Chapter 5

Congruences modulo p^2 and p^3 for k dots bracelet partition functions

5.1 Introduction

This chapter deals with the congruences for k dots bracelet partition functions and t-cores. To find the congruences for those partition functions, we use Ramanujan's theta functions and the binomial expansion of q-products for modulo p^2 and p^3 .

This chapter is organized as follows.

In the next section, we find two useful congruences modulo p^n for $(q;q)_{\infty}^{p^n}$ when n=2 and n=3. Section 5.3 contains congruences modulo p^2 and p^3 for k dots bracelet partitions whereas Section 5.4 is on new parity results for 7 and 11 dots bracelet partitions. Congruences modulo 9 and 25 for 3- and 5-cores, respectively, are presented in the final section.

The contents of this chapter appeared in [11] excluding the results for 7 dots bracelet partitions.

5.2 Preliminary Lemmas

Lemma 5.2.1. For any prime p,

$$(q;q)_{\infty}^{p^2} \equiv (q^p;q^p)_{\infty}^p \pmod{p^2}.$$
 (5.2.1)

Proof. It is sufficient to prove that

$$(1-q)^{p^2} \equiv (1-q^p)^p \pmod{p^2}.$$

In fact, by the binomial theorem, it is enough to show that

$$\binom{p^2}{np} \equiv \binom{p}{n} \pmod{p^2}.$$
 (5.2.2)

But from Bailey's paper [10], we recall that, for any positive integer k, r and any prime p,

$$\binom{kp}{rp} \equiv \binom{k}{r} \pmod{p^2},$$

which immediately implies (5.2.2) by setting k = p and r = n.

By taking (np^{r-2}) -th power of the congruence (5.2.1), we also note that

$$(q;q)_{\infty}^{np^r} \equiv (q^p;q^p)_{\infty}^{np^{r-1}} \pmod{p^2},$$
 (5.2.3)

for any $n \in \mathbb{N}$ and $r \geq 2$.

Lemma 5.2.2. For any prime p > 3,

$$(q;q)_{\infty}^{p^3} \equiv (q^p;q^p)_{\infty}^{p^2} \pmod{p^3}.$$
 (5.2.4)

Proof. The proof is similar to the above lemma. Here we use the following congruence from Bailey's paper [9]:

For any positive integer k, r and any prime p > 3

$$\binom{kp}{rp} \equiv \binom{k}{r} \pmod{p^3}.$$

Setting $k = p^2$ and r = n, we can easily arrive at (5.2.4).

By taking (np^{s-3}) -th power of the congruence (5.2.1), we also note that

$$(q;q)_{\infty}^{np^s} \equiv (q^p;q^p)_{\infty}^{np^{s-1}} \pmod{p^3},$$
 (5.2.5)

for any $n \in \mathbb{N}$ and $s \geq 3$.

5.3 Congruences modulo p^2 and p^3 for k dots bracelet partitions

Theorem 5.3.1. Let $k = mp^r$, where $m \in \mathbb{N}$, $p \geq 5$ and $r \geq 2$. Then for any positive integer n, we have

$$\mathfrak{B}_k(pn+l) \equiv 0 \pmod{p^2},\tag{5.3.1}$$

where $1 \le l \le p-1$ and 12l+1 is quadratic nonresidue modulo p, i.e., in Legendre $symbol\left(\frac{12l+1}{p}\right) = -1$.

Proof. We note that

$$\sum_{n=0}^{\infty} \mathfrak{B}_k(n) q^n = \frac{(q^2; q^2)_{\infty} (q^{mp^r}; q^{mp^r})_{\infty}}{(q; q)_{\infty}^{mp^r} (q^{2mp^r}; q^{2mp^r})_{\infty}}.$$
 (5.3.2)

Employing (5.2.3) in (5.3.2), we obtain

$$\sum_{n=0}^{\infty} \mathfrak{B}_k(n) q^n \equiv \frac{(q^2; q^2)_{\infty} (q^{mp^r}; q^{mp^r})_{\infty}}{(q^p; q^p)_{\infty}^{mp^{r-1}} (q^{2mp^r}; q^{2mp^r})_{\infty}} \pmod{p^2}.$$
 (5.3.3)

It is sufficient to find the coefficients of q^{pn+l} , where $1 \leq l \leq p-1$ and $n \in \mathbb{N}$, in $(q^2; q^2)_{\infty}$ only, because the coefficients of q^{pn+l} in the other products in (5.3.3) are zero.

From (2.2.2), we have

$$(q^2; q^2)_{\infty} = \sum_{k=-\infty}^{\infty} (-1)^k q^{k(3k-1)}.$$

If the coefficients of q^{pn+l} in the above equation is nonzero, then for some k, we have

$$pn + l = k(3k - 1),$$

i.e.,

$$l \equiv k(3k-1) \pmod{p}$$
.

Thus,

$$12l + 1 \equiv (6k - 1)^2 \pmod{p},\tag{5.3.4}$$

which contradict the fact that 12l + 1 is a non quadratic residue modulo p. Thus, we complete the proof of (5.3.1).

Theorem 5.3.2. Let $k = mp^s$, where $m \in \mathbb{N}$, $p \geq 5$ and $s \geq 3$. Then for any positive integer n, we have

$$\mathfrak{B}_k(pn+i) \equiv 0 \pmod{p^3},$$

where $1 \le i \le p-1$ and 12i+1 is quadratic nonresidue modulo p, i.e., in Legendre $symbol\left(\frac{12i+1}{p}\right) = -1$.

Proof. The proof is similar to the above one. Here we use (5.2.5) in place of (5.2.3).

Theorem 5.3.3. Let $k = mp^s$, where $m \in \mathbb{N}$, $p \geq 5$ and $s \geq 3$. Then for any positive integer n, we have

$$\mathfrak{B}_k\left(p(pn+j) + \frac{p^2 - 1}{12}\right) \equiv 0 \pmod{p^2},$$
 (5.3.5)

for $j = 1, 2, \dots, p - 1$.

Proof. We note that

$$\sum_{n=0}^{\infty} \mathfrak{B}_k(n) q^n = \frac{(q^2; q^2)_{\infty} (q^{mp^s}; q^{mp^s})_{\infty}}{(q; q)_{\infty}^{mp^s} (q^{2mp^s}; q^{2mp^s})_{\infty}}.$$

Employing (5.2.5) in the above, we obtain

$$\sum_{n=0}^{\infty} \mathfrak{B}_k(n) q^n \equiv \frac{(q^2; q^2)_{\infty} (q^{mp^s}; q^{mp^s})_{\infty}}{(q^p; q^p)_{\infty}^{mp^{s-1}} (q^{2mp^s}; q^{2mp^s})_{\infty}} \pmod{p^3}.$$
 (5.3.6)

Now, replacing q by q^2 in (2.2.2), employing the result in the above and then extracting the terms containing $q^{pn+\frac{p^2-1}{12}}$, dividing both sides by $q^{\frac{p^2-1}{12}}$ and then replacing q^p by q in the above congruence, we arrive at

$$\sum_{n=0}^{\infty} \mathfrak{B}_k \left(pn + \frac{p^2 - 1}{12} \right) q^n \equiv (-1)^{\frac{\pm p - 1}{6}} \frac{(q^{2p}; q^{2p})_{\infty} (q^{mp^{s-1}}; q^{mp^{s-1}})_{\infty}}{(q; q)_{\infty}^{mp^{s-1}} (q^{2mp^{s-1}}; q^{2mp^{s-1}})_{\infty}} \pmod{p^3},$$

which is also true for modulo p^2 , i.e.,

$$\sum_{n=0}^{\infty} \mathfrak{B}_k \left(pn + \frac{p^2 - 1}{12} \right) q^n \equiv (-1)^{\frac{\pm p - 1}{6}} \frac{(q^{2p}; q^{2p})_{\infty} (q^{mp^{s-1}}; q^{mp^{s-1}})_{\infty}}{(q; q)_{\infty}^{mp^{s-1}} (q^{2mp^{s-1}}; q^{2mp^{s-1}})_{\infty}} \pmod{p^2}.$$

Employing (5.2.3) in the above congruence, we find that

$$\sum_{n=0}^{\infty} \mathfrak{B}_k \left(pn + \frac{p^2 - 1}{12} \right) q^n \equiv (-1)^{\frac{\pm p - 1}{6}} \frac{(q^{2p}; q^{2p})_{\infty} (q^{mp^{s-1}}; q^{mp^{s-1}})_{\infty}}{(q^p; q^p)_{\infty}^{mp^{s-2}} (q^{2mp^{s-1}}; q^{2mp^{s-1}})_{\infty}} \pmod{p^2}$$
(5.3.7)

Comparing the coefficients of q^{pn+j} , where $j=1,\ 2,\ \ldots,\ p-1$, we complete the proof of (5.3.5).

Corollary 5.3.4. Let $k = mp^s$, where $m \in \mathbb{N}$, $p \geq 5$ and $s \geq 3$. Then for any positive integer n, we have

$$\mathfrak{B}_k\left(p^2n + \frac{p^2 - 1}{12}\right) \equiv (-1)^{\frac{\pm p - 1}{6}} \mathfrak{B}_{k'}(n) \pmod{p^2},\tag{5.3.8}$$

where $k' = np^{s-2}$.

Proof. Extracting the terms containing q^{pn} from both sides of (5.3.7), and then replacing q^p by q, we obtain

$$\sum_{n=0}^{\infty} \mathfrak{B}_k \left(p^2 n + \frac{p^2 - 1}{12} \right) q^n \equiv (-1)^{\frac{\pm p - 1}{6}} \frac{(q^2; q^2)_{\infty} (q^{mp^{s-2}}; q^{mp^{s-2}})_{\infty}}{(q; q)_{\infty}^{mp^{s-2}} (q^{2mp^{s-2}}; q^{2mp^{s-2}})_{\infty}},$$

i.e.,

$$\sum_{n=0}^{\infty} \mathfrak{B}_k \left(p^2 n + \frac{p^2 - 1}{12} \right) q^n \equiv (-1)^{\frac{\pm p - 1}{6}} \sum_{n=0}^{\infty} \mathfrak{B}_{k'}(n) q^n \pmod{p^2}.$$
 (5.3.9)

Comparing the coefficients of q^n from both side of the above congruence, we readily arrive at (5.3.8).

5.4 Parity results for 7 and 11 dots bracelet partitions

Theorem 5.4.1. For any non-negative integer n, we have

$$\mathfrak{B}_7(2n+1) \equiv b_7(n) \pmod{2}.$$
 (5.4.1)

Proof. We note from (1.6.1) that

$$\sum_{n=0}^{\infty} \mathfrak{B}_{7}(n)q^{n} = \frac{(q^{2}; q^{2})_{\infty}}{(q; q)_{\infty}^{4}(-q^{4}; q^{4})_{\infty}}$$
$$= \frac{(q^{2}; q^{2})_{\infty}(q^{7}; q^{7})_{\infty}}{(q; q)_{\infty}^{7}(q^{14}; q^{14})_{\infty}}.$$

Taking congruent modulo 2 on both sides of the above equation, we obtain

$$\sum_{n=0}^{\infty} \mathfrak{B}_{7}(n)q^{n} \equiv \frac{1}{(q^{4}; q^{4})_{\infty}(q; q)_{\infty}(q^{7}; q^{7})_{\infty}}$$

$$\equiv \frac{1}{(q^{4}; q^{4})_{\infty}} \sum_{n=0}^{\infty} p_{[1^{1}7^{1}]}(n)q^{n}, \qquad (5.4.2)$$

where $p_{[1^17^1]}(n)$ is defined by

$$\sum_{n=0}^{\infty} p_{[1^{1}7^{1}]}(n)q^{n} := \frac{1}{(q;q)_{\infty}(q^{7};q^{7})_{\infty}}.$$

From Baruah and Ojah's paper [16, Eq. 1.7], we recall that

$$\sum_{n=0}^{\infty} p_{[1^17^1]}(2n+1)q^n = \frac{(q^2; q^2)_{\infty}^2 (q^{14}; q^{14})_{\infty}^2}{(q; q)_{\infty}^3 (q^7; q^7)_{\infty}^3},$$

which is equivalent to,

$$\sum_{n=0}^{\infty} p_{[1^{1}7^{1}]}(2n+1)q^{n} \equiv (q;q)_{\infty}(q^{7};q^{7})_{\infty} \pmod{2}.$$

Now, extracting the terms containing q^{2n+1} from both sides of (5.4.2) and using the above congruence, we easily arrive at (5.4.1).

Theorem 5.4.2. If $r \in \{3, 4, 6\}$ and $s \in \{1, 5, 6\}$, then for any non-negative integers n and k, we have

$$\mathfrak{B}_7\left(4\cdot7^{2k+1}n + 4r\cdot7^{2k} + \frac{5(7^{2k}-1)}{2} + 3\right) \equiv 0 \pmod{2} \tag{5.4.3}$$

and

$$\mathfrak{B}_7\left(4\cdot 7^{2(k+1)}n + 4s\cdot 7^{2k+1} + \frac{21\cdot 7^{2k} - 1}{2} + 1\right) \equiv 0 \pmod{2}.$$
 (5.4.4)

Proof. From (5.4.1), we have

$$\mathfrak{B}_7(2n+1) \equiv b_7(n) \pmod{2}.$$
 (5.4.5)

From Theorem 1.3 of [13], we recall that if $r \in \{3, 4, 6\}$ and $s \in \{1, 5, 6\}$, then for all $n, k \ge 0$,

$$b_7 \left(2 \cdot 7^{2k+1} n + 2r \cdot 7^{2k} + \frac{5(7^{2k} - 1)}{4} + 1 \right) \equiv 0 \pmod{2}$$

and

$$b_7 \left(2 \cdot 7^{2(k+1)} n + 2s \cdot 7^{2k+1} + \frac{21 \cdot 7^{2k} - 1}{4} \right) \equiv 0 \pmod{2}.$$

Using the above two congruences in (5.4.5), we easily arrive at (5.4.3) and (5.4.4).

It has also been proved in [13] that for any prime $p \ge 5$ with $\left(\frac{-14}{p}\right) = -1$, $1 \le j \le p-1$, and for all non-negative integers n and k,

$$b_7 \left(2 \cdot p^{2k+2} n + \frac{(8j+5p)p^{2k+1} - 1}{4} \right) \equiv 0 \pmod{2}$$

and

$$b_7 \left(14 \cdot p^{2k+2} n + \frac{(56j+21p)p^{2k+1}-1}{4} \right) \equiv 0 \pmod{2}.$$

Employing the above two congruences in (5.4.1), it is now easy to find the following congruences modulo 2 for 7 dots bracelet partitions.

Theorem 5.4.3. If $p \ge 5$ is a prime with $\left(\frac{-14}{p}\right) = -1$ and $1 \le j \le p-1$, then for any non-negative integers n and k,

$$\mathfrak{B}_7\left(4 \cdot p^{2k+2}n + \frac{(8j+5p)p^{2k+1} - 1}{2} + 1\right) \equiv 0 \pmod{2}$$

and

$$\mathfrak{B}_7\left(28 \cdot p^{2k+2}n + \frac{(56j+21p)p^{2k+1}-1}{2} + 1\right) \equiv 0 \pmod{2}.$$

In the remaining part of this section, we find congruences modulo 2 for 11 dots bracelet partitions.

Theorem 5.4.4. If $p \geq 5$ is a prime, then for any non-negative integer α , we have

$$\sum_{n=0}^{\infty} \mathfrak{B}_{11} \left(4 \cdot p^{2\alpha} \cdot n + \frac{p^{2\alpha} + 5}{6} \right) q^n \equiv (q; q)_{\infty} \pmod{2}. \tag{5.4.6}$$

Proof. We note from (1.6.1) that

$$\sum_{n=0}^{\infty} \mathfrak{B}_{11}(n)q^n = \frac{(q^2; q^2)_{\infty}}{(q; q)_{\infty}^{11}(-q^{11}; q^{11})_{\infty}}$$

$$= \frac{(q^2; q^2)_{\infty}(q^{11}; q^{11})_{\infty}}{(q; q)_{\infty}^{11}(q^{22}; q^{22})_{\infty}}.$$
(5.4.7)

Since

$$(q;q)_{\infty}^2 \equiv (q^2;q^2)_{\infty} \pmod{2},$$

we find that

$$\sum_{n=0}^{\infty} \mathfrak{B}_{11}(n)q^n \equiv \frac{1}{(q^8; q^8)_{\infty}(q; q)_{\infty}(q^{11}; q^{11})_{\infty}} \pmod{2}.$$
 (5.4.8)

Employing (4.3.3) in the above, we arrive at

$$\begin{split} \sum_{n=0}^{\infty} \mathfrak{B}_{11}(n)q^n &\equiv \frac{1}{(q^8;q^8)_{\infty}} \frac{1}{(q^2;q^2)_{\infty}^2 (q^{22};q^{22})_{\infty}^2} \Big\{ \psi(q^{12}) + q^6 \frac{\psi(-q^{66})\chi(q^{22})}{\chi(-q^4)} \\ &\quad + q \frac{\psi(-q^6)\chi(q^2)}{\chi(-q^{44})} + q^{15}\psi(q^{132}) \Big\} \; (\text{mod } 2). \end{split}$$

Extracting the terms involving q^{2n+1} from both sides of the above congruence, dividing both sides by q and then replacing q^2 by q, we find that

$$\sum_{n=0}^{\infty} \mathfrak{B}_{11}(2n+1)q^{n} \equiv \frac{1}{(q^{4};q^{4})_{\infty}} \frac{1}{(q^{2};q^{2})_{\infty}(q^{22};q^{22})_{\infty}} \left\{ \frac{\psi(-q^{3})\chi(q)}{\chi(-q^{22})} + q^{7}\psi(q^{66}) \right\}$$

$$\equiv \frac{1}{(q^{2};q^{2})_{\infty}^{3}(q^{22};q^{22})_{\infty}} \left\{ \frac{(q^{6};q^{6})_{\infty}^{2}(q^{44};q^{44})_{\infty}}{(q^{2};q^{2})_{\infty}(q^{3};q^{3})_{\infty}} \frac{(q;q)_{\infty}}{(q^{3};q^{3})_{\infty}} + q^{7} \frac{(q^{132};q^{132})_{\infty}}{(q^{66};q^{66})_{\infty}} \right\}$$

$$\equiv \frac{1}{(q^{2};q^{2})_{\infty}^{3}(q^{22};q^{22})_{\infty}} \left\{ \frac{(q^{6};q^{6})_{\infty}^{2}(q^{22};q^{22})_{\infty}}{(q^{2};q^{2})_{\infty}} \frac{(q;q)_{\infty}}{(q^{3};q^{3})_{\infty}} + q^{7}(q^{66};q^{66})_{\infty} \right\} \pmod{2}. \tag{5.4.9}$$

Now, from Hirschhon and Roselin [38], we recall that

$$\frac{1}{(q;q)_{\infty}(q^{3};q^{3})_{\infty}} = \frac{(q^{8};q^{8})_{\infty}^{2}(q^{12};q^{12})_{\infty}^{5}}{(q^{2};q^{2})_{\infty}^{2}(q^{4};q^{4})_{\infty}(q^{6};q^{6})_{\infty}^{4}(q^{24};q^{24})_{\infty}^{2}} + \frac{(q^{4};q^{4})_{\infty}^{5}(q^{24};q^{24})_{\infty}^{2}}{(q^{2};q^{2})_{\infty}^{4}(q^{6};q^{6})_{\infty}^{2}(q^{8};q^{8})_{\infty}^{2}(q^{12};q^{12})_{\infty}}.$$

Multiplying both sides of the above by $(q;q)^2_{\infty}$ and taking congruent modulo 2, we find that

$$\begin{split} \frac{(q;q)_{\infty}}{(q^3;q^3)_{\infty}} &\equiv (q^2;q^2)_{\infty} \bigg\{ \frac{(q^8;q^8)_{\infty}^2 (q^{12};q^{12})_{\infty}^5}{(q^2;q^2)_{\infty}^2 (q^4;q^4)_{\infty} (q^6;q^6)_{\infty}^4 (q^{24};q^{24})_{\infty}^2} \\ &\quad + q \frac{(q^4;q^4)_{\infty}^5 (q^{24};q^{24})_{\infty}^2}{(q^2;q^2)_{\infty}^4 (q^6;q^6)_{\infty}^2 (q^8;q^8)_{\infty}^2 (q^{12};q^{12})_{\infty}} \bigg\} \\ &\quad \equiv \frac{(q^2;q^2)_{\infty}^5}{(q^{12};q^{12})_{\infty}} + q \frac{(q^{12};q^{12})_{\infty}^2}{(q^2;q^2)_{\infty}} \; (\text{mod } 2). \end{split}$$

Employing the above in (5.4.9), we obtain

$$\sum_{n=0}^{\infty} \mathfrak{B}_{11}(2n+1)q^{n} \equiv \frac{1}{(q^{2};q^{2})_{\infty}^{3}(q^{22};q^{22})_{\infty}} \left\{ \frac{(q^{6};q^{6})_{\infty}^{2}(q^{22};q^{22})_{\infty}}{(q^{2};q^{2})_{\infty}} \left(\frac{(q^{2};q^{2})_{\infty}^{5}}{(q^{12};q^{12})_{\infty}^{2}} \right) + q^{7} \frac{(q^{132};q^{132})_{\infty}}{(q^{66};q^{66})_{\infty}} \right\}
\equiv (q^{2};q^{2})_{\infty} + q \frac{(q^{12};q^{12})_{\infty}^{3}}{(q^{2};q^{2})_{\infty}^{5}} + q^{7} \frac{(q^{66};q^{66})_{\infty}}{(q^{2};q^{2})_{\infty}^{3}(q^{22};q^{22})_{\infty}} \pmod{2}.$$

Extracting the terms involving q^{2n} from both sides of the above congruence, and then replacing q^2 by q, we find that

$$\sum_{n=0}^{\infty} \mathfrak{B}_{11}(4n+1)q^n \equiv (q;q)_{\infty} \pmod{2}.$$
 (5.4.10)

Hence, (5.4.6) is proved for $\alpha = 0$. Now, let (5.4.6) be true for some $\alpha > 0$, i.e.,

$$\sum_{n=0}^{\infty} \mathfrak{B}_{11} \left(4 \cdot p^{2\alpha} \cdot n + \frac{p^{2\alpha} + 5}{6} \right) q^n \equiv (q; q)_{\infty} \pmod{2}. \tag{5.4.11}$$

Using the above p-dissection for $(q;q)_{\infty}$ from (2.2.2) in (5.4.11), then extracting the terms involving $q^{pn+\frac{p^2-1}{24}}$ from both sides of the resulting congruence, dividing both sides by $q^{\frac{p^2-1}{24}}$ and then replacing q^p by q, we find that

$$\sum_{n=0}^{\infty} \mathfrak{B}_{11} \left(4 \cdot p^{2\alpha} (p \cdot n + \frac{p^2 - 1}{24}) + \frac{p^{2\alpha} + 5}{6} \right) q^n \equiv (q^p; q^p)_{\infty} \pmod{2},$$

i.e.,

$$\sum_{n=0}^{\infty} \mathfrak{B}_{11} \left(4 \cdot p^{2\alpha+1} \cdot n + 4 \cdot p^{2\alpha} \frac{p^2 - 1}{24} + \frac{p^{2\alpha} + 5}{6} \right) q^n \equiv (q^p; q^p)_{\infty} \pmod{2}.$$

Again, extracting the terms involving q^{pn} from both sides of the above and then replacing q^p by q, we obtain

$$\sum_{n=0}^{\infty} \mathfrak{B}_{11} \left(4 \cdot p^{2(\alpha+1)} \cdot n + \frac{p^{2(\alpha+1)} + 5}{6} \right) q^n \equiv (q; q)_{\infty} \pmod{2}. \tag{5.4.12}$$

Hence, (5.4.6) is true for $\alpha + 1$ if it is true for α . So, by mathematical induction, we complete the proof of (5.4.6).

Corollary 5.4.5. If $p \ge 5$ is a prime, then for any non-negative integers α and n, we have

$$\mathfrak{B}_{11}\left(4 \cdot p^{2\alpha} \cdot n + \frac{p^{2\alpha} + 5}{6}\right) \equiv 0 \pmod{2},$$
 (5.4.13)

$$if \ n \neq \frac{k(3k-1)}{2}.$$

Proof. Readily follows from (5.4.6) and (2.2.2).

5.5 Congruences for 3- and 5-cores

In this section, we find some new congruences for 3-cores modulo 9 and a congruence modulo 25 between 5-cores and $\tau(n)$ by using (5.2.1).

Theorem 5.5.1. For any integer $\alpha \geq 1$, we have

$$\sum_{n=0}^{\infty} a_3 \left(2^{2\alpha} \cdot n + \frac{4^{\alpha} - 1}{3} \right) q^n \equiv (q; q)_{\infty}^8 \pmod{9}.$$
 (5.5.1)

Proof. We note from (1.4.1) that

$$\sum_{n=0}^{\infty} a_3(n)q^n = \frac{(q^3; q^3)_{\infty}^3}{(q; q)_{\infty}},$$

which, by (5.2.1), implies

$$\sum_{n=0}^{\infty} a_3(n)q^n \equiv \frac{(q;q)_{\infty}^9}{(q;q)_{\infty}}$$

$$\equiv (q;q)_{\infty}^8 \pmod{9}.$$
(5.5.2)

Now, from [19, p. 40, Entry 25], we have

$$\varphi^{2}(-q) = \varphi^{2}(q^{2}) - 4q\psi^{2}(q^{4}),$$

which is equivalent to

$$(q;q)_{\infty}^{4} = \frac{(q^{4};q^{4})_{\infty}^{10}}{(q^{2};q^{2})_{\infty}^{2}(q^{8};q^{8})_{\infty}^{4}} - 4q \frac{(q^{2};q^{2})_{\infty}^{2}(q^{8};q^{8})_{\infty}^{4}}{(q^{4};q^{4})_{\infty}^{2}}.$$
 (5.5.3)

From (5.5.2) and (5.5.3), we have

$$\sum_{n=0}^{\infty} a_3(n)q^n \equiv \left\{ \frac{(q^4; q^4)_{\infty}^{10}}{(q^2; q^2)_{\infty}^2 (q^8; q^8)_{\infty}^4} - 4q \frac{(q^2; q^2)_{\infty}^2 (q^8; q^8)_{\infty}^4}{(q^4; q^4)_{\infty}^2} \right\}^2 \pmod{9}.$$

Extracting the term containing q^{4n+1} from both sides of the above congruence, dividing both sides by q and then replacing q^4 by q, we arrive at

$$\sum_{n=0}^{\infty} a_3 (4n+1) q^n \equiv (q; q)_{\infty}^8 \pmod{9},$$

which is the case for $\alpha = 1$ in (5.5.1). Now, let (5.5.1) be true for some $\alpha > 1$, i.e.,

$$\sum_{n=0}^{\infty} a_3 (2^{2\alpha} \cdot n + \frac{4^{\alpha} - 1}{3}) q^n \equiv (q; q)_{\infty}^8 \pmod{9}.$$
 (5.5.4)

Now employing (5.5.3) in the above congruence and extracting the terms containing q^{4n+1} from both sides of the resulting congruence, dividing both sides by q and then replacing q^4 by q, we find that

$$\sum_{n=0}^{\infty} a_3 (2^{2\alpha+1} \cdot n + \frac{4^{\alpha+1} - 1}{3}) q^n \equiv (q; q)_{\infty}^8 \pmod{9}.$$

Hence, (5.5.1) is true for $\alpha + 1$ if it is true for α . Thus, by mathematical induction, we complete the proof of (5.5.1).

Corollary 5.5.2. For any integer $k \geq 2$ and any non-negative integer n, we have

$$a_3\left(2^{2k} \cdot n + \frac{3 \cdot 2^{2k-1} + 4^k - 1}{3}\right) \equiv 0 \pmod{9}.$$
 (5.5.5)

Proof. From (5.5.1) we have

$$\sum_{n=0}^{\infty} a_3 \left(2^{2\alpha} \cdot n + \frac{4^{\alpha} - 1}{3} \right) q^n \equiv (q; q)_{\infty}^8 \pmod{9}.$$
 (5.5.6)

Employing (5.5.3) in the above congruence and extracting the term containing q^{2n+1} from both sides of the resulting congruence, dividing both sides by q and then replacing q^2 by q, we obtain

$$\sum_{n=0}^{\infty} a_3 \left(2^{2\alpha} (2n+1) + \frac{4^{\alpha} - 1}{3} \right) q^n \equiv (q^2; q^2)_{\infty}^8 \pmod{9},$$

i.e.,

$$\sum_{n=0}^{\infty} a_3 \left(2^{2\alpha+1} \cdot n + 2^{2\alpha} + \frac{4^{\alpha} - 1}{3} \right) q^n \equiv (q^2; q^2)_{\infty}^8 \pmod{9}.$$

Comparing the coefficients of q^{2n+1} from both sides of the above congruence, we arrive at

$$a_3 \left(2^{2\alpha+1} \cdot (2n+1) + 2^{2\alpha} + \frac{4^{\alpha} - 1}{3} \right) q^n \equiv 0 \pmod{9},$$

i.e.,

$$a_3 \left(2^{2(\alpha+1)} \cdot n + \frac{3 \cdot 2^{2\alpha+1} + 4^{\alpha+1} - 1}{3} \right) \equiv 0 \pmod{9},$$

which is equivalent to (5.5.5).

Theorem 5.5.3. For any positive integer k and any non-negative integer n, we have

$$a_3\left(5^{2k} \cdot n + \frac{5^{2k} - 1}{3}\right) \equiv (-5)^{3k} a_3(n) \pmod{9},$$
 (5.5.7)

$$a_3\left(2^{2k} \cdot n + \frac{2^{2k} - 1}{3}\right) \equiv (-8)^k a_3(n) \pmod{9}.$$
 (5.5.8)

Proof. From (5.5.2), we have

$$\sum_{n=0}^{\infty} a_3(n)q^n \equiv (q;q)_{\infty}^8 = \sum_{n=0}^{\infty} p_8(n)q^n.$$
 (5.5.9)

We note from Baruah and Sarmah's paper [18] that

$$p_8 \left(5^{2k} \cdot n + \frac{5^{2k} - 1}{3} \right) = (-5)^{3k} p_8(n),$$

$$p_8 \left(2^{2k} \cdot n + \frac{2^{2k} - 1}{3} \right) = (-8)^k p_8(n).$$

Employing the above two identities in (5.5.9), we easily obtain (5.5.7) and (5.5.8).

Theorem 5.5.4. For a positive integer n, we have

$$a_5(n-1) \equiv \tau(n) \pmod{25}.$$
 (5.5.10)

Proof. We note from (1.4.1) that

$$\sum_{n=0}^{\infty} a_5(n)q^n = \frac{(q^5; q^5)_{\infty}^5}{(q; q)_{\infty}}.$$

Using (5.2.1) in the above expression, we find that

$$\sum_{n=0}^{\infty} a_5(n) q^n \equiv (q; q)_{\infty}^{24} \pmod{25}.$$

Multiplying both sides by q in the above congruence and using (1.4.2), we obtain

$$\sum_{n=0}^{\infty} a_5(n) q^{n+1} \equiv \sum_{n=1}^{\infty} \tau(n) q^n \text{ (mod 25)}.$$

By comparing the coefficients of q^n in the above congruence, we complete the proof of (5.5.10).

There are several identities known for Ramamnujan's tau function $\tau(n)$ for modulo 5, 25 and 125. for example:

$$\tau(n) \equiv n\sigma_9(n) \pmod{5},$$

$$\tau(n) \equiv 5n^2\sigma_7(n) - 4n\sigma_9(n) \pmod{125}, \text{ if } n \text{ is not a multiple of 5},$$

where $\sigma_s(n)$ denote the (sum of the) sth power of the divisor of n, i.e.,

$$\sigma_s(n) = \sum_{d|n} d^s.$$

From the above identities for $\tau(n)$, we obtain the following congruences for 5-core partitions by using (5.5.10):

$$a_5(5n-1) \equiv n\sigma_9(n) \pmod{5},$$

 $a_5(n-1) \equiv 5n^2\sigma_7(n) - 4n\sigma_9(n) \pmod{25}.$

For more identities of tau function, we refer to Ramanujan's unpublished manuscript on the partition and tau functions with proofs and commentary by Berndt and Ono [21].

Theorem 5.5.5. For any non-negative integers k and n, we abve

$$a_5 (2^{k+2} \cdot n + 2^{k+2} - 1) \equiv r_k a_5 (2n+1) + s_k a_5(n) \pmod{25},$$
 (5.5.11)

where $r_k = -24r_{k-1} + s_{k-1}$, $s_k = -2048r_{k-1}$ with $r_0 = -24$ and $b_0 = -2048$.

Proof. We have

$$\sum_{n=0}^{\infty} a_5(n)q^n = \frac{(q^5; q^5)_{\infty}^5}{(q; q)_{\infty}}.$$

By using (5.2.3), taking modulo 25 on both sides of the above equation, we obtain

$$\sum_{n=0}^{\infty} a_5(n)q^n \equiv (q;q)_{\infty}^{24} = \sum_{n=0}^{\infty} p_{24}(n)q^n.$$

Again, from Baruah and Sarmah's paper [18], we have

$$p_{24}(2^{k+2} \cdot n + 2^{k+2} - 1) = r_k p_{24}(2n+1) + s_k p_{24}(n),$$

where $r_k = -24r_{k-1} + s_{k-1}$, $s_k = -2048r_{k-1}$ with $r_0 = -24$ and $b_0 = -2048$. By using the above identities, we complete the proof of (5.5.11).