribonucleic acid
SEM	scanning electron microscopy
TGA	thermogravimetry analysis
TLC	thin layer chromatography
TOF	turnover frequency
TON	turnover number
TpNb	tetraperoxoniobate
TPNb	triperoxoniobate
V-BPO	vanadium bromoperoxidase
V-HPO	vanadium haloperoxidase
WSP	Water soluble polymer