
 

CHAPTER            2 

 

“The mathematical framework of quantum theory has passed countless 

successful tests and is now universally accepted as a consistent and accurate 

description of all atomic phenomena” 

-Erwin Schrodinger 

 



BACKGROUND OF ELECTRONIC THEORY 

2.1 INTRODUCTION 

In the late seventeenth century, Sir Isaac Newton discovered classical 

mechanics based on the laws of motion of macroscopic objects. However, physicists in 

the early twentieth century observed that classical mechanics does not correctly 

describe the behavior of very small particle such as the electrons and nuclei of the 

atoms and molecules. This leads to the development of a new set of laws called 

Quantum Mechanics. The development of quantum mechanics is attributed mainly to 

the contributions made by Bohr, Schrödinger, Heisenberg, Born and Pauli. It is the 

science of motion of atomic and subatomic particles. It has great importance in all 

branches of chemistry because physico-chemical properties of atoms and molecules, 

their structures, spectral behaviors and reactions may be interpreted in terms of the 

motion of micro particles like electrons and protons. There are various methods based 

on quantum mechanics and their applications leads to the development of 

computational chemistry. Among different methods, Density Functional Theory (DFT) 

finds wide applications in various disciplines of science.  The basis of this theory is the 

two Hohenberg–Kohn theorems which propose that the ground-state properties of an 

atom or molecule are determined by its electron density function, and that a trial 

electron density must gives energy greater than or equal to the true energy. In recent 

years it is one of the most popular and successful method for electronic structure 

calculations in many body systems. In this chapter, the computational methods utilized 

throughout the present work and their underlying theory will be outlined briefly.  

2.2 OVERVIEW OF COMPUTATIONAL METHODS 

The main focus of Computational chemistry is on the molecular 

characterization, structural determination, spectroscopic properties, energetics, and 

kinetics by way of numerical calculations. One of the first references of the term 

“computational chemistry” can be found in the 1970 book “Computers and Their Role 

in the Physical Sciences” by Sidney Fernbach and Abraham Haskell Taub [1] where 



Chapter 2                                                                                                           Page|2- 2 

 

they state that “It seems, therefore, that 'Computational Chemistry' can finally be more 

and more of a reality.”With the development of quantum chemical methods, coupled 

with the rapid increase in computer power, the bridge between theory and experiment 

in solving problems of chemical relevance has become significant in modern 

chemistry. 

A discussion on computational chemistry starts with an introduction to the time 

independent Schrödinger equation [2] 

ĤΨ = ΕΨ        (2.1) 

Where Ĥ is the Hamiltonian operator, which is sum of kinetic and potential 

energy operators, thus, representing the total energy. Ψ is the wave function of the 

electron having coordinates x, y and z in three-dimensional space, and E is the total 

electronic energy of the system. 

The Hamiltonian, Ĥ is generally written as: 
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 The first term in the right hand side of Eq. 2.2 represents the kinetic energy of 

the electrons and the nuclei, while the second term represents the potential energy. 

Unfortunately, analytic solutions of the Schrödinger equation exist only for the 

simplest systems which contain no more than two interacting particles. Real systems, 

that is, atoms, molecules and solids, contain many interacting electrons and nuclei and 

thus solving or approximating this equation for multi-electron system is the real goal in 

any quantum based computational method.  

The difficulty of determining a solution can be reduced somewhat by 

employing a simple approximation known as the Born-Oppenheimer (BO) 

approximation [3]. According to this approximation, it is reasonable to suggest that the 

electrons can adjust rapidly to any change of the nuclear configuration because nuclei 

are much heavier than electrons. Under such a situation it can be assumed that the 

electronic distribution depends on the instantaneous positions of the nuclei and not on 

their velocities. This allows the separation of the Hamiltonian (Eqn. 2.2) into nuclear 

and electronic components so that energy calculation is made at fixed nuclear 
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configuration. The interactions between the electrons and the nuclei are treated as a 

static external potential (VN). In the BO approximation, the electronic Schrödinger 

equation of Eqn. (2.1) can be written as 

(Ĥel + VN) Ψel (ri, Ri) = Eel Ψel(ri, Ri )      (2.3) 

Where the coordinates of the electrons, ri depend only parametrically on the 

nuclear coordinates Ri. The BO approximation is an excellent approximation to the 

solution of molecular electronic Schrödinger equation. In addition, it provides 

practically the only way to define a molecular potential energy surface and molecular 

structure.  

With this assumption all nuclear positions are supposed be fixed and only 

electronic motions are considered. Under this approximation, thus, the total energy of 

the molecule is the sum of the energies of the nuclei and electrons. 

Etotal= Enuclei+ Eelectron     (2.4) 

This makes the Hamiltonian to be separated into two parts- one for the nuclei 

and the other for electrons. Thus, the Schrödinger equation for electronic motion can be 

written as  

ĤelΨel= Eel Ψel      (2.5) 

Where, 

Ĥel =  −
ħ
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The first term in Eqn. (2.6) is the kinetic energy operator for electrons, the 

second term is the potential energy sum due to attraction between the electrons and the 

nuclei, the third term is the potential energy of the repulsion between two electrons i 

and j. 

2.3 POTENTIAL ENERGY SURFACE 

The potential energy surface (PES) is the relationship between energy of a 

molecule and its geometry. It is a central concept of computational chemistry and based 

on BO approximations. The energy, EPES is the sum of Schrödinger solved electronic 
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energy and the nuclear-nuclear repulsion term, VNN. 

EPES = Eo + VNN     (2.7) 

By plotting the potential energy as a function of nuclear coordinates, various 

points of interest can be determined. A stationary point is the one in where δEPES/ δq = 

0 for all q (q is the geometric parameter). The minimum stationary points are minima 

i.e.; δEPES/ δq> 0 for all q. The transition states or first order saddle points is a 

maximum along the reaction coordinate and a minimum along all the other directions 

i.e.; δ
2
EPES/ δq

2
> 0 for all q, except reaction coordinate and δ

2
EPES/ δq

2
< 0 along the 

reaction coordinate. 

The stationary point with lowest energy along a PES is called a “global 

minimum” which corresponds to the most stable geometry of a molecule. The other 

possible minimum points are called “local minimum.” Figure 2.1 shows different point 

on a PES [4]. 

Figure 2.1 Points on potential energy surface 

2.4 TOOLS OF COMPUTATIONAL CHEMISTRY 

The main tools of computational chemistry can be broadly divided into five 

classes which are- molecular mechanics, ab initio methods, semiempirical methods, 

density functional calculations and molecular dynamics. The following subsections 
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briefly present some important computational chemistry tools. 

2.4.1 Molecular Mechanics 

Molecular mechanics (MM) [5,6] applies the laws of classical physics to 

predict the structures and properties of molecules. It considers a molecule as a 

collection of balls (atoms) connected via springs (chemical bonds). MM considers a 

conceptually mechanical model of a molecule to find the minimum energy structure. 

This method is often called force-field method. The object of molecular mechanics is to 

predict the energy associated with a given conformation of a molecule. The energy 

calculated my MM method consists of contributions made by various modes of spring 

motion described by different force fields. The total energy can be expressed as:  

Etotal= Estretch  + Ebend   + Etorsion + Enon-bonded             (2.8) 

Where, Estretchis the energy for stretching a bond between two atoms, Ebendis the 

energy required for bending a molecule, Etorsionis the torsional energy for rotation 

around a bond and Enon-bonded is the non-bonded interaction energy.The equation 

together with the parameters required to describe the behavior of different kinds of 

atoms and bonds, is called a force-field. Molecular mechanics calculations are based on 

nuclear interactions and do not treat the electrons in the system. The main advantages 

of molecular mechanics are that it is fast, computationally less expensive, can be used 

for large biomolecules. However, it also possesses some disadvantages such as it can 

be applicable only for limited molecules, it ignores electrons and a parameterized force 

filed performs well for only one class of compounds. 

2.4.2 Ab initio methods 

Ab initio method a major tool for investigating the structure, stability, reaction 

kinetics and mechanism of different molecular systems [7-12]. The basis of ab initio 

calculations are the laws of quantum mechanics that involve a small number of  

fundamental physical constants like the speed of light, the mass and charge of electron 

and proton, the Planck‟s constant, etc. These methods involve the solution of 

Schrödinger equation through a series of necessary mathematical approximations. 
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Abinitio methods include Hartree-Fock (HF) theory, Møller-Plesset Perturbation 

Theory (MPPT), Configuration Interaction (CI) & Couple-cluster(CC) method.  

2.4.2.1 Hartree-Fock Theory 

Hartree-Fock (HF) theory is the most common ab initio method. It is the basis 

of molecular orbital (MO) theory which proposes that each electronic motion can be 

described by a single particle function (orbital) that does not depends explicitly on the 

instantaneous motions of the other electrons. HF theory was developed to solve the 

electronic Schrödinger equation resulting from the time-independent Schrödinger 

equation after invoking the BO approximation.  This approach was first proposed by 

Hartree and Fock [13,14] and is referred to as HF theory. Because the molecular 

orbitals are derived from their own effective potential, this method is also known as 

Self-Consistent Field (SCF) theory. 

In HF-SCF theory [15], at first an approximate guess of the coefficient matrix C 

is made. This is achieved by either simply orthogonalising the atomic orbital basis by 

diagonalsing the one-electron part of the Hamiltonian or utilizing semi-empirical 

methodslike INDO or extended Huckel theory (EHT). 

HC = SCε      (2.9) 

 Secondly, the Fock matrix is constructed and diagonalised by solving the 

Roothaan-Hall equation. This is easy if a unitary transformation is performed in order 

to orthonormalise the original basis set so that the overlap matrix becomes the identity. 

The standard approach is to use the Löwdin orthogonalisation method [16] where the 

transformation is made using the S
-1/2

 matrix.  

 

   S
-1/2

 FS
-1/2

 S
1/2

 C = S
-1/2

 SS
-1/2

 S
1/2

Cε            (2.10) 

which yield,  𝐹 𝐶 =  𝐶  ε                (2.11) 

Where, 𝐹  = S
-1/2

 FS
-1/2

, 𝐶  = S
1/2

 C and the eigenvalues ε are a more accurate estimate of 

the true orbital energies. In the simplest implementation of SCF optimization, orbitals 

in a given diagonalization step are used to construct a new Fock matrix. Thus, allowing 

a new set of orbitals to be generated. This process can be iterated until the coefficients 
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matrix is unchanged from one iteration to the next. The resulting orbitals are then said 

to be “Self-Consistent”. The total energy of the system at convergance is given by- 

   𝐸 = 𝐸𝑜𝑟𝑏 −
1

2 
 < 𝑖𝑗 ∥ 𝑖𝑗 >𝑖≠𝑗              (2.12) 

WhereEorb is the total orbital energy given as  𝐸𝑜𝑟𝑏 =  ε𝑖𝑖 . 

Ab-initio methods are relatively slow and required very demanding computational 

power. Such drawbacks are simplified in semiempiricalmethods.  

2.4.3 Semiempirical methods 

Semi-empirical methods based on the parameters derived from experimental 

data to shorten the computations. These methods approximately solve the Schrödinger 

wave equations and depend on the availability of appropriate parameters for the 

chemical system of interest. Semi-empirical calculations are relatively inexpensive on 

the availability of good parameters and give fairly accurate energy and structure. Here, 

the Fock matrix is repeatedly diagonalized to refine the wave function and molecular 

energy. Three approximations schemes are generally used in semiempirical methods:  

(a) Elimination of core electrons from the calculations 

(b) Use of minimum number of basis sets & 

(c) Reduction of the number of two electron integrals 

The various procedures of semiempirical methods include Pariser-Parr-

Pople(PPP), Complete Neglect of Differential Overlap (CNDO),  Intermediate Neglect 

of Differential Overlap (INDO) and Neglect of Diatomic Differential Overlap 

(NDDO). All these four use the Zero Differential Overlap (ZDO) approximation where 

the differential of overlap integral is set as zero.  

Semiempirical methods are relatively takes less time than ab intio methods. 

However, their predictions are unreliable until comparison with experiment results or 

with some high level ab initio calculations. 
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2.4.4 Density Functional Theory 

Density Functional theory (DFT) is mainly developed on the base of proof by 

Hohenberg and Kohn which states that the ground state electronic energy can be 

determined completely by the electron density (ρ). We can also say that density 

functional theory is based on the electron probability density function or electron 

density function. Mathematically, Hohenberg and Kohn proved that there exists a one 

to one correspondence between the electron density of a system and the energy. DFT is 

widely used in quantum chemical calculations because its computational requirement is 

comparable to HF techniques but accuracy is comparable to more exact techniques 

such as MP2. The computational cost in DFT is almost same as that of HF methods but 

less expensive than ab initio methods involving electrons correlation. 

 Unlike other methods, DFT not describes the wave function which depends on 

3N spatial coordinates in a N-electron system. Instead of that it describes the system by 

its electron density which depends on only 3 spatial coordinates. The N particle system 

electron density is given by, 

 

𝜌 𝑟 1 =  𝑁  ……  𝛹(𝑥1    , 𝑥2     , …… , 𝑥𝑁     ) 
2 𝑑𝑥1    𝑑𝑥2     … . . 𝑑𝑥𝑁                           (2.12) 

 

The electron density ρ is a function of position only, that is, of just three 

variables, x, y and z coordinates, no matter how large is the molecule. The DFT ground 

state energy of a molecule, which is a function of the ground state electron density, can 

be expressed as, 

 

E0 = − 𝑍𝐴𝑛𝑢𝑐𝑙𝑒𝑖  𝐴  
𝜌0 𝑟1      d𝑟1     

𝑟1𝐴        
–

1

2
  𝛹𝑖

𝐾𝑆 𝛻𝑖
2 𝛹𝑖

𝐾𝑆 2𝑛
𝑖=𝑛 +  

1

2
 

𝜌0 𝑟1      𝜌0 𝑟2      

𝑟12
d𝑟1    d𝑟2    𝐸𝑋𝐶  𝜌0 

                                          (2.13) 

The first term is the potential energy signifies the nuclei-electron attraction; the 

second term is the non-interaction electronic kinetic energy; the third term is the 

classical repulsion energy term; the fourth term is defined as exchange correlation 

energy. Once we know the density function 𝜌0(𝑟 ) and the exchange-correlation energy 

functional EXC [ρ0], we can get the exact energy. By comparing with the equations of 
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wave mechanics and assuming the Born–Oppenheimer approximation, it is clear that 

the functional can be divided into three parts, a term for kinetic energy (E
T
[ρ]), one for 

columbic attraction between nuclei and electrons (E
V
[ρ]) and one for interactions 

between electrons which in turn can be readily divided into coulomb (E
J
[ρ]) and 

exchange (E
XC

[ρ]) terms. Thus, 

 

                    E [] = E
T 

[] + E
V 

[] + E
J 
[] + E

XC
 []          (2.14) 

The density function 𝜌0(𝑟 ) can be calculated using equation (2.12) where the 

wave function can be obtained by solving the Kohn-Sham equation [17] 

 

 −
1

2
𝛻𝑖

2– 
𝑍𝐴

𝑟1𝐴
𝑛𝑢𝑐𝑙𝑒𝑖𝐴 +   

𝜌0 𝑟2      d𝑟2     

𝑟12       
+ 𝜈𝑋𝐶  𝛹𝑖

𝐾𝑆 =  𝜀𝑖
𝐾𝑆𝛹𝑖

𝐾𝑆                           (2.15)

   

In Eq.(2.15), the i
KS

 is the Kohn-Sham (KS) spatial orbital  function,  i
KS

 is 

the KS energy level and  XC is the exchange correlation potential which is defined as 

the functional derivative of Exc [𝜌 𝑟  ] with respect to 𝜌 𝑟  : 

 

𝜈𝑋𝐶  𝑟  =  
𝛿 𝐸𝑋𝐶  𝜌 𝑟   

𝛿𝜌  𝑟  
                                      (2.16) 

The strength of DFT is that only the total electron density needs to be 

considered. If the exact Exc[𝜌 𝑟  ] is known, DFT would provide the exact total energy 

including electron correlation.Various approximations are made to Exc [𝜌 𝑟  ] to use 

DFT methods in different calculations. 

2.4.4.1 Local Density Approximation (LDA) 

Local density approximation (LDA) is the simplest approximation to the 

exchange correlation function Exc [𝜌 𝑟  ] which assumes that the exchange correlation 

energy at a certain point in space depends on the density at the same point. Exc [𝜌 𝑟  ] 

can be expressed in a simple form as: 

𝐸𝑋𝐶
𝐿𝐷𝐴  𝜌 =  𝜌 𝑟  εXC  [𝜌 𝑟  ]d𝑟     (2.17) 
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Where εXC  [𝜌 𝑟  ]  is the exchange-correlation energy per particle of a uniform 

electron gas of density,𝜌 𝑟  . The exchange correlation energy, εXC   𝜌 𝑟   , is composed 

of two parts: 

εXC [ρ(𝑟 )]= εX [𝜌 𝑟  ] + εC [𝜌 𝑟  ]    (2.18) 

 The first part is the exchange part representing the exchange of an electron in a 

uniform gas and was approximated by Bloch [18]: 

    εX =  − 
3

4
 

3ρ 𝑟  

π

3
    (2.19) 

The second part in Eq. (2.18) is the correlation part that has been studied by 

various workers using sophisticated interpolation schemes. The most popular εXC [ρ(𝑟 )] 

functional is developed by Vosko, Wilk and Nussair abbreviated as (VWN) [19]. A 

recent and accurate expression of εXC [ρ(𝑟 )] is PW density functional given by Perdew 

and Wang [20]. 

The presence of the exchange correlation term made LDA approximations more 

accurate than HF approximation having similar computational cost. It was found that 

LDA is successful to predict the optimized geometries [21] and vibrational frequencies 

[22] with a higher degree of accuracy. However, the assumption of a homogeneous 

electron gas in the system results a rather poor calculated energy in LDA functional. 

2.4.4.2 Generalized gradient approximation (GGA) 

The reason for failure of the LDA functional in calculating the ground state 

energy of a molecular system is the assumption of a uniform electron density. For 

obtain a further accurate approximation of the exchange-correlation energy, GGA 

functionals are developed which not only include the electron density but also the 

electron density gradient. Generally, EXC
GGA

 is composed of two parts (i) exchange and 

(ii) correlation 

EXC
GGA

 = EX
GGA

 + EC
GGA

                                         (2.20) 

The most widely used exchange functional was developed by Becke in 1988 

and termed as B88 [23]. One of the most popular correlation functionals developed by 

Lee, Yang and Parr called the LYP functional [24]. The other most common choices 

are Perdew 1986 (P86) [25],Perdew-Wang correlation functional (PW91) [21], 
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combination of B88 with LYP (BLYP) and Perdew-Becke-Ernzerhof exchange-

correlation functional (PBE) [26]. 

2.4.4.3 Hybrid Functionals 

To obtain an accurate expression for the exchange functional from DFT, the 

concept of hybrid functional was introduced. It is a combination of Hartee-Fock 

exchange with and DFT functional and can be expressed as, 

 

Ex= Ex
HF

+ Exc
DFT                                        

(2.21) 

The most popular hybrid model is the B3LYP method based on Becke‟s 3-

parameter-functional (B3) and is given by, 

 

EXC
B3LYP

 = (1-a)Ex
LDA

 + aEx
HF 

+ bEX
B88

 + cEC
LYP                

(2.22) 

Where the parameters a, b, and c are determined by fitting experimental data 

and calculated data for the atomization energies, ionization potentials and proton 

affinities of second and third period elements and results in values of a=0.20, b=0.72 

and c=0.81 [15,27].VWN is the Vosko, Wilk and Nusair functional [11] and LYP is 

Lee, Yang and Parr functional [16]. Varius functional has been generated in the same 

way by varying the component functional. For example another functional is devised 

by substituting the Perdrew-Wang [28] gradient-corrected correlation function for LYP 

and by adjusting other three parameters.  

2.5 BASIS SETS 

A basis set is a mathematical representation of the molecular orbitals within a 

molecule. The basis set can be interpreted as restricting each electron to a particular 

region of space [29]. For the ab inito molecular orbital approach, we can consider the 

molecular orbitals formed by the linear combination of atomic orbitals which can be 

expressed as: 

𝑖 =   𝑐𝜇𝑖 𝜑𝜇                                                                                                             (2.23)

𝑛

𝜇=1
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Where i is the i-th molecular orbital, cμi are the coefficients of the linear 

combination,  μ  is the  -the atomic orbitals, n is the number of atomic orbital [30]. 

There are mainly two types of basis functions: 

2.5.1 Slater Type Orbitals 

Slater Type Orbitals (STO) are first introduced in the field of computation 

chemistry by J. C. Slater. They are characterized by an exp (-r) radial dependence. 

STOs are the exact solutions to the hydrogen atom problem and hence can provide a 

good description of atomic wave functions and more importantly produce the correct 

behavior at the nucleus as well [31]. However, STOs have computational difficulties. 

To overcome this problem, Gaussian type orbitals(GTO)  are derived as alternatives. 

2.5.2 Gaussian Type Orbitals 

Gaussian–types orbitals (GTOs) [32] are characterized by an exp (-r
2
) radial 

dependence and are most commonly used basis functions. A Gaussian-type orbital has 

the following form: 

𝜒𝜉 ,𝑎 ,𝑏,𝑐 x, y, z =  𝑁𝑎,𝑏 ,𝑐,𝜉𝑥
𝑎𝑦𝑏𝑧𝑐𝑒−𝜉𝑟2

                                                 (2.24)

    

Where N is the normalization constant, a, b and c are quantum numbers describing the 

angular shape and direction of orbital. Exponent   applies to the radial size of the 

orbital. In order to improve the properties of an individual basis function, Gaussian–

type basis functions are often expressed as a linear combination of Primitive Gaussian 

Functions. 

Φ =  d
i i gi                (2.25) 

The coefficient (di) for each of the Primitive Gaussians (gi) are chosen so as to better 

represent a true atomic orbital. This type of basis function (Φ) is known as contracted 

Gaussian.  There are different types of basis function. The most general classes are: 

2.5.3 Minimal Basis Sets 

A minimal basis set is the smallest number of basis functions needed to 
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accommodate all the electrons for each atom. It approximates all the orbitals to be the 

same shape. A minimal basis set consists of one STO for each inner–shell and valence–

shell atomic orbital of each atom. STO-3G is an example of minimal basis set which 

uses three Gaussian primitives per basis functions and is a Slater type orbital. 

2.5.4 Split Valence Basis Sets 

Minimal basis sets are not able to alter the basis functions with reference to the 

molecular environment. Therefore, split valence basis sets are developed where the 

atomic orbitals are split into two parts- an inner compact orbital and an outer more 

diffuse orbital. It model each valence orbital by two or more basis functions. Double 

split valence or valence double zeta (VDZ) basis sets have one basis function per inner 

orbital and two basis functions per valence orbital. An example is 3-21G where core 

orbitals are represented by three Gaussians whereas inner and outer valence orbitals are 

represented by two and one Gaussians, respectively. The triplesplit valence or valence 

triple zeta (VTZ) basis sets have one basis function for each core electron and three 

basis functions per valence orbital. Example of VTZ basis set is 6-311G where the 

inner valance orbitals are represented by three Gaussians and middle and outer valence 

orbitals are represented as single Gaussians. 

2.5.5 Polarization Functions 

Polarization of the electron distribution around the nucleus is not considered in 

VDZ and VTZ basis sets. Thus polarization functions are introduced which allow the 

shift of the centre of an orbital away from the centre of the nucleus due to charge 

polarization. Here s orbitals possess a little p behavior and p orbitals have little d 

behavior. The purpose of adding the polarization function is to provide additional 

angular flexibility to the linear combination of atomic orbitals in forming bonding 

orbitals. They have the effect of showing angular electron correlation i.e. allow for 

non–spherical distributions of the electrons around a nucleus. Examples are 3-21G* or 

3-21G(d) , 6-311G** or 6-311G(d,p) etc, where one asterisk (*) at the end of basis set 

represent the polarization of p orbitals whereas two asterisks (*) denotes the 

polarization of s orbitals in addition to p orbitals. 



Chapter 2                                                                                                           Page|2- 14 

 

2.5.6 Diffuse Functions 

Diffuse functions are used to properly describe the outlying regions of the 

molecules which are particularly important for the anions or excited sates. They 

improve the basis sets by considering the larger distances from the nuclei and thus 

describe better the barely bound electrons. Diffuse basis sets are represented by „+‟ 

signs and are written as 3-21+G and 6-31+G(d). Double diffuse basis sets are also used 

and these are represented as 6-31++G(d). 

2.5.7 Effective Core Potentials 

Effective core potential is an approach to consider the relativistic effect of 

heavier elements.The inner electrons in the heavier elements has movement at a 

significant fraction of speed of light and as a result their relative masses increases. Due 

to gain in mass, the inner electrons cause their orbitals to contract and screen the outer 

electrons highly. Hence the outer, valence d and f orbitals are expand, gain higher 

energy and also become more reactive. The effect of the core electrons is minimized by 

a collective way by considering a average potential known as effective core potential 

(ECP). It is the most satisfying way to carry out relativistic molecular calculations. The 

common basis sets applied to consider ECP are LANL2DZ, LANL2TZ etc. 

2.6 QUANTUM THEORY OF ATOMS IN MOLECULES (QTAIM) 

The nature of chemical bonding of a system can be calculated by using Bader‟s 

quantum theory of atoms in molecules [33-35].The basis of this theory is the three 

dimensional electron density functions, ρ(r). The topological analysis is the 

investigation of critical points of this function, ρ(r).The commonly used parameters to 

describe the nature and extent of bonding between two atoms are the electron density, ρ 

and the Laplacian of electron density, ∇2
ρ at the bond critical point (BCP). Generally, a 

large value of ρ(r) (>0.2 au) and large and negative value of ∇2
ρ indicates a covalent or 

open shell interaction, whereas a small value of ρ(r) (<0.10 au) and a positive value of 

∇2
ρ indicates an ionic or closed-shell interaction. However, for transition metal based 

systems, this view can‟t be extended since the electron distribution of these elements 

are diffuse in nature. Hence, in transition metal complexes, the rule is slightly modified 
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and it is observed that a small value of ρ and a small and positive value of ∇2
ρ imply a 

covalent interaction.Two additional parameters are also used to describe the bonding 

nature more appropriately. These two parameters are local electronic energy density 

function, H(r) and relative kinetic energy density, G(r)/ρ, where, H(r) is the sum of 

local kinetic G(r) and potential V(r) energy densities, i.e., H(r) = G(r) + V(r). Cremer 

and Kraka [36] proposed thata value of H(r)<0 at the BCP indicates the presence of 

significant covalent character or an open-shell interaction and lowering of potential 

energy of electrons at the BCP, whereas a value of H(r)>0 at the BCP generally refers 

to a closed shell interaction, i.e., ionic, van der Waals, or hydrogen bonding. Similarly, 

value of G(r)/ρ<1 at the BCP indicates a covalent interaction, whereas G(r)/ρ>1 

indicates the ionic nature of the bond [37]. 
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