List of Figures

		Page
Figure	Chapter 1	No.
1.1	(a) Splitting of M_s levels due to ZFS (b) Orientation of M_s levels for S=3/2	
	system in presence of external magnetic field	2
1.2	Structure of [Mn ₁₂ O ₁₂ (COOCH ₃) ₁₆ (H ₂ O) ₄].4H ₂ O (Mn ₁₂)	3
1.3	Double well potential energy diagram of Mn_{12} complex in the absence of	
	magnetic field, on application of a magnetic field and on removal of the	
	magnetic field again	5
1.4	Representative plot of increasing energy against the number of Mn centres	6
1.5	a) Scheme showing reduction of $[Fe(C(SiMe_3)_3)_2]$ (IV) using KC ₈ ; b) d-	
	orbital splitting pattern in [Fe(C(SiMe ₃) ₃) ₂] ⁻	7
1.6	Energy level sequence of d-orbitals in two-coordinate complexes of (a)	
	linear $D_{\infty h}$ and $C_{\infty v}$ geometry and (b) bent C_{2v} geometry.	9
1.7	Energy level sequence of d-orbitals in three-coordinate complexes of (a)	
	trigonal planar D_{3h} geometry and (b) trigonal pyramidal C_{3v} geometry	14
1.8	Structures of complexes XXX, XXXI and XXXIII and their respective d-	
	orbital splitting patterns	18
1.9	Energy level sequence of d-orbitals in four-coordinate complexes in (a)	
	tetrahedral (T _d), (b) trigonal pyramidal (C _{3v}) and (c) square planar (D _{4h})	
	geometry	18
1.10	(a) Molecular structure of [(tpa ^R)Fe] ⁻ (b) Energy level sequence of Fe(II) in	
	these complexes	20
1.11	Molecular structure and energy sequence of the first reported Co(II)	
	complex XLIV showing tetrahedral geometry	23
1.12	Energy level sequence of d-orbitals in five-coordinate complexes in (a)	
	trigonal bipyramidal (D_{3h}) and (b) square pyramidal (C_{4v}) geometries	24
1.13	Splitting pattern of d-orbitals in square pyramidal geometry with of Co(II)	
	ion (a) in the plane and (b) out of the basal plane	27
1.14	Molecular structure and energy sequence of the Co(II) complexes LXXX	
	and XCIII	27

1.15	Energy level sequence of d-orbitals in six-coordinate complexes in (a)	
	octahedral (O _h) and (b) Tetragonal (I) geometries	29
1.16	Energy level sequence of d-orbitals in seven-coordinate PBP complexes	32

Chapter 2

2.1	Schematic representation of ZFS in d ⁵ systems	55
2.2	FT-IR spectrum of compound 1 as KBr diluted discs	63
2.3	FT-IR spectrum of compound 2 as KBr diluted discs	65
2.4	FT-IR spectrum of compound 3 as KBr diluted discs	66
2.5	FT-IR spectrum of compound 4 as KBr diluted discs	67
2.6	Molecular structures of compounds 1-4	68
2.7	Hydrogen bonding pattern of compound 2	71
2.8	Water tetramer formed in compound 2	72
2.9	Hydrogen bonding pattern of compound 3	73
2.10	Determination of IC_{50} : Inhibition percentage as a function of the	
	concentrations of compounds 3 and 4 respectively	74
2.11	Temperature dependence of $\chi_M T$ between 2-300 K for compounds 1-4	76
2.12	Variation of $1/\chi_M$ against temperature for compounds 1-4	77
2.13	Reduced magnetization plots of compounds 1-4	77
2.14	Field dependence of magnetization between 0-5 T for compounds 1-4	78

Chapter 3

3.1	FT-IR spectrum of compound 5 as KBr diluted discs	98
3.2	FT-IR spectrum of compound 6 as KBr diluted discs	99
3.3	FT-IR spectrum of compound 7 as KBr diluted discs	100
3.4	FT-IR spectrum of compound 8 as KBr diluted discs	101
3.5	FT-IR spectrum of compound 9 as KBr diluted discs	102
3.6	FT-IR spectrum of compound 10 as KBr diluted discs	104
3.7	Molecular structures of compounds 5-10	105
3.8	Hydrogen bonding network present in compound 5	108
3.9	Hydrogen bonding network present in compound 7	109
3.10	Hydrogen bonding network present in compound 8	109
3.11	Hydrogen bonding network present in compound 9	110

3.12	Hydrogen bonding network present in compound 10	110
3.13	Determination of IC ₅₀ : Inhibition percentage as a function of the	
	concentrations of compounds 5, 9 and 10	112
3.14	Temperature dependence of $\chi_M T$ between 2-300 K for compounds 5-10	113
3.15	Variation of $1/\chi_M$ against temperature for compounds 5-10	114
3.16	Reduced magnetization plots of compounds 5-10	115
3.17	Field dependence of magnetization between 0-5 T for compounds 5-10	116
3.18	Electronic arrangement in the ground quartet, 1 st excited quartet and 1 st	
	excited doublet states	118

Chapter 4

4.1	FT-IR spectrum of compound 11 as KBr diluted discs	135
4.2	FT-IR spectrum of compound 12 as KBr diluted discs	137
4.3	FT-IR spectrum of compound 13 as KBr diluted discs	138
4.4	FT-IR spectrum of compound 14 as KBr diluted discs	139
4.5	Molecular structures of compounds 11-14	140
4.6	Hydrogen bonding network present in compound 11	143
4.7	Hydrogen bonding network present in compound 12	143
4.8	Hydrogen bonding network present in compound 13	145
4.9	Hydrogen bonding network present in compound 14	146
4.10	Determination of IC_{50} : Inhibition percentage as a function of the	
	concentrations	147
4.11	Temperature dependence of $\chi_M T$ between 2-300 K for compounds 11-13	148
4.12	Variation of $1/\chi_M$ against temperature for compounds 11-13	149
4.13	Reduced magnetization plots of compounds 11-13	150
4.14	Field dependence of magnetization between 0-5 T for compounds 11-14	151
4.15	Electronic arrangement in the ground quartet, 1 st , 2 nd and 3 rd excited triplet	
	states	152

Chapter 5

5.1	FT-IR spectrum of compound 15 as KBr diluted discs	166
5.2	Molecular structure of compound 15	167
5.3	Hydrogen bonding network present in compound 15	169

5.4	FT-IR spectrum of compound 16 as KBr diluted discs	171
5.5	Molecular structure of compound 16	172
5.6	O-HN bonded network present in compound 16	174
5.7	N-HN bonded network present in compound 16	174
5.8	FT-IR spectrum of compound 17 as KBr diluted discs	175
5.9	Molecular structure of compound 17	176
5.10	N-H···N and N-H···O hydrogen bonding network in compound 17	178
5.11	FT-IR Spectra of 18 and 19 as KBr diluted discs	180
5.12	Molecular structure of compound 18	181
5.13	Two dimensional hydrogen bonding network present in compound 18	182
5.14	Molecular structure of compound 19	183
5.15	Variation of $\chi_M T$ with temperature of compounds 15 and 17	186
5.16	Temperature dependence of $1/\chi_M$ of compounds 15 and 17	186
5.17	Field dependence of magnetization of compounds 15 and 17	187
5.18	Temperature dependence of $\chi_M T$ for compound 18	187
5.19	Variation of $1/\chi_M$ against temperature for compound 18	188
5.20	Reduced magnetization plot of compound 18	188
5.21	Field dependence of magnetization between 0-5 T for compound 18	189
5.22	Temperature dependence of $\chi_M T$ for compound 19	190
5.23	Variation of $1/\chi_M$ against temperature for compound 19	191
5.24	Reduced magnetization plot of compound 19	191
5.25	Field dependence of magnetization between 0-5 T for compound 19	192