List of tables:

Chapter	Table	Title	Page no
2(Section 2.1)	1	Comparisons of metals contents (in ppm) in	
		'WERSA' using Ion-Exchange chromatography	
		and Flame photometry analysis.	26
	2	Optimization of reaction condition	
		for catalyst and solvent	28
	3	Rice straw ash promoted Suzuki-Miyaura	
		cross-coupling reaction of aryl bromides and	
		arylboronic acids	30
2(Section 2.2)	1	Optimization of reaction condition for catalyst,	
		base, solvent	45
	2	Cross-coupling of aryl diazonium salt and	
		arylboronic acid	46
2(Section 2.3)	1	Screening of the reaction condition for solvent,	
		catalyst and base	59
	2	Pd NPs@graphene catalysed Sonogashira reaction	60
3(Section 3.1)	1	Comparison between flame photometry and	
		ion-exchange chromatography result	
		of banana peel extract	28
	2	Optimization of the reaction condition for	
		catalyst, ligand and solvent	30
	3	Reaction scopes of the protocols using different	
		arylboronic acids and N-nucleophiles	31
3(Section 3.2)	1	Optimization of reaction condition	
		for different nitrate salt	43
	2	Optimization of reaction condition for different	45
		additives, nitrate salt and amount of the catalyst	
	3	Effect of different solvents on the reaction	45
	4	Molecular iodine catalyzed synthesis of	
		nitrobenzenefrom aryl boronic acids	47
	5	Relative energies (kcal mol ⁻¹) of species involved	
		in the reaction calculated at DFT (B3LYP) and	
		levels of theory	51
	6	Coordinates (in Ås) of each atom	
		of optimized Zr(O)(H ₂ O)(NO ₃) ₂	60
	7	Coordinates (in Ås) of each atom of optimized RC	60
	8	Coordinates (in Ås) of each atom of optimized TS	60

	9	Coordinates (in Ås) of each atom of optimized PC	61
	10	Coordinates (in Ås) of each atom of	
		optimized Zr(O)(NO ₃)I(H ₂ O)	61
	11	Coordinates (in Ås) of each atom of optimized	
		arylboronic acid (BC ₆ H ₇ O ₂)	62
	12	Coordinates (in Ås) of each atom of optimized	
		Reagent (NO ₃ I)	62
	13	Coordinates (in Ås) of each atom of	
		optimized Nitrobenzene (C ₆ NH ₅ O ₂)	62
	14	Coordinates (in Ås) of each atom of optimized	
		byproduct (BH ₂ O ₃ I)	63
	15	Energies, enthalpies and Gibb's free energies	
		(including ZPE) of all the species	63
4(Section 4.1)	1	Optimization of reaction condition for catalyst, Oxidant	11
	2	Screening of the reaction for the amount of	
		catalyst and oxidant in ipso-hydroxylation	
		of phenylboronicacid	12
	3	Synthesis of phenol catalyzed by bio-silica	13
	4	Reusability of the catalyst in the synthesis of phenol	15
	5	A comparison study between "green-ness"	
		among catalyst/reagents in the hydroxylation	
		of phenylboronic acid to phenol	15
4(Section 4.2)	1	Optimization of reaction condition for catalyst,	
		Oxidant	25
	2	Baker's yeast mediated synthesis of	
		phenol from arylboronic acid	26
	3	Controlled reaction in favour of the proposed	
		Mechanism	29
	4	Reusability of the catalyst	30