Chapter 3

New congruences modulo 5 for the
number of 2-color partitions

3.1 Introduction

In this chapter, we prove Theorem 1.3.1 for k € {2,3,4}, i.e.,

p2(25m + 22) = 0 (mod 5), (3.1.1)

p3(25m + 21) = 0 (mod 5), (3.1.2)
and

p4(25n + 20) = 0 (mod 5), (3.1.3)

In the next section, we present some useful lemmas and in Section 3.3, we prove
(3.1.1)—(3.1.3).
The contents of this chapter published in [2].

3.2 Preliminaries

We recall the following elementary properties of Ramanujan’s theta function f(a,b)

from Entries 29 and 30 of (Berndt [19, pp. 45-46]).
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Lemma 3.2.1. We have
f(—a,—b) = f(a® b*)p(ab) — 2af (g,agb) P(a®b?). (3.2.1)

If ac = bd, then

fla,b)f(e,d) + f(—a,—b)f(—c,—d) = 2f(ac,bd) f(ad, bc) (3.2.2)

and

Flab) f(e.d) — f(—a,—b)f(—c,—d) = 2af (Z,ac%z) f (%,ach). (3.2.3)

We require the following Jacobi’s identity.

Lemma 3.2.2. (Berndt [19, p. 39, Entry 24]|) We have

o0

(4:9)% = Y _(=1)"(2n+ 1)g""+72, (3.2.4)

n=0

We also require the following 5-dissection of p(—q).
Lemma 3.2.3. (Berndt [19, p. 39, Entry 24]) We have
p(—a) = o(=0*) = 24f (=", —¢”) + 24" f (=¢*, —"™). (32.5)

In the next four lemmas we state some well-known results on the Rogers- Ra-

manujan continued fraction R(q).

Lemma 3.2.4. (Berndt [20, p. 161 and p. 164]) If T(q) := =

then

R R (3.2

and

5 ¢ (69«
T@) =1~ 7 = ) (327)
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The following result gives a 5-dissection of 1/(g; ¢)o in terms of 7T'(¢) which also
readily implies (1.3.1).

Lemma 3.2.5. (Berndt [20, p. 165, eq. (7.4.14)]) We have

e {T4(q5) +qT%(Q°) + 2¢°T*(¢°) + 3¢°T(¢°) + 5¢" — 3¢
(0 (°5¢°)% T(q5)
24° q ¢ }
_ ' 32.8
) ) ) (3:28)

Lemma 3.2.6. (Andrews and Berndt[6, p. 35, Entry 1.8.2]) If k = R(q)R*(¢*) and

k<5 -— 2, then
¥?(q) B 1+ k—k?
a*(¢°) koo
We end this section by noting the following two beautiful results found by Gugg
[37].

(3.2.9)

Lemma 3.2.7. If u = R(q) and v = R(¢*), then

v u?) (q15.q15)3 (q q)
— — =9 T I 1 9 3.2.10
T o N (T (3:2.10)
and
1 5. 5\ 3. 3
— = gq g >jg(§ e _ o (3.2.11)
uv *(4%%5")3%(¢; 0o

3.3 Proof of Theorem 1.3.1 for k € {2,3,4}

Proof of Theorem 1.3.1 for k = 2. We note that

> n 1
;Mn)q (@ @)o(d% ¢
__ (@9
(¢:9)3(—4: @)oo
(9% (69
(@)% (G d)e (331
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By the binomial theorem, it is easy to see that
(4:9)% = (¢°;¢°)oo (mod 5). (3.3.2)

Using the above and (1.8.3) in (3.3.1), we have

> )" = (B () (od 5). 533

Employing (3.2.7) and (3.2.5) in the above, and then extracting the terms in-

volving ¢°**2 from both sides, we obtain

sz bn +2)q" = ((q q)) {4 f((_qq” _q4))f(—q3,—q7)

( Qa_q4) 5
mf(—q Q) 90(—61)}

(% ¢°)2 {4 =, =) (= —4") + af* (—q, —¢") [(—q, =)
(¢ 9o f(=q,—q") f(—=¢* —¢3)
— ¢(=¢°) } (mod 5).

+ 4q

Since by (1.8.2), f(—q, —¢") f(—¢*, —¢*) = (¢; @) oo(@’; ¢°) 00, the above can be written

as

Zpg(i"m +2)¢" = A(q) + B(q) (mod 5), (3.3.4)

Alg) =4 LD w2 oy b Cop gy 4 qf2 (=, —g) (=g —¢)} (3.3.5)

(¢ 0)%
and
B =~ L)

74 on the right side of (3.3.4) are multiples

If we can show that the coefficients of ¢
of 5, then by equating the coefficients of ¢°*** from both sides of (3.3.4) we shall
arrive at the desired congruence (1.3.7). By (1.3.2), it is clear that the coefficients

of > in B(q) are multiples of 5. Therefore, it is sufficient to show that the
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coefficients of ¢°*™ in A(q) are also multiples of 5. To that end, first we simplify
A(q) in terms of g-products.
Setting, in turn, a = ¢, b = ¢* and a = ¢, b = ¢* in (3.2.1), we have

F(=a.—q") = f(&. ®)e(d®) = 241 (¢, a")(¢") (3.3.6)

and

(= —4%) = f(q",d°)e(q”) — 2¢°F(q,¢")¥(¢"). (3.3.7)
Multiplying (3.3.6) by ¢f(—q, —¢°) and (3.3.7) by f(—¢*, —¢"), and then adding the
resulting identities, we find that
(= =) (= —d") + af* (=0, —¢") f(—q, —4")
= o(¢®) {f(¢", ) f(=¢*,—d") + af (. ¢*) [ (—a. =) }
—2¢°0(q") {f(—=¢*, =) f(a. ") + f (&, ") f(—q,—d") } - (3.3.8)

Now, setting a = ¢,b = —¢*,¢ = ¢*,d = ¢* in (3.2.2) and (3.2.3), and then

adding, we have
F@, (=% —d") + af (@, ) f(—a, =) = f(a, =) f(@*, —4*) = [(@) f(2),
where (1.8.2) was also used in the last equality.
On the other hand, setting a = ¢,b = ¢°,c = —¢*,d = —¢" in (3.2.2), we have
F(=, =V (q,8") + F(&, 4" f(=a,—4") = 2 (—=¢", =¢'*) f(—¢°, —¢"*)
= 2(q" 400 (4 ¢*) o0
where the last equality is obtained from (1.8.2).

Employing the last two identities in (3.3.8), we arrive at

= - (= —d") + af*(—¢, —¢") f(—q, —")

= f(@)F(@)e(d®) — 46°(q% ¢*) oo (0% ) st (¢"7).
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Using the above in (3.3.5) and then employing (3.3.2), we find that

A(Q)=4(q5;q5)oof(q5)90(q5)7(qf%) 16¢°(4"; ") (qQO;qQO)oow(qw)i(c(]qég)zw

= 41(")e() f (@) (@ D2 — @ (@ )t (¢") (" ¢*) o (43 @)%, (mod 5).

Thus, to show that the coefficients of ¢°*** in A(q) are multiples of 5, it is sufficient
to check that the coefficients of ¢ ™ in f(q)(q;q)3, as well as ¢*(q*; ¢*)o(q; q)2,
are multiples of 5. We complete the proof of (1.3.7) by verifying this fact in the
following.

First, from (2.2.2) and (3.2.4), we note that

F)(@ )3 = (¢ —a)o (a5 0)%

- Z (_1)j+j(3j+1)/2qj(3j+1)/2 Z(—l)r(Zr n 1>qr(r+1)/2
j—*OO r=0

_ Z Z 3J(J+1 /2+T(2T+ 1)qj(3j+1)/2+r(r+1)/2'

j=—o0 r=0

As in [20, p. 32], we observe that

2(j+1)2+(2r+1)2:8{1+j(3j+1)+T(T+1)}—10]’2—5.

2 2

j(37+1) N r(r+1)

5 is of the form 5n + 4 if and only if

Hence,
2(+ 1)+ (2r +1)> =0 (mod 5).

But, 2(j +1)2 = 0,2 or 3 (mod 5) and (2r + 1)> = 0,1 or 4 (mod 5). Therefore,
the above congruence is true if and only if 2(5 + 1)2 = 0 = (2r + 1)? (mod 5); i
particular, 2r + 1 = 0 (mod 5). Hence, the coefficients of ¢°"™ in f(q)(¢; q)3, are

multiples of 5.
Next, from (2.2.2) and (3.2.4) again, we have

(e} [e.e]
(7 oo )3 = ¢ ) (=17 g7 (—1)7(2r + 1)g" /2
j:—oo r=0
Z Z j+7‘ 2/’,, + 1)q2+2j(3j+1)+T(7’+1)/2‘ (339)

j=—o00 r=0
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Observe that

| . +1
8(]+1)2+(2r+1)2:8{1+2+2j(3]+1)+T(TQ )

r(r+1)
2

} —405% — 15.

Thus, the exponents 2+ 2;5(3j 4+ 1) +

on the right side of (3.3.9) are of the

form 5n + 4 if and only if
8(j+ 1)+ (2r +1)> =0 (mod 5).

But, 8(j+1)*=0,2 or 3 (mod 5) and (2r+1)> = 0,1 or 4 (mod 5). Therefore, the
only values for which the above congruence is satisfied are 8(j + 1)* = (2r + 1)* =
0 (mod 5). Hence, 2r4+1 = 0 (mod 5), and consequently from (3.3.9), the coefficients

Sn+4

of ¢ in ¢*(¢*; ¢")so(q; @), are multiples of 5. O

Proof of Theorem 1.3.1 for k = 3. We have

1
p3(n =
Z (45 4)o (0% ¢°) o
Using (3.2.8) in the above and then extracting the terms involving ¢°"*! from

both sides and also with the aid of (3.3.2), we find that

4,4 3.3
x 3q°x
Zpg (5n + 1)q (q(qqqg EZ qq) )5 [qu —qx31 + xi’xé — qx?) L 6¢°ziTs
) 3
2¢°x3 6¢*x 6¢°xz2  3¢° 2qxt  6¢*
+q + 3qzad + C]21_C] 3 4 QS+ 923_ 2@
3¢z ¢ ¢l N 2q5}
3 x?xé rt  xiad

(4% 0°)5(4"; 4")5 )
(@ Doo(@ ) [QQA( ) —3¢B(q) +6¢*C(q)

+D(q)| (mod 5), (3.3.10)

where x; := T(q) and x3 = T'(¢%),

4,2 4 4
_ 42 9T I3 g
T3 Ty I1$3
2,3 4
q 3 3 q ¢ s
B = — 1L3 — —3 + 3
2 2 2
q r1 T3 q
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and
6 2.3
q q 3 q* xl
D(q) = 23x5 — + —
(Q) 143 legxé lel .773

To prove Theorem 1.3.1 for k = 3, i.e., to prove that p3(25n + 21) = 0 (mod 5), we
need to show that the coefficients of ¢°*** on the right side of (3.3.10) are multiples
of 5. To that end, we simplify A(q), B(q), C(q), and D(q) in terms of (¢°; ¢*)o with
s> 1.

Multiplying Gugg’s identities (3.2.10) and (3.2.11), we have

1 4 2 15. 15 5. 5)° 7
utv? - u? (q Q)(q q) 7*(q ,q)(CJQ)
L 5
As u = R(q) = — and v = R(¢®) = —, the above can be rewritten as
T T3
4.2 2,2 4 2
T3 47T T3 q
=7
q? + x5 + 2 + rirl (2),
where
15. 15 5. ), 3
(@°:¢°)3 (q CI) q*(q*%; ¢! )oo(,Q)oo
Thus,
Alq) = ¢°Z(q). (3.3.11)

Again from (3.2.10) and (3.2.11), we have
3 1
{%+u——2}{—+uv +2} 9,
ud v uv?

3

3 2
2{_.771-53_ q 3+-T1 +x_§}:13_z(q),

which is equivalent to

Therefore,

(3.3.12)
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Now,
4,2 4 4 2 4 2
C*(q) = {x§x§+q R . }—4q +2{ G B S f3}
With the help of (3.3.11) and (3.3.12), we see that
C2(q) = ¢*Z(q) — A¢* + 13¢* — ¢* Z(q) = 9¢*.
Thus,
C(q) = +3q. (3.3.13)

Next, (3.3.12) and (3.3.13) together give

293 4 2z T T 2 13— 7
{L_mlxg_ q3+q_:3:3}{ i 3+u__3_ g }:i3q37@7

T3 T3 x] x3 T Tix3 2

which can be simplified as

2 6

q q 13— Z(q
— D(q) —2¢°C(q) = ¢ {—5—x‘;’}+—5—x2i3q37().

g T3 2

Employing (3.2.6) and (3.3.13) in the above, we have

D(q) % 6¢° :qQ{(((‘”A +11q} v ((q# 1143

75 ¢°)5, q'%;q")5,
13— 2
¢3q37@,
2
which is equivalent to
51, 3 (¢;9)8 (0% ¢°)S
D(q)=F=¢+-¢’Z e =20 4 92¢°. 3.3.14
) =350 =507+ Cram b ey P20 B3

Employing (3.3.11) — (3.3.14) in (3.3.10), we arrive at

- (0% 0°)5 (@ d)5 [, 5 3 3 3
az(dbn + 1)q¢" = == <>O[Qqu——q 13— Z(q)) + 18¢q
al ) (45 0)so(03;¢%) o (@ 2 ( (@)

S
I
o

51

3 ;6 3;36
21307200 + z(qq)oo L (@)

+ 22q3]

2 2 Y@ T @),
_ (4% 0°)5(d"4") 5 ) 3 3 3 2%
= () 2020+ G0+
NEAL L B {505 + q F 51qgj: 18¢°| (mod 5). (3.3.15)

(¢* ,q5)6 2 2
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Now we separately handle the two cases of ambiguity in the above congruence
arising from C'(q) = £3q¢.
First consider C'(q) = 3¢. Then (3.3.15) becomes

15
_ 5q3

(@5 @)oo (0% 6% )0 (q5; @) (g5 ¢)5
> (474%)s (% )%
! (%) (@)oo ("% 0") 0045 @)oo (mod 5).

Employing (3.2.8) on the right side and then comparing the coefficients of ¢ from

ia3(5"+1)q7‘ (@ ) g ES [5q3Z() 2 ()5 | (@)

both sides of the above, we arrive at the desired congruence p3(25n+21) = 0 (mod 5).
Next, consider the other case, i.e., C'(¢) = —3¢. Then (3.3.15) reduces to

= (0% ¢°)% ("% ¢™°)5 (4;9)%
Za3(5n+ D" = (¢ @)oo(@® ¢°) [2q3z(q) * 2(615'615)6
n=0 9 [e.e] 9 oo 9 o0
(q35q3)go 3
+ e —i—qu}
5. .,5\4 15. ,15\4 15. ,15\5 .
= e s
’(q5;q5)5 (% 4% 5 (4:9)8 (¢%q°)S
+22 15 E5 }+ 5 5OZ+ 15. 50?5
(4% ¢%)3(¢; )0 (%¢%)%  (¢*%;¢*®)8,
15 15\9 5. .,5\9
TP oo (@3 43)2, (4:¢")o0(q; 9)2%
5 (q15.q15)4 (q5 q5)4
q b) o0 + b o0
(°0°)0(@* ) (€°56")0(45 @)
q°;q 7 q
=4q ﬁ(q q*)2 +4Qﬁ(q Q)2
+q2 (q 7q )oo + (q aq )oo (mod 5)

(0% 6°) o (0% @P)oe  (0€"%0")o0(@: e

But, it has already been noted that the coefficients of ¢°"** in the last two terms
on the right side of the above congruence are multiples of 5. Therefore, to derive
p3(25m +21) = 0 (mod 5) from the above congruence it is enough to show that the
coefficients of ¢°"™ in (¢?; ¢®)3, and q(q; ¢)3, are also multiples of 5.

Replacing ¢ by ¢® in (3.2.4), we have

o0

(%307 = D (1) (2r + g0, (3:3.16)

r=0
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We observe that if the exponents of ¢ in the above sum are of the form 5n + 4, then

3r(r+1)

5 =4 (mod 5),

which is equivalent to
(2r +1)> =0 (mod 5),

and hence 2r + 1 = 0 (mod 5). Therefore, by (3.3.16), the coefficients of ¢°*™ in
(¢%;¢*)3. are multiples of 5.

Similarly, we note from (3.2.4) that

9(q:9)% = Y _(=1)"(2r 4 1)g oIz, (3.3.17)
r=0
Observe that
1
1+ T(T; ) =4 (mod 5)

is equivalent to (2r + 1) = 0 (mod 5). So, 2r + 1 = 0 (mod 5). Therefore, we see
from (3.3.17) that the coefficients of ¢°*™* in ¢(q; )2, are also multiples of 5. This

completes the proof. O

Proof of Theorem 1.3.1 for k = 4. We have

Zp4(n)q” = !

(05 @)oo (@ qH) oo

(7% ¢*)2,
(:9)o0(q% %) oo

Replacing ¢ by —¢ in the above and then noting that (—¢; —¢)eo =

we see that
- (4 0)oo
(=1)"pa(n)q" = —5—55-
; (4% a3,

With the aid of (3.3.2), the above implies

o0

Z(_l)nm(n)qn = (q;((i])li(jl(j)i)oo (mod 5).
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Employing (3.2.7) in the above and then extracting the terms involving ¢°" from

both sides, we find that

S (0% ) (q": 43 { 2,2 ¢’ }
—1)"ps(bn)q" = 2T QT (¢°) +q— =——— mod 5).
2_(=1pilom) ¢ @T@)+ 4~ ryrgy § (04 D)
/5
Since T'(q) = R’ we employ (3.2.9) in the above to arrive at
q
S (0% 0°)oo(a": 4")% ¥%(a)

Z(—l)”p4(5n)q” =

n=0

(4% 4%) s V() (mod 5).

Employing (1.8.1) in the above and then using (3.3.2), we obtain

=, n (@0)s(@% )% (¢5dD)%
2 (1"pon)g &P GOLAD)
%(q; 0)2(d*:¢°)3 (mod 5).

To complete the proof, i.e., to prove (1.3.13), it is now sufficient to show that

the coefficients of ¢®"** in (¢; ¢)2.(¢% ¢*)3, are multiples of 5.

From (3.2.4), we have
(600203 @)% = D3 (—1)75(2r + 1)(25 + 1)g ¢+,
r=0 s=0

If the exponents of ¢ in the above sum are of the form 5n + 4, then

r(r+1)
2

+s(s+1) =4 (mod 5),
which is clearly equivalent to
(2r +1)*+2(25+1)*> =0 (mod 5).

But (2r +1)2 = 0,1 or 4 (mod 5) and 2(2s + 1) = 0,2 or 3 (mod 5). Therefore,
the above congruence is true if and only if (2r + 1)> =0 = 2(2s + 1)? (mod 5), i.e.,
(2r+1)=0=2(2s+1) (mod 5). Hence, the coefficients of ¢ in (q; q)3_(¢% ¢*)2,

are multiples of 5, which is what we desired to show. O



