Chapter 5

Congruences modulo p? and p° for
k dots bracelet partition functions

5.1 Introduction

This chapter deals with the congruences for k dots bracelet partition functions
and t-cores. To find the congruences for those partition functions, we use Ramanu-

jan’s theta functions and the binomial expansion of g-products for modulo p? and

P

This chapter is organized as follows.

In the next section, we find two useful congruences modulo p" for (¢;¢)?. when
n = 2 and n = 3. Section 5.3 contains congruences modulo p? and p* for k dots
bracelet partitions whereas Section 5.4 is on new parity results for 7 and 11 dots
bracelet partitions. Congruences modulo 9 and 25 for 3- and 5-cores, respectively,
are presented in the final section.

The contents of this chapter appeared in [11] excluding the results for 7 dots

bracelet partitions.

5.2 Preliminary Lemmas

Lemma 5.2.1. For any prime p,
2
(4:9)% = (¢ ¢")% (mod p?). (5.2.1)
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Proof. 1t is sufficient to prove that
(1—q)" = (1 —¢")? (mod p?).

In fact, by the binomial theorem, it is enough to show that

(Z;) = <Z> (mod p?). (5.2.2)

But from Bailey’s paper [10], we recall that, for any positive integer k, r and any

(2)= ()

which immediately implies (5.2.2) by setting k = p and r = n. 0

prime p,

By taking (np”~?)-th power of the congruence (5.2.1), we also note that
(@ @) = (¢"¢")2" (mod p?), (5.2.3)
for any n € N and r > 2.

Lemma 5.2.2. For any prime p > 3,
3 2
(4:9)% = (4" ¢")5 (mod p?). (5.2.4)

Proof. The proof is similar to the above lemma. Here we use the following congru-
ence from Bailey’s paper [9]:

For any positive integer k, r and any prime p > 3

()= (i,

Setting k = p? and r = n, we can easily arrive at (5.2.4). O

By taking (np*~3)-th power of the congruence (5.2.1), we also note that
(92" = (¢";¢")2" (mod p?), (5.2.5)

for any n € N and s > 3.
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5.3 Congruences modulo p? and p? for k dots
bracelet partitions

Theorem 5.3.1. Let k = mp", where m € N, p > 5 and r > 2. Then for any

positive integer n, we have
Br(pn +1) =0 (mod p?), (5.3.1)

where 1 <1 < p—1 and 12l 4+ 1 is quadratic nonresidue modulo p, i.e., in Legendre

120+ 1
symbol ( + ) =—1.
p

Proof. We note that

mp” ( 2mp” . q2mp )oo

> Br(n)g" = (( q)a ey (5.3.2)

Employing (5.2.3) in (5.3.2), we obtain

& 2. .2 mp”.  mp"”
S By = LD ) 2y (5.3.3)
(qP;qP)sd (g% PP o

It is sufficient to find the coefficients of ¢""*!, where 1 <[ < p—1and n € N, in
(¢%; ¢*)oo only, because the coefficients of ¢P"™* in the other products in (5.3.3) are

Zero.

From (2.2.2), we have

oo

(%070 = Y (—1)Fg"E*1,

k=—00

If the coefficients of ¢""*! in the above equation is nonzero, then for some &, we have
pn+1=k(3k—1),
ie.,

Il =k(3k—1) (mod p).
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Thus,
12 + 1 = (6k — 1)* (mod p), (5.3.4)

which contradict the fact that 12] 4+ 1 is a non quadratic residue modulo p. Thus,
we complete the proof of (5.3.1). O

Theorem 5.3.2. Let k = mp®, where m € N, p > 5 and s > 3. Then for any

positive integer n, we have
Br(pn +i) =0 (mod p*),

where 1 <1 < p—1 and 12i + 1 is quadratic nonresidue modulo p, i.e., in Legendre

1204+ 1
symbol< Tt )

Proof. The proof is similar to the above one. Here we use (5.2.5) in place of (5.2.3).

O

Theorem 5.3.3. Let k = mp®, where m € N, p > 5 and s > 3. Then for any

positive integer n, we have

By (p(pn + )+ p21; 1) =0 (mod p?), (5.3.5)

forg=1,2 ..., p—1.

Proof. We note that

2. .2 mp®. mp*
S B, (n)g" = (47 4%)oo(d™ 3 4™ oo

(q; q)géps (q2mp5 : q2mps )Oo :

n=0

Employing (5.2.5) in the above, we obtain

S By(n)gt = O ) g (5.3.6)

(qp7 qp)gps_l (qupS; qups)Oo
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Now, replacing ¢ by ¢* in (2.2. 2) employing the result in the above and then extract-
ing the terms containing qp”Jr T , dividing both sides by ¢ ot and then replacing

¢’ by q in the above congruence, we arrive at

—1 £p1 q*; ¢* ) qmpkl;qmpk1 o
S (s Z ) (5 7) )

(@ Q)% (¢ g2 )
which is also true for modulo p?, i.e

e 2
pr—1\ .
Z%(pwr - )q

n=0

(mod p?),

(1)

s—1

1) (@5 6%) oo (@™ 0™ ) o
(q; Q)mr" (q2mr =" ; g2 =t)

Employing (5.2.3) in the above congruence, we find that

(mod p?).

(_

w1 (475 47)oo(d™ 4™ oo

o0 2
p*—1 2
B + "= (-1 d
; ’ (pn 12 ) =0 (7 g7)5 " (g2mr ™5 g2 ) mod 27
(5.3.7)
Comparing the coefficients of ¢?"*/, where j =1, 2, ..., p — 1, we complete the
proof of (5.3.5). O

Corollary 5.3.4. Let k = mp®, where m € N, p > 5 and s > 3. Then for any

positive integer n, we have

%(2 p1;1) (—1)7 B (n) (mod p?), (5.3.8)

where k' = np*2

Proof. Extracting the terms containing ¢?" from both sides of (5.3.7), and then
replacing ¢P by ¢, we obtain

o 2
p*—1
% 2 n

2

(L)t (G ) (d™ 14" oo
s—2 s— S—
(g; Q) (@22 2 2 o

)
ie.,

o) 2 1 . ip1 o0 .
nz:%%k (P n + T) =(-1)"s nz:%%k/ (n)q"™ (mod p?). (5.3.9)

Comparing the coefficients of ¢" from both side of the above congruence, we readily

arrive at (5.3.8). 0
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5.4 Parity results for 7 and 11 dots bracelet par-
titions
Theorem 5.4.1. For any non-negative integer n, we have

B7(2n+ 1) = by(n) (mod 2). (5.4.1)

Proof. We note from (1.6.1) that

& @
2 B = e e

(%)) (d Q)
(6 9L (0" ¢

Taking congruent modulo 2 on both sides of the above equation, we obtain

S 1
2%7(77’)61”5 4. 4

(0% 4% oo (2 )0 (075 ¢7) o

1 8 :
@ M >_pum(n)e”, (5.4.2)
) S

where pjji71(n) is defined by

[ee]
Zp[1171](n)q” = 17 N
(4 0)(q74") 0

n=0
From Baruah and Ojah’s paper [16, Eq. 1.7], we recall that
2

~ (7% )% (¢" "2,
Pt 2n + 1 qn =
2w+ V0" = S o,

Y

which is equivalent to,
> pum(2n 4+ 1)¢" = (4;0)(q7: 7)o (mod 2).
n=0
Now, extracting the terms containing ¢*"*! from both sides of (5.4.2) and using

the above congruence, we easily arrive at (5.4.1). O
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Theorem 5.4.2. Ifr € {3,4,6} and s € {1,5,6}, then for any non-negative integers

n and k, we have

2%+1 o, DT 1)
and
2(k+1) 2k+1 21- 7 -1 —
%7 4.7 n+4s-7 +f+1 :0(m0d 2). (544)
Proof. From (5.4.1), we have
B7(2n+ 1) = by(n) (mod 2). (5.4.5)

From Theorem 1.3 of [13], we recall that if r € {3,4,6} and s € {1,5,6}, then
for all n, k > 0,

5(7%F — 1)

by (2 T g 2r TR 4 ——

+1) =0 (mod 2)

and

21-7%* —1
by (2 SR Dy 4o9g . 7L f) =0 (mod 2).
Using the above two congruences in (5.4.5), we easily arrive at (5.4.3) and (5.4.4).
O

—14
It has also been proved in [13] that for any prime p > 5 with (—) = —1,
p

1 <j <p-—1, and for all non-negative integers n and k,

84 5 2k+1 1
by (2 I 4 (8) +5p)p ) =0 (mod 2)

4
and

(565 + 21p)p*+1 — 1
4

by (14 PR 4 ) =0 (mod 2).

Employing the above two congruences in (5.4.1), it is now easy to find the following

congruences modulo 2 for 7 dots bracelet partitions.
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—14
Theorem 5.4.3. If p > 5 is a prime with (—) =—1land1 <j<p-—1, then
p

for any non-negative integers n and k,

85 5 2k+1 1
By (4-p2k+2n + (8] + p)2p + 1) =0 (mod 2)

and

565 + 21p)ptt — 1
2

B (28 pH i 4 ( + 1) =0 (mod 2).

In the remaining part of this section, we find congruences modulo 2 for 11 dots

bracelet partitions.

Theorem 5.4.4. If p > 5 is a prime, then for any non-negative integer o, we have

o0 N 20 + 5
Z‘BH (4 PP n+ b 5 ) " = (¢;¢)oo (mod 2). (5.4.6)
n=0
Proof. 'We note from (1.6.1) that
= (0% %)
Bii(n)g" =
; u(n) (¢ QL (—q"5 M)
_ (@%50)(0": 0 ) (5.47)
() (0% ¢*) o
Since
(¢:90)% = (¢°;¢*)oo (mod 2),
we find that
D (T (N S—) (5.4.8)
pard (4% ¢%)oo (4 D)oo (0" ¢ )

Employing (4.3.3) in the above, we arrive at

(=¢*°)x(¢*)
(6% 6%)so (0% ¢%)% (0% ¢%2)2, x(—q*)
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Extracting the terms involving ¢®"*! from both sides of the above congruence, di-

viding both sides by ¢ and then replacing ¢? by ¢, we find that

S n _ 1 1 U(=¢*)x(q) 7 1,( 66
;%11(2n+1)q (05 4Y) (q2;q2)oo(q22;q22)oo{ xX(—¢*) tavle )}
_ 1 {(qﬁ;qﬁ)io(q44;q44)oo (¢ Q)
(@5 )3(0%5 %) 00 (6% 0200 (0% 6% (635 ¢%) 0
7((]132; q132)<>O
e (4%; ¢%0) 0
_ 1 {(q 1 0°)2.(0%% %) oo (4 9)o0
(0% 07367 ¢*) o (4% 4% (6% ¢%)os
+ q7(q66;q66)oo} (mod 2). (5.4.9)

Now, from Hirschhon and Roselin [38], we recall that

1 _ (2% ¢*)3. (4" 4")%
(€:0)oo(@® P (6%56%)% (0% 4*) e (05 ¢%) & (q S ?h)2
(0% a2 (% ¢**)2,
(4% %)% (a% ¢°)% (6% )% (4% ¢

Multiplying both sides of the above by (¢; ¢)% and taking congruent modulo 2, we
find that

(6D _ [ o o (4% 4°)2.(4"% )3,
e = O G ) T
(¢* a2 (% ¢**)2,
v I O P e,
_ (@) @)% o
(% q2)oo+q(q q2) (mod 2).
Employing the above in (5.4.9), we obtain

n_ 1 (6% 49267 6®)so ( (0% 0%)5
;%“(2”“” T (B P >oo{ (6% ¢%) <<q12;q12>oo
(¢"% 4" ) (0" 4"
S EE) )
= (qQ;qQ) +q(q (] ) 7 (q yq )OO (mod 2)'

+4q
(% ¢*)5% (4% 4%)3.(6%; 4%
Extracting the terms involving ¢®" from both sides of the above congruence, and
then replacing ¢* by ¢, we find that

> Bii(dn +1)¢" = (g5 ) (mod 2). (5.4.10)

n=0
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Hence, (5.4.6) is proved for a = 0. Now, let (5.4.6) be true for some a > 0, i.e.,

> 2a0

+5
> Bu (4-p2‘”-n+p 5 )q”
n=0

Using the above p-dissection for (¢; ¢)e from (2.2.2) in (5.4.11), then extracting

(¢;q)oo (mod 2). (5.4.11)

2_
the terms involving qp”*p2—41 from both sides of the resulting congruence, dividing

2_
both sides by qull and then replacing ¢” by ¢, we find that

e 2 2a0
o b -1 p +5 n
E s311(4']92 (p-n+ 24 )+ 6 )C]
n=0

(@";¢")oo (mod 2),

ie.,

(¢";¢")oe (mod 2).

% 4 - 2a+1 4 . 2ap n
E 11 ( D n+4-p 21 + 6 q

n=0
Again, extracting the terms involving ¢”* from both sides of the above and then

replacing ¢P by ¢, we obtain

> 2(a+1) 5
S B, (4 pRe) Ly ?%) 7
n=0

(¢;¢)oo (mod 2). (5.4.12)

Hence, (5.4.6) is true for a+ 1 if it is true for a. So, by mathematical induction, we

complete the proof of (5.4.6). O

Corollary 5.4.5. If p > 5 is a prime, then for any non-negative integers o and n,

we have
2a 5
B (4 Y en+ F Y ) =0 (mod 2), (5.4.13)
ifn+ k(3k — 1)'
2
Proof. Readily follows from (5.4.6) and (2.2.2). O

5.5 Congruences for 3- and 5-cores

In this section, we find some new congruences for 3-cores modulo 9 and a congruence

modulo 25 between 5-cores and 7(n) by using (5.2.1).
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Theorem 5.5.1. For any integer a > 1, we have

[e.o]

2a 4% —1 n
Z&g 2% . n + 5 q

n=0

(4:9)5 (mod 9). (5.5.1)

Proof. 'We note from (1.4.1) that

i a3(n)qn _ (q3§ qg):go’

n=0

which, by (5.2.1), implies

= (¢;¢)%, (mod 9). (5.5.2)

which is equivalent to

4. 4\10 2. .,2)\2 8. 8\4
(0% ¢*)% (6% ¢°)5% (4% 9M)%

From (5.5.2) and (5.5.3), we have

iag(n)q" _ { (a'qh% 46](612;612)@;(618;qg)iﬁo}2 (10d 9).

(@2 ¢*)% (4% ¢®)4 (g% q%)2,

n=0
Extracting the term containing ¢***! from both sides of the above congruence, di-
viding both sides by ¢ and then replacing ¢* by ¢, we arrive at
(o)
> as(dn + 1)¢" = (¢;¢)%, (mod 9),
n=0

which is the case for « =1 in (5.5.1). Now, let (5.5.1) be true for some o > 1, i.e.,

= 4o —1
> as(2* n+ ——)q" = (g 9)% (mod 9). (5.54)
n=0
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Now employing (5.5.3) in the above congruence and extracting the terms con-
taining ¢*"*! from both sides of the resulting congruence, dividing both sides by ¢
and then replacing ¢* by ¢, we find that

e sl 4a+1 -1 g
> as(2* e+ ———)q" = (g )% (mod 9).
n=0
Hence, (5.5.1) is true for a4 1 if it is true for a. Thus, by mathematical induction,

we complete the proof of (5.5.1). O

Corollary 5.5.2. For any integer k > 2 and any non-negative integer n, we have

3.2%-1 gk ]
as (2% n+ 3+ ) =0 (mod 9). (5.5.5)

Proof. From (5.5.1) we have

o0

Z&g (220‘ ‘n + 4013_ 1) ¢" = (¢;¢)%, (mod 9). (5.5.6)

n=0

Employing (5.5.3) in the above congruence and extracting the term containing ¢***!

from both sides of the resulting congruence, dividing both sides by ¢ and then
replacing ¢ by ¢, we obtain

o0

4* — 1
> a (22a<2n v+ ) 0 = (¢ ), (mod 9),

n=0

ie.,

(¢* ¢*)% (mod 9).

0o
4« — 1
Za3 (22a+1 .n+22a+ 7 )qn

n=0

Comparing the coefficients of ¢! from both sides of the above congruence, we

arrive at
2a+1 2a 4% —1 n _
as | 2 “(2n+1) + 27 + 3 ¢" =0 (mod 9),
ie.,
3 . 22a+1 4a+1 -1
as (22(°‘+1) “n+ —; ) =0 (mod 9),

which is equivalent to (5.5.5). O



76

Theorem 5.5.3. For any positive integer k and any non-negative integer n, we have

2% _
as (5% -+ > 3 1) = (-5)*as(n) (mod 9), (5.5.7)

%
a5 (22k it 2 ; 1) — (=8)¥a5(n) (mod 9). (5.5.8)

Proof. From (5.5.2), we have
> az(n)g" = (g:0)% =Y _ ps(n)q”. (5.5.9)
n=0 n=0

We note from Baruah and Sarmah’s paper [18] that

5 —1
s (52]€ -n + 3 ) = (—5)3kp8(n),

pe (22t - H) = 8mn

Employing the above two identities in (5.5.9), we easily obtain (5.5.7) and (5.5.8).

O

Theorem 5.5.4. For a positive integer n, we have

as(n — 1) = 7(n) (mod 25). (5.5.10)

Proof. 'We note from (1.4.1) that

S (0% ¢°)5%
as(n)q" = —==.
; (¢ 4)oo
Using (5.2.1) in the above expression, we find that
(e}
> as(n)q" = (¢;9)% (mod 25).
n=0
Multiplying both sides by ¢ in the above congruence and using (1.4.2), we obtain

Zag,(n)q’“’l = ZT(n)q” (mod 25).

n=1
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By comparing the coefficients of ¢" in the above congruence, we complete the proof

of (5.5.10). O

There are several identities known for Ramamnujan’s tau function 7(n) for mod-

ulo 5, 25 and 125. for example:

7(n) = nog(n) (mod 5),

7(n) = 5n’07(n) — 4nog(n) (mod 125), if n is not a multiple of 5,

where o4(n) denote the (sum of the) sth power of the divisor of n, i.e.,

os(n) = Z d’.

din
From the above identities for 7(n), we obtain the following congruences for 5-core

partitions by using (5.5.10):

as(5n — 1) = nog(n) (mod 5),

as(n — 1) = 5n’o(n) — 4noy(n) (mod 25).

For more identities of tau function, we refer to Ramanujan’s unpublished manuscript
on the partition and tau functions with proofs and commentary by Berndt and Ono

[21].
Theorem 5.5.5. For any non-negative integers k and n, we ahve
as (2572 - n 4+ 2572 — 1) = rpas(2n + 1) + spas(n) (mod 25), (5.5.11)

where r, = —24r,_1 + Sp_1, Sk = —2048r,_1 with ro = —24 and by = —2048.

Proof. We have

By using (5.2.3), taking modulo 25 on both sides of the above equation, we obtain

> as(n)g" = (4922 =D puln)g™.
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Again, from Baruah and Sarmah’s paper [18], we have
p24(2k+2 -Nn + 2k+2 — 1) = rkp24(2n + ].) + Skp24(n),

where r, = —24r_1 + Sg_1, Sp = —2048r;_1 with ro = —24 and by = —2048. By

using the above identities, we complete the proof of (5.5.11). O



