List of Figures

Chapter	Figure	Figure Caption	Page
	No.		No.
Chapter 1	1.1	Schematic representation of cluster placed in between	1-5
		atom, molecule and bulk material	
	1.2	Examples of various types of clusters	1-6
	1.3	Variation of BE with cluster size for Pd_n (n=1-7) clusters	1-8
	1.4	Variation of IPs of the most stable isomers with N=n+1	1-9
	1.5	Cluster size (N) dependence to the extent of reaction of	1-9
		Au_N^- and O_2 . Separate plots correspond to different O_2 concentrations	
	1-6	Dependence of melting temperature (T) on the size of	1-10
		Au nanoparticles	
	1-7	Fourth Century AD Lycurgus cup	1-11
Chapter 2	2.1	Points on potential energy surface	2-4
Chapter 3	3.1.1	Structures of neutral Au_{n+2} and $Au_nBe_2(n=1-5)$ clusters	3-6
	3.1.2	Structures of cationic Au_{n+2} and $Au_nBe_2(n=1-5)$ clusters	3-7
	3.1.3	Structures of anionic Au_{n+2} and $Au_nBe_2(n=1-5)$ clusters	3-8
	3.1.4	Size dependence of the (A) averaged binding energies	3-10
		Eb(n), (B) fragmentation energies $\Delta E(n)$ and (C)	
		second-order difference of energies $\Delta_2 E(n)$ and for the	
		lowest energy structures of neutral $Au_{n\!+\!2}$ and Au_nBe_2	
		(n=1-5) clusters	
	3.1.5	Size dependence of the (A) averaged binding energies	3-11
		Eb(n), (B) fragmentation energies $\Delta E(n)$ and (C)	

second-order difference of energies $\Delta_2 E(n)$ and for the lowest energy structures of cationic Au_{n+2} and Au_nBe_2 (n=1–5) clusters

- 3.1.6 Size dependence of the (A) averaged binding energies 3-12 Eb(n), (B) fragmentation energies $\Delta E(n)$ and (C) second-order difference of energies $\Delta_2 E(n)$ and for the lowest energy structures of anionic Au_{n+2} and Au_nBe₂ (n=1-5) clusters
- 3.1.7 Comparision of stability of neutral and charged Au_nBe₂ 3-13 clusters
- 3.1.8 Shifting of BCP in Au-Au and Au-Be bonds. The red 3-15 dots indicate BCP
- 3.1.9 Trajectory field in some of the Au_n and Au_nBe₂ 3-16 clusters. Gold and magnesium atoms are represented by yellow and green spheres respectively. Bond paths and basin paths are indicated by dark green and blue lines, while the interatomic surfaces are indicated by dark blue lines. Red and green dots indicate bond critical points and ring critical points, respectively
- 3.1.10 HOMO and LUMO isosurfaces of Au₃ and AuBe₂ 3-17 clusters
- 3.2.1 Optimized structures of neutral Au_{n+2} and Au_nMg_2 (n = 3-21 1-5) clusters
- 3.2.2 Optimized structures of cationic Au_{n+2} and Au_nMg_2 (n 3-22 = 1-5) clusters
- 3.2.3 Optimized structures of anionic Au_{n+2} and Au_nMg_2 (n 3-23 = 1-5) clusters
- 3.2.4 Variation of binding energies with respect to cluster 3-26 size for (A) neutral, (B) cationic and (C) anionic clusters in bare and magnesium doped gold clusters
- 3.2.5 Comparison of binding energy per atom among charge 3-27

and neutral clusters of Au_nMg₂ clusters

3.2.6	Variation of fragmentation energies with respect to				
	cluster size for (A) neutral, (B) cationic and (C)				
	anionic clusters in bare and magnesium doped gold				
	clusters				
3.2.7	Variation of second order difference of energies with	3-29			

respect to cluster size for (A) neutral, (B) cationic and (C) anionic clusters in bare and magnesium doped gold clusters

- 3.2.9 Variation of VIP values with respect to cluster size for 3-33 pure and Mg doped Au clusters
- 3.2.10 Shifting of BCP in Au-Au and Au-Mg bonds. The red 3-36 dots indicate BCP
- 3.2.11 Trajectory field in some of the Au_n and Au_nMg_2 3-37 clusters. Gold and magnesium atoms are represented by yellow and green spheres respectively
- 3.2.12 HOMO and LUMO isosurfaces of Au_3 and $AuMg_2$ 3-38 clusters
- 3.3.1 Optimized structures of neutral Au_{n+2} and Au_nAl_2 (n = 3-43 1–5) clusters
- 3.3.2 Optimized structures of cationic Au_{n+2} and Au_nAl_2 (n = 3-44 1–5) clusters
- 3.3.3 Optimized structures of anionic Au_{n+2} and Au_nAl_2 (n = 3-45 1-5) clusters
- 3.3.4 Variation of binding energies with respect to cluster 3-47 size for (a) neutral, (b) cationic and (c) anionic clusters in bare and Al doped gold clusters
- 3.3.5 Comparison of binding energy per atom among charge 3-48 and neutral clusters of Au_nAl₂ clusters

	3.3.6	Variation of fragmentation energies with respect to	3-49
		cluster size for (a) neutral, (b) cationic and (c) anionic	
		clusters in bare and aluminium doped gold clusters	
	3.3.7	Variation of second order difference of energies with	3-51
		respect to cluster size for (a) neutral, (b) cationic and	
		(c) anionic clusters in bare and aluminium doped gold	
		clusters	
	3.3.8	Variation of VEA values with respect to cluster size	3-52
		for pure and Al doped Au clusters	
	3.3.9	Variation of VIP values with respect to cluster size for	3-54
		pure and Al doped Au clusters	
	3.3.10	Shifting of BCP in Au-Au and Au-Al bonds. The red	3-56
		dots indicate BCP	
	3.3.11	Trajectory field in some of the Au_n and Au_nAl_2	3-58
		clusters. Gold and aluminium atoms are represented by	
		yellow and grey spheres respectively	
	3.3.12	HOMO and LUMO isosurfaces of Au_3 and $AuAl_2$	3-59
		clusters	
Chapter 4	4.1.1	Optimized geometries of reactants, intermediates,	4-8
		transition states and products involved in the oxidative	
		pathways of NO at B3LYP level	
	4.1.2	The HOMO and LUMO isosurfaces for Au ₂ ⁻ dimer, O ₂ ,	4-10
		and NO molecules	
	4.1.3	Potential energy profile of the NO oxidation by the	4-12
		Au_2^{-} dimer. The relative energies (in kcal mol ⁻¹) were	
		calculated with the ZPE corrections at the	
		B3LYP/LANL2DZ level	
	4.2.1	Optimized geometries for complexes between O_2 and	4-18
		NO molecules with Au-Ag- dimers in two different	
		sites. The numbers in parentheses are calculated	
		natural charges of atoms (in e)	

	4.2.2	HOMO and LUMO isosurfaces for Au-Ag ⁻ dimer, O_2 and NO molecules	4-21
	4.2.3	Optimized geometries of reactants, intermediates, transition states and products involved in the oxidative pathways of NO by Au-Ag ⁻ dimer along Ag and Au	4-23
		sites	
	4.2.4	Relative energy profile for the NO oxidation by Au-	4-24
		Ag ⁻ dimer along Ag site	
	4.2.5	Relative energy profile for the NO oxidation by Au-	4-26
		Ag ⁻ dimer along Au site	
Chapter 5	5.1.1	Optimized geometries of reactants and transition states	5-7,5-8
		at M06-2X/6-31+G(d,p) level. Bond lengths are in	
		Angstroms	
	5.1.2	Optimized geometries of reactant complexes, product	5-9
		complexes and products at M06-2X/6-31+G(d,p) level.	
	5.1.3	Potential energy profile for the $CF_3CF_2CH_2OCH_3$ +	5-12
		OH reactions. Relative energies (in kcal mol ⁻¹) at M06-	
		2X/6-31+G(d,p) level	
	5.2.1	Optimized geometries of reactants and transition states	5-25
		at M06-2X/6-31+G(d,p) level of theory. Bond lengths	
		are in Angstroms	
	5.2.2	Optimized geometries of reactant complexes, product	5-26
		complexes and products at M06-2X/6-31+G(d,p) level	
		of theory	
	5.2.3	Schematic potential energy diagram for i-C ₃ F ₇ OCH ₃ +	5-29
		OH reactions. Relative energies (in kcal mol ⁻¹) with	
		ZPE at M06-2X/6-311++ $G(d,p)$ level. The values	
		given in parentheses are calculated at M06-2X/6-	
		31+G(d,p) level of theory	
	5.2.4	Rate constants for hydrogen abstraction reactions of i-	5-33

 $C_3F_7OCH_3$ with OH radicals and total rate constant

 (k_{OH}) for i-C₃F₇OCH₃ + OH reactions

5.2.5 Rate constants for hydrogen abstraction reactions of i- $C_3F_7OC(O)H + OH/Cl$ reactions with experimental data