Chapter 4

Parity results for broken 5-, 7- and
l11-diamond partitions

4.1 Introduction

Several mathematician studied the congruence properties for broken k-diamond
partitions. Very recently, Lin, Malik and Wang [44] studied extensively the congru-
ence properties for broken 5-diamond partitions modulo 2. In the next section, we
give some preliminary lemmas which will be used in finding the parity results for
k € {5,7,11} in the subsequent sections.

The results of this chapter appeared in [3].

4.2 Preliminary Lemmas

n(n+1)  n(n—1) n(n—1) n(n2+1)

Lemma 4.2.1. [19, p. 48, Entry 31| Let U, =a 2 b =z andV,=a 2z b

for an integer n. Then

f(U, V1) ZUf( aniy ["]) (4.2.1)

Lemma 4.2.2. [19, p. 69, Eq. (36.8)] For an even integer . and an integer v with
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uw>v >0, we have

14 —V 271/2
(@)Y ) = p(@ " )(g*)
n/2-1
m2—v 2_y2 —2m)(u2—v? vm —2vm
+ Z q* mf(q(u+2m)(u )’ q(u 2m)(p ))f(q2 : q2u 2 )
m=1

+ qu‘°’/4—ul//2¢(q2u(u2—1/2))f(qw7 g, (4.2.2)

By (1.8.2), we also have [19, p. 51, Example (v); p. 350, Eq. (2.3)]

f(a.¢°) = v(=¢*)x(q) (4.2.3)
and
2\ @(_qg)
fla,q°) = EnE (4.2.4)

4.3 Parity results for broken 5-diamond partitions

Theorem 4.3.1. For any non-negative integer o, we have

> A (44 3%+ W) ¢" = 9¥(q) (mod 2). (4.3.1)
n=0

Proof.  Setting k =5 in (1.5.2), we have

iA5(n)qn _ (0% ¢%)

(45 0)2.(—q"5 ¢ ) oo

n=0
Since
(4;0)% = (% ¢%)oo(mod 2)
and
(=" 4" = (0" ¢ ) (mod 2),
we find that

S As(n)g" = ! (mod 2). (4.3.2)
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Now, setting = 6 and v =5 in (4.2.2), we have

V(@U(g") = o)) + af (¢, ¢ (@, ")+ F( @, a7 ) (™, ¢*)

+ 4" P(¢")(d°).

Employing the trivial identity f(a,b) = af(a®b,a™'), (4.2.3), and (4.2.4) in the

above, we obtain

s V(=) (@) o(=q?) | W(=¢°)x(¢*)p(—¢"*)

V(g)(g") = e(¢®)(¢"?) + ¢

x(—=¢*) X(—=q*)
+q" (@) (),
which, by (1.8.3), is equivalent to
T~ A ) +
+q ( q );(((Qq)f)( q?) +q15w(q132)<,0(q6)}-
Since ¢(¢) =1 (mod 2), we arrive at
1 _ 12 s V(=4%)x(¢*)
G = @A O
+ q% 151/)((1132)} (mod 2). (4.3.3)

From (4.3.3) and (4.3.2), we have

n — 1 12
2 (g = (0% ¢®)2 (¢ )% {w(q )+

+ (")} (mod 2)

s V(=) (¢*?) | V(=¢°)x(q?)
¢ )

Extracting the terms involving ¢*® from both sides of the above congruence, and

then replacing ¢* by ¢, we find that

oo

n_ 1 o | s¥(=a*)x(q")
2_ As(2n)g (92 (¢ M)A {w(QHQ X(—¢? }

{¢(q6) " qu(—qQ) (q"; q“)oo} (mod 2).

(4% 6%) o0 (0% 4*) 0
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Now, from Hirschhorn and Roselin’s paper [38], we recall that

(a3, (g% 4")2.(d% d)% (¢'%; ¢'2)2,

q .
(@) (6% ¢*)2% (0% ¢ (g% ") oo

Employing the above in (4.3.4), we have

o 1 ) , (g™ ¢*)3(¢%; ¢%)2,
2 As(2n)q" = (qQ;qQ)oo(qm;q”)oo{Mq A X(—(ﬂ){(qn;qm)é(ql”%ql”)w

132. 132)

a5 20}} (mod 2).

(q44; q44)Oo

Extracting the terms involving ¢***! from both sides of the above congruence and

+q

then replacing ¢> by ¢, we obtain

= 0 (4% 4*)5% o
g Aal2n D) = T (@ aMox(—0) (mod 2).

By simplifying the above and using (1.8.3), we have
> As(dn+2)q" = q(q"; ™2, (mod 2).
n=0

Extracting the terms involving ¢! from both sides of the above and then replacing

g by ¢, we find that

> As(44n+6)q" = (g 9)3, (mod 2).
n=0

But
N3 — 2.2 . _ . . 2_(q2§q2)oo_
(4:90)% = (0% 6%) (€ Voo = (=0 @)oo (@5 0)5 = T ¥(q) (mod 2).
From the above two identities, we arrive at
> As(44n +6)q" = ¥(g) (mod 2). (4.3.5)
n=0

Thus, (4.3.1) holds for oo = 0.
Now, from [19, p. 49, Corollary(ii)]

V() = f(¢*,¢°) + qu(d). (4.3.6)
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Employing (4.3.6) in (4.3.5), and then extracting the terms involving ¢*", ¢3" !,

and ¢*""2, respectively, from both sides, we find that
io: A5(44(3n) 4+ 6)¢™ = f(q,¢*) (mod 2), (4.3.7)
n=0
i As(44(3n +1) + 6)¢" = ¥(¢*) (mod 2), (4.3.8)
n—=0
and

A5(44(3n 4+ 2) +6) =0 (mod 2).

Now, extracting the terms involving ¢*" from both sides of (4.3.8) and then

replacing ¢ by ¢, we obtain

i A5(44 - 3% - n +50)¢" = ¥(q) (mod 2). (4.3.9)

n=0
Hence, (4.3.1) is true for a = 1.

Now, let (4.3.1) be true for some integer o > 1, i.e.,

> 44 -9% 4 4
Z As (44 3%+ %) q" = ¥(q) (mod 2). (4.3.10)
n=0

Employing (4.3.6) in (4.3.10), we have

= 44 - 9% + 4
5o (443 o0+ B g = (8 + avte?) (od 2).
n=0

Extracting the terms involving ¢°"**! from both sides of the above congruence, we

find that

- 44 - 90+ 44
Z As (44 -3t o 4 %) q" = ¥(q) (mod 2).

n=0
Thus, (4.3.1) is also true for a + 1 when it is true for a. Hence, by mathematical

induction the congruence (4.3.1) holds for all o > 1. O
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Remark 4.3.2. Employing (1.8.2) in (4.3.7), we find that

(=4 )05 ¢°) o

D A5(44(3n) +6)¢" = (=65 070 (—0% 07)oo (0% ¢°) oo =

= (=% ¢*)oo
(=4 @)oo ¢°)2
= = = (—¢; ) (mod 2), 4.3.11
(4% ¢%) o (Fa0) ) ( )
which can be rewritten as
Z A5(44(3n) +6)¢" = Zpd(n)q” (mod 2),
n=0 n=0

where pg(n) is the number of partitions of n into distinct parts. Thus, we arrive at

the following interesting result:
A5(132n + 6) = pg(n) (mod 2).

Since (—q;¢)oo = (¢;q) 00 (mod 2), it is clear from (4.3.11) and pentagonal number

theorem that

oo

D A (13204 6)g" = Y (—1)F¢" D (mod 2).

n=0 k=—00

Hence, if n is not a pentagonal number, then
A5(132n +6) =0 (mod 2).

Corollary 4.3.3. If n is not a triangular number then for any non-negative integer

a, we have
44 - 9% 44

A5(44-32°‘-n+ 3

) =0 (mod 2). (4.3.12)

Proof. From the definition of ¢(¢) in (1.8.1), we observe that the coefficients of
q" is zero if r is not a triangular number. Thus from (4.3.1), we readily arrive at

(4.3.12). O

Theorem 4.3.4. For any odd prime p and for any non-negative integers o and n,

we have

> L n2a 1
S a, (396 P+ 99’%) 4" = (q) (mod 2). (4.3.13)
n=0
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Proof. From (4.3.9), we have

[ee)

> " A5(396 - n+50)¢" = ¥(g) (mod 2).

n=0
Therefore, the congruence (4.3.13) holds for @« = 0. Now, let (4.3.13) be true for

some a > 0, i.e.,

= 99 - p>* +1
YA (396 P %) " = (q) (mod 2). (4.3.14)
n=0

From Cui and Gu’s paper [32], a p-dissection of ¥(q), where p is an odd prime,
is

p—3

2\ K24k p?+@k+1)p  p2—(2k+1)p p2-1 2
g2 fleg = ,q¢ > +q¢ = ¥().
=0

¥(q) =

k_

p—3

Furthermore, for 0 < k£ < 5

BP+k | p?—1
5 =+ 5 (mod p).

By using the above p-dissection for ¢(g) in (4.3.14) and extracting the terms
2_
involving qp2”+pTl from both sides of the congruence and then replacing q*° by q,

we obtain

3 5 q" = v(q),

= =1 99-p™+1
ZAg,(396-p2(°‘+1)-n+396-p2°‘-p A ) "
n=0

which is equivalent to

o L 2(a+1
N (396-p2(a+1)-n+99 P
n=0

2

) ¢ = 9(q) (mod 2).

Thus, the congruence (4.3.13) is true for o + 1 if it is true for a. So the proof of

(4.3.13) is complete by mathematical induction. O

Corollary 4.3.5. For any odd prime p, a > 0 and if n is not a triangular number,

then
99 - p** +1

5 ) =0 (mod 2). (4.3.15)

As (396-p2a~n+



o6

Proof. From the definition of ¥(g) in (1.8.1), we observe that the coefficients of ¢"
is zero if 7 is not a triangular number. Therefore, from (4.3.13), we readily arrive at

(4.3.15). O

4.4 Parity results for broken 7-diamond partitions

Theorem 4.4.1. For all non-negative integers o and n, we have

= N 16- 5% +2\
Z Ay <8 5% m + #) 7" = (¢:9)o0(¢""; ¢"*) oo (mod 2). (4.4.1)
n=0

Proof.  Setting k = 7 in (1.5.2), we have

iA7(n)qn - (4% ¢%)

0 4)3 (0" ¢")
Taking congruence modulo 2, we find that

> A" = (qlls_ e (mod 2) (1.4.2)

Now, setting =8 and v = 7 in (4.2.2), we obtain

V(@)Y(q") = (@ )e(d™) + ¢ f (@™, ¢") f(g*, ¢") + (@) (®)

+af (@, ¢ (@ d") +d° F(, ) (%, ¢"°). (4.4.3)

Replacing ¢ by —¢ in (4.4.3) and adding the resulting identity and (4.4.3), we find
that

V(@)Y(q") + (—v(—¢") = 2{0 (") e(d") + ¢ f (@™, ¢") f(¢*. ¢?)

+ *Y(**) ()}

But, from [19, p. 377, Entry 9(iv)], we recall that

V(@)Y(q") + V(= (—¢") = 20(¢°)¥(¢").
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From the above two identities, we have

V(@) Y(") = (@ )e(@™) + ¢ F (@™, ¢") f(q", ¢") + V(@ )e(¢®).  (4.4.4)

Employing (4.4.4) in (4.4.3), we obtain

V(@Y(a"®) = (@) (") + af (@, a" ) (@ ) + " F (@, ) (. ¢").

Thus,

1
(6 Doe(0™ 000 (0% )% (6%; 4)2 {(@)¥(a") +af(¢™.a"°) f(a*.a")

+ ¢ f(@®, ) f (4"} (4.4.5)

Employing (4.4.5) in (4.4.2) and then extracting the terms involving ¢*" from both
sides of (4.4.2), replacing ¢* by ¢ and then taking congruence modulo 2, we find
that

> Ml = )mlqgo V(e )(e?) (mod 2),

(
(¢%q )2 (¢"%¢")2,
(0% 6% 00 (6%% ¢*) 0o (0% %) 0 (075 ¢°)

Now, from Baruah and Ojah’s paper [16, Eq. (4.11)], we recall that

(mod 2) (4.4.6)

= n (g% ¢%)% (% ¢®)2,
D ey X P X P P (4.4.7)

where piz1511(n) is the number of partitions of n into parts that are multiples of either

3 or 5 or equivalently,

- 1
ZP[:%H(")Q” =T
n=0

(2% ¢%) (0% ¢°) o

Extracting the terms involving ¢***! from both sides of (4.4.6), replacing ¢* by
g and then employing (4.4.7), we find that

- " (2% 520" )2 (0% )20 %)% -
%AMWJ)(] = G Doe07 07) e (6% )2 (65 )2 (45 )oo(q15;q15)oo( 42)

= (0% ¢*) (0% ¢*") oo (mod 2). (4.4.8)
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Thus, extracting the terms involving ¢?"*! from both sides of the above congruence,

we obtain
Z A7 (87 +6)¢" = (¢; ¢)so(q"; ¢"°) o (mod 2), (4.4.9)
n=0

which is the case for « = 0 in (4.4.1).

Now, let the congruence (4.4.1) be true for some integer o > 0, that is,

= 16 - 52 + 2
Z Ay (8 5% m + %) 7" = (¢:9)o0(¢"; ¢"*) oo (mod 2). (4.4.10)
n=0

Recall the following 5-dissection of (¢; ¢)o from [19, p. 82],

=g, —¢'9 g F(=¢®, — ¢
f(=¢®, —¢°) f(=q¥, —q10)

Employing (4.4.11) in (4.4.10) and then extracting the terms involving ¢°"*! from

(@3 9)o0 = (675 0%) o0 { } . (44.11)

both sides of the resulting congruence, we find that

16 - 52 4+ 2

ZA7(8-52°‘-(5n+1)+ 3

) " = (¢%;¢%)o0 (4" ¢°)oo (mod 2).
n=0
Again, employing (4.4.11), with ¢ replaced by ¢*, in the above and then extract-

Sn+3

ing the terms involving ¢ , we obtain

16 - 52> 4+ 2

ZA7(8~52a+1-(5n+3)+8-52a+ 2

n=0

) 0" = (4;9)(¢"; ¢") o (mod 2),

which can be rewritten as

N @ 16 - 52(a+1) +2 "
2 A (8 5 n 3 ) 0" = (4:9)(¢"*; ¢")oo (mod 2).
n=0

Thus, (4.4.1) is also true for a+ 1 when it is true for a.. Therefore, by mathematical

induction the congruence (4.4.1) is true for all non negative integer «. O

Corollary 4.4.2. For any non-negative integers n and o,

16 - 52 4 2

A7(8-52a+1-n+8-r-52“+ 3

) =0 (mod 2), (4.4.12)

forr=3, 4, 8, 9, 13, and 14.
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Proof.  From (2.2.2), we recall that

fea =) = (mae = 3 (D'

n=—oo

k(3k — 1 k(3k — 1
If k3k — 1) is of the form 15m + r, then kBk — 1) = r (mod 15), which is true for
r=20,1,2, 5 6,7 10, 11, and 12 only. Hence by comparing the coefficients of
¢t on both sides of (4.4.1) for r = 3, 4, 8, 9, 13, and 14, we easily arrive at

(4.4.12). O

Corollary 4.4.3. We have

A7(8n+2) =0 (mod 2) (4.4.13)
and

A7(64n +54) =0 (mod 2). (4.4.14)

Proof. Comparing ¢*" from both sides of (4.4.8) and then replacing ¢* by ¢, we
readily obtain (4.4.13).
Now, from (4.4.9), we have

(0% 6%) o0 (0™ 4%) o
(45 9)o0(q"%; ") 0

f: A7(8n +6)q" (mod 2).

n=0
Employing (4.4.5) and extracting the terms involving ¢** from both sides of the
above congruence and then replacing ¢ by ¢, we obtain
U(@’)¥(e®)
(45 4)3(a"; 4")%
(q, C]) (q15, q15) (q3§ q3)2o(q5§ qS)ZgO
’ ’ (43 0)3.(4"%: 4%)%

. 3\4 5. .,5\4
= 05 00075 4 )o (mod 2).  (4.4.15)

D Az (161 4 6)g" = (7: ) (0" 4" )

n=0
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From Baruah and Ojah’s paper [16, Eq. 4.1], we recall that
- (0% 4% o0 (4% ¢%) oo (0" ") oo (q ;%) oo
prisisiisy (2n + 1)g" =
Z [ ! (4 9% (0% ¢*)2% (¢ >2< 1q")2%
(7% ¢*)2 (% ¢%) 2 (6" )2 (%% ¢*0)2
(:9)2.(¢% ¢%)3. (0% ¢°)2. (g5 ¢1)3,

+2g (4.4.16)

where ppigi51151(n) is defined by

o0
: 1
p 1211111\ T q =
2 pasiisy (1) (4 @)oo (4% 6%) 0 (0% 4°) 0 ("5 ¢*%) oo

n=0

Extracting the terms involving ¢?"*! from both sides of (4.4.15), replacing ¢* by
q and then employing (4.4.16), we find that

o)

Z A7(16(2n + 1) +6)¢" = (¢% ¢°) oo (¢"%; ¢ (mod 2). (4.4.17)

n=0
Comparing the coefficients of ¢***! from both sides of the above congruence, we

easily arrive at (4.4.14). O
Theorem 4.4.4. For all non-negative integers a and n, we have

= 64 - 52 4 2
ZA7 (64-52°‘~n+ %) q"
n=0

(0% ) (0% *)oe (mod 2).  (4.4.18)

Proof. From (4.4.17), we have
Z A7(32n 4 22)¢" = (6% ¢%) oo ("% ¢*°) 5 (mod 2).

Extracting the terms involving ¢** from both sides of the above congruence and

replacing ¢ by ¢ , we obtain

e}

Z A7(64n + 22)¢" = (q3; q3)oo(q5; q5)<>O (mod 2).

n=0
From the above congruence we see that (4.4.18) is proved for a = 0.
The rest of the proof by mathematical induction is similar to that of (4.4.1). So

we omit the details. O
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Corollary 4.4.5. For all non-negative integers o and n, we have

> 448 - 52 4+ 2
ZA7 (64 R %) q¢" =0 (mod 2)
n=0

- 832 . 5% 42
ZA7 (64 R %) ¢" =0 (mod 2).

n=0

Proof. 'The above congruences easily follow from (4.4.18) and (4.4.11). O

4.5 Parity results for broken 1l-diamond parti-
tions

Theorem 4.5.1. For any non negative integer o, we have

ZAH(Z 23% n+1)¢" = 1+ q(q; )0 (¢°% ¢*) o (mod 2). (4.5.1)
n=0

Proof. From (1.5.2), we noticed that

0 2. .2 23. 23
- s = CE
— (4 0)%.(¢*%; ¢*%) oo

Taking modulo 2, we find that

1
490 (4%3¢%)

> An(n)gt = ( (mod 2). (4.5.2)

From Baruah and Ojah’s paper [16, Eq. 1.9], we recall that

> 2. 2 46. 46 2. ,2)\2 46. 46)\2
S ppraan (20 + 1" = (475 4%) (07 4™ q(q 147)e (4 g o (453)
= O U e R I ER D

where ppj19417(n) is defined by

1
¢ Q)oo(0%; %)

Z Pliraistist] (n)g" == (
n=0
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Extracting the terms involving ¢***! from both sides of (4.5.2), replacing ¢* by
q and employing (4.5.3), we obtain

Z A (2n+1)¢" =1+ q(¢; 0) 0 (0% ¢**) o (mod 2) (4.5.4)
n=0

which is the case for « = 0 in (4.5.1).

Now, let (4.5.1) be true for some integer o > 0, i.e.
Z A1(2-23% - n+1)¢" =1+ q¢(¢;0) (¢ ¢*) s (mod 2). (4.5.5)

Setting U; = a = —q, Vi = b= —¢* and n = 23 in (4.2.1), we find the following
23-dissection of (¢; ¢)so

f(=0.—¢%) = (¢ 0)
— f( 2 805) qf(_q8517 _q736) +q5f(_q920, _q667)
12f( 598) + q22f( 1058 529) 35][‘( 1127 _q460)

4 q51f( 1196 391) 70f( 1265 q322) 4 q92f( 1334 _q253)

_ q117f(_q1403,_q184) +q145f(_q1472 115) 176f( 1541 _ 46)

»—q q
— T f(—%, —q") + q155f(—q92, —gH95) _ 4126 (_ql61 _ 41426
+ gl F(— g0, _q1357) 7 f(—q — g% 4 q57f( q1219)
— g (=g, —g1150) +q26f(_q506’ _q1081) 0 F (=g, —q'"2)
P ") = (g™ ) (15.6)

From (4.5.4) and (4.5.6), it is clear that,
A11(2(23n+7r) +1) =0 (mod 2), (4.5.7)

where r =5, 7, 10, 11, 14, 15, 17, 19, 20, 21 and 22.
Again, employing (4.5.6) in (4.5.5), extracting the terms involving ¢**" from both
sides of the resulting congruence and then replacing ¢** by ¢, we find that

Z A1 (2-23 4+ 1)¢" =14 ¢(¢; )0 (%5 ) oo (mod 2).
n=0
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Thus, (4.5.1) is also true for a + 1 when it is true for a. Hence by mathematical

induction, (4.5.1) is true for all a > 0. O

Remark 4.5.2. Result (4.5.7) was earlier proved by Radu and Sellers [53] by using

the theory of modular forms.
Corollary 4.5.3. For any non-negative integers n and c,
A1 (2-23°T . n+2.7-23* +1) =0 (mod 2), (4.5.8)

forr=5, 7,10, 11, 14, 15, 17, 19, 20, 21, 22.

Proof. Comparing the coefficients of ¢**"*" from both sides of (4.5.1) where r =
5,7, 10, 11, 14, 15, 17, 19, 20, 21, 22 from (4.5.1) by employing (4.5.6), we easily

arrive at (4.5.8). O

Remark 4.5.4. For more congruences modulo 2 for 11-diamond partitions, we refer

to a recent paper by Yao [61].



