
Chapter 6

New congruences for Andrews’

singular overpartitions

6.1 Introduction

Recall from Section 1.7 of the introductory chapter that if Ck,i(n) denotes the

number of overpartitions of n in which no part is divisible by k and only parts

≡ ±i (mod k) may be overlined, then

∞
∑

n=0

Ck,i(n)q
n =

(qk,−qi,−qk−i; qk)∞
(q; q)∞

, (6.1.1)

where (a1, a2, . . . , ak; q)∞ := (a1; q)∞(a2; q)∞ · · · (ak; q)∞.
In this chapter, we prove several new congruences for Ck,i(n) for some k and i

by employing Ramanujan’s theta functions and p-dissections of q-products.

In Section 6.2, we prove the following congruences for C3,1(n) modulo 4, 18 and

36.

Theorem 6.1.1. If p ≥ 5 is a prime and 1 ≤ j ≤ p− 1, then for any non-negative

integers α and n, we have

C3,1

(

24p(2α+1)(pn+ j) + p2(α+1)
)

≡ 0 (mod 4). (6.1.2)
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Theorem 6.1.2. For any non-negative integer n, we have

C3,1 (48n+ 12) ≡ 0 (mod 18), (6.1.3)

C3,1 (12n+ 7) ≡ 0 (mod 36), (6.1.4)

C3,1 (12n+ 11) ≡ 0 (mod 36), (6.1.5)

C3,1 (24n+ 14) ≡ 0 (mod 36) (6.1.6)

and

C3,1 (24n+ 22) ≡ 0 (mod 36). (6.1.7)

In Section 6.3, we find the following infinite families of congruences modulo 2

and 4 for C8,2(n).

Theorem 6.1.3. If p is a prime such that p ≡ 3 (mod 4) and 1 ≤ j ≤ p− 1, then

for all non-negative integers α and n, we have

C8,2

(

p2α+1(pn+ j) +
5(p2(α+1) − 1)

24

)

≡ 0 (mod 2). (6.1.8)

Theorem 6.1.4. If p is a prime such that p ≡ 13, 17, 19, or 23 (mod 24) and

1 ≤ j ≤ p− 1, then for any non-negative integers α and n, we have

C8,2

(

p2α+1(pn+ j) +
5(p2(α+1) − 1)

24

)

≡ 0 (mod 4). (6.1.9)

The following congruences modulo 2 and 3 for C12,2(n) and C12,4(n), respectively,

are proved in Section 6.4.

Theorem 6.1.5. If p is a prime such that p ≡ 3 (mod 4) and 1 ≤ j ≤ p− 1, then

for all non-negative integers α and n, we have

C12,2

(

p2α+1(pn+ j) + 5 · p
2(α+1) − 1

8

)

≡ 0 (mod 3). (6.1.10)
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Theorem 6.1.6. If p is a prime such that p ≡ 3 (mod 4) and 1 ≤ j ≤ p− 1, then

for any non-negative integers α and n, we have

C12,4

(

p2α(pn+ j) +
p2α − 1

8

)

≡ 0 (mod 3). (6.1.11)

Theorem 6.1.7. If p is an odd prime and 1 ≤ j ≤ p−1, then for any non-negative

integers α and n, we have

C12,4

(

p2α+1(pn+ j) +
p2(α+1) − 1

8

)

≡ 0 (mod 2). (6.1.12)

In the penultimate section of this chapter, i.e., Section 6.5, we prove the following

infinite family of congruences modulo 10 for C15,5(n).

Theorem 6.1.8. For any prime p ≥ 5 and 1 ≤ j ≤ p−1, then for any non-negative

integers α and n, we have

C15,5

(

100p2α+1(pn+ j)n + 25 · p
2α+2 − 1

6
+ 4

)

qn ≡ 0 (mod 10). (6.1.13)

In the final section, we prove the following parity results for C24,8(n) and C48,16(n).

Theorem 6.1.9. If p is a prime such that p ≡ −1 (mod 6) and 1 ≤ j ≤ p− 1, then

for any non-negative integers α and n, we have

C24,8

(

p2α+1(pn + j) + 7 · p
2α − 1

24

)

≡ 0 (mod 2). (6.1.14)

Theorem 6.1.10. If p is a prime such that p ≡ 3 (mod 4) and 1 ≤ j ≤ p− 1, then

for any non-negative integers α and n, we have

C48,16

(

p2α+1(pn+ j) + 5 · p
2α − 1

8

)

≡ 0 (mod 2).

It is worthwhile to mention that, in view of (1.3.2) – (1.3.4) and (6.1.1), for any

positive integers ℓ and m with ℓ ≥ m, we have

C10ℓ,5m(5n+ 4) ≡ 0 (mod 5),

C14ℓ,7m(7n+ 5) ≡ 0 (mod 7),
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and

C22ℓ,11m(11n+ 6) ≡ 0 (mod 11),

respectively.

The results of this chapter, except Theorem 6.1.8, appeared in [4].

6.2 Congruences modulo 4, 18 and 36 for C3,1(n)

Theorem 6.2.1. We have

∞
∑

n=0

C3,1(3n)q
n ≡ ϕ6(−q) (mod 9), (6.2.1)

∞
∑

n=0

C3,1(3n+ 1)qn ≡ 2(q; q)4∞(q2; q2)2∞ (mod 9), (6.2.2)

and

∞
∑

n=0

C3,1(3n+ 2)qn ≡ 4
(q2; q2)10∞
(q; q)4∞

(mod 9). (6.2.3)

Proof. Setting k = 3 and i = 1 in (6.1.1), we have

∞
∑

n=0

C3,1(n)q
n =

(q3,−q,−q2; q3)∞
(q; q)∞

,

which can be rewritten as

∞
∑

n=0

C3,1(n)q
n =

ϕ(−q3)
ϕ(−q) . (6.2.4)

From Baruah and Ojha’s paper [17], we recall that

1

ϕ(−q) =
ϕ3(−q9)
ϕ4(−q3){1 + 2qw(q3) + 4q2w2(q3)},

where w(q) =
(q; q)∞(q6; q6)3∞
(q2; q2)∞(q3; q3)3∞

. Using the above in (6.2.4), we have

∞
∑

n=0

C3,1(n)q
n =

ϕ3(−q9)
ϕ3(−q3){1 + 2qw(q3) + 4q2w2(q3)}.
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Extracting the terms containing q3n+j , for j = 0, 1, 2, respectively, we find that

∞
∑

n=0

C3,1(3n)q
n =

ϕ3(−q3)
ϕ3(−q) , (6.2.5)

∞
∑

n=0

C3,1(3n+ 1)qn = 2
ϕ3(−q3)
ϕ3(−q) w(q), (6.2.6)

and

∞
∑

n=0

C3,1(3n+ 2)qn = 4
ϕ3(−q3)
ϕ3(−q) w

2(q). (6.2.7)

With the aid of (5.2.1) for p = 3, it can be shown that

ϕ9(−q) ≡ ϕ3(−q3) (mod 9).

Employing the above in (6.2.5), we arrive at (6.2.1).

Identities (6.2.2) and (6.2.3) can be proved in a similar way. 2

Remark 6.2.2. Since ϕ(q) ≡ ϕ(−q) ≡ 1 (mod 2), it follows from (6.2.4) that

C3,1(n) ≡ 0 (mod 2) for n ≥ 1, (6.2.8)

which is Theorem 2.9 in [39].

Furthermore, from (6.2.7), we have

C3,1(3n+ 2) ≡ 0 (mod 4) for n ≥ 1. (6.2.9)

Theorem 6.2.3. If p ≥ 5 is a prime, then for any non-negative integer α, we have

∞
∑

n=0

C3,1

(

24p2αn + p2α
)

qn ≡ 2(q; q)∞ (mod 4). (6.2.10)

Proof. From (6.2.6), it follows that

∞
∑

n=0

C3,1(3n+ 1)qn ≡ 2
(q3; q3)3∞
(q; q)∞

(mod 4). (6.2.11)
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But it is known that (for example, see Hirschhorn and Roselin [38])

(q3; q3)3∞
(q; q)∞

=
(q4; q4)3∞(q6; q6)2∞
(q2; q2)2∞(q12; q12)∞

+ q
(q12; q12)3∞
(q4; q4)∞

.

Employing the above identity in (6.2.11) and then simplifying, we find that

∞
∑

n=0

C3,1(3n+ 1)qn ≡ 2

(

(q8; q8)∞ + q
(q12; q12)3∞
(q4; q4)∞

)

(mod 4). (6.2.12)

Extracting the terms containing q8n from both sides of the above congruence and

then replacing q8 by q, we obtain

∞
∑

n=0

C3,1(24n+ 1)qn ≡ 2(q; q)∞ (mod 4).

which is the α = 0 case of (6.2.10). Now suppose (6.2.10) holds for some α ≥ 0.

Using (2.2.2) in (6.2.10) and extracting the terms containing qpn+
p2−1
24 from both

sides of the identity and then replacing qp by q, we find that

∞
∑

n=0

C3,1

(

24p2α
(

pn+
p2 − 1

24

)

+ p2α
)

qn ≡ 2(qp; qp)∞ (mod 4). (6.2.13)

Extracting the terms containing qpn from both sides of the above congruence and

replacing qp by q again, we arrive at

∞
∑

n=0

C3,1

(

24p2(α+1)n+ p2(α+1)
)

qn ≡ 2(q; q)∞ (mod 4),

which is the α + 1 case of (6.2.10). 2

We now prove Theorem 6.1.1 and Theorem 6.1.2.

Proof of Theorem 6.1.1. Comparing the coefficients of qpn+j, for 1 ≤ j ≤ p−1, from

both sides of (6.2.13), we easily arrive (6.1.2). 2

Proof of Theorem 6.1.2. Recall from [19, Entries 25(i) and (ii), p. 40] that

ϕ(−q) = ϕ(q4)− 2qψ(q8). (6.2.14)
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Employing the above identity in (6.2.1), extracting the terms containing q4n from

both sides, and then replacing q4 by q, we find that

∞
∑

n=0

C3,1(12n)q
n ≡ ϕ6(q) + 6qϕ2(q)ψ4(q2) (mod 9). (6.2.15)

Again, recall from [19, Entries 25(v) and (vi), p. 40] that

ϕ2(q) = ϕ2(q2) + 4qψ2(q4). (6.2.16)

Employing the above identity in (6.2.15), we find that

∞
∑

n=0

C3,1(12n)q
n ≡ ϕ6(q2) + 48q2ϕ2(q2)ψ4(q4) + 64q3ψ6(q4)

+ 24q2ψ4(q2)ψ2(q4) (mod 9),

where we have also used the trivial identity ϕ(q)ψ(q2) = ψ2(q). Extracting the terms

involving q2n+1 from both sides of the above and then replacing q2 by q, we obtain

∞
∑

n=0

C3,1(24n+ 12)qn ≡ 64qψ6(q2) (mod 9),

which readily implies that

C3,1(48n+ 12) ≡ 0 (mod 9).

Now (6.1.3) follows from the above congruence and (6.2.8).

Again, replacing q by −q in (6.2.16), transforming the theta functions into q-

products, and then simplifying, we find that

(q; q)4∞ =
(q4; q4)10∞

(q2; q2)2∞(q8; q8)4∞
− 4q

(q2; q2)2∞(q8; q8)4∞
(q4; q4)2∞

,

which is a 2-dissection of (q; q)4∞. Therefore, (6.2.2) can be expressed as

∞
∑

n=0

C3,1(3n+ 1)qn ≡ 2(q2; q2)2∞

( (q4; q4)10∞
(q2; q2)2∞(q8; q8)4∞

(6.2.17)

− 4q
(q2; q2)2∞(q8; q8)4∞

(q4; q4)2∞

)

(mod 9). (6.2.18)
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Extracting the terms involving q2n from both sides of the above and then replacing

q2 by q, we obtain

∞
∑

n=0

C3,1(6n+ 1)qn ≡ 2
(q2; q2)10∞
(q4; q4)4∞

(mod 9).

Comparing the coefficients of q2n+1 from both sides of the above congruence, we find

that

C3,1 (12n+ 7) ≡ 0 (mod 9). (6.2.19)

On the other hand, comparing the coefficients of q4n+2 and q4n+3, in turn, from

both sides of (6.2.12), we also have

C3,1 (12n+ 7) ≡ 0 (mod 4) (6.2.20)

and

C3,1 (12n+ 10) ≡ 0 (mod 4). (6.2.21)

From (6.2.19) and (6.2.20), we readily arrive at (6.1.4).

Next, extracting the terms containing q2n+1 from both sides of (6.2.17) and then

replacing q2 by q, we find that

∞
∑

n=0

C3,1(6n+ 4)qn ≡ −8
(q; q)4∞(q4; q4)4∞

(q2; q2)2∞
≡ (q4; q4)4∞ϕ

2(−q) (mod 9),

which, by (6.2.14), is

∞
∑

n=0

C3,1(6n+ 4)qn ≡ (q4; q4)4∞(ϕ(q4)− 2qψ(q8))2 (mod 9).

Comparing the coefficients of q4n+3 from both sides of the above congruence and

also using (6.2.21), we arrive at (6.1.7).

Finally, we turn to prove (6.1.5) and (6.1.6).

With the aid of (6.2.16) and the elementary identity ϕ(−q)ϕ(q) = ϕ2(−q2), we
have

1

ϕ2(−q) =
ϕ2(q)

ϕ2(−q)ϕ2(q)
=
ϕ2(q2) + 4qψ2(q4)

ϕ2(−q2) ,
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from which it follows that

1

(q; q)4
=

(q4; q4)14∞
(q2; q2)14∞(q8; q8)4∞

+ 4q
(q4; q4)2∞(q8; q8)4∞

(q2; q2)10∞
. (6.2.22)

Employing the above in (6.2.3), we obtain

∞
∑

n=0

C3,1(3n + 2)qn ≡ 4
(q4; q4)14∞

(q2; q2)4∞(q8; q8)4∞
+ 16q(q4; q4)2∞(q8; q8)4∞ (mod 9).

Another application of (6.2.22) in the above gives

∞
∑

n=0

C3,1(3n + 2)qn ≡ 4
(q4; q4)14∞
(q8; q8)4∞

(

(q8; q8)14∞
(q4; q4)14∞(q16; q16)4∞

+ 4q2
(q8; q8)2∞(q16; q16)4∞

(q4; q4)10∞

)

+ 16q(q4; q4)2∞(q8; q8)4∞ (mod 9).

Comparing the coefficients, in turn, of q4n+3 and q8n+4, from both sides of the above

congruence and also using (6.2.9), we arrive at (6.1.5) and (6.1.6), respectively, to

finish the proof. 2

Remark 6.2.4. From [19, Entries 30 (ii) and (iii), p. 46], we recall that

f(a, b) + f(−a,−b) = 2f(a3b, ab3), (6.2.23)

and

f(a, b)− f(−a,−b) = 2af
(

b/a, a5b3
)

. (6.2.24)

Setting a = q and b = q2 in the above two identities and with the aid of (6.1.1), it

can be easily shown that

C3,1(n) = 2C12,5(n) for all n ≥ 1,

and

C3,1(n) = 2C12,11(n− 1) for all n ≥ 2.
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Therefore, the congruences for C3,1(n) found in this section can be recast in terms

of C12,5(n) and C12,11(n). We also note from the above that

C12,5(n) = C12,11(n− 1) for all n ≥ 2.

Furthermore, adding both (6.2.23) and (6.2.24) and then setting a = qi and

b = qk−i for k > 2i > 1, it follows from (6.1.1) that

Ck,i(n+ 1) = C4k,2i+k(n + 1) + C4k,k−2i(n) for all n ≥ 0.

6.3 Congruences modulo 2 and 4 for C8,2(n)

Theorem 6.3.1. If p is a prime such that p ≡ 3 (mod 4), then for any non-negative

integer α, we have

∞
∑

n=0

C8,2

(

p2αn+
5(p2α − 1)

24

)

qn ≡ (q; q)∞(q4; q4)∞ (mod 2). (6.3.1)

Proof. Setting k = 8 and i = 2 in (6.1.1), we have

∞
∑

n=0

C8,2(n)q
n =

(q8,−q2,−q6; q8)∞
(q; q)∞

=
ψ(q2)

(q; q)∞
=

(q4; q4)2∞
(q; q)∞(q2; q2)∞

. (6.3.2)

Since (q; q)2∞ ≡ (q2; q2)∞ (mod 2), we find that

∞
∑

n=0

C8,2(n)q
n ≡ (q2; q2)3∞

(q; q)∞
≡ (q; q)∞(q4; q4)∞ (mod 2),

which is the α = 0 case of (6.3.1). Now suppose that (6.3.1) holds for some α ≥ 0.
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Substituting (2.2.2) in (6.3.1), we have

∞
∑

n=0

C8,2

(

p2αn+
5(p2α − 1)

24

)

qn

≡
[

p−1
2
∑

k=− p−1
2

k 6=±p−1
6

(−1)kq
3k2+k

2 f(−q 3p2+(6k+1)p
2 ,−q 3p2−(6k+1)p

2 ) + (−1)
±p−1

6 q
p2−1
24 f(−qp2)

]

×
[

p−1
2
∑

m=− p−1
2

m6=±p−1
6

(−1)mq4·
3m2+m

2 f(−q4· 3p
2+(6m+1)p

2 ,−q4· 3p
2−(6m+1)p

2 )

+ (−1)
±p−1

6 q4·
p2−1
24 f(−q4p2)

]

(mod 2). (6.3.3)

Now consider the congruence

3k2 + k

2
+ 4 · 3m

2 +m

2
≡ 5p2 − 5

24
(mod p), (6.3.4)

where −(p− 1)/2 ≤ k,m ≤ (p− 1)/2. Since the above congruence is equivalent to

(6k + 1)2 + (12m+ 2)2 ≡ 0 (mod p)

and

(−1

p

)

= −1 as p ≡ 3 (mod 4), the only solution of (6.3.4) is k = m =
±p− 1

6
.

Therefore, extracting the terms containing qpn+
5p2−5

24 from both sides of (6.3.3) and

replacing qp by q, we obtain
∞
∑

n=0

C8,2

(

p2α+1n+
5(p2α+2 − 1)

24

)

qn ≡ (qp; qp)∞(q4p; q4p)∞ (mod 2). (6.3.5)

Again extracting the terms containing qpn from both sides of the above and replacing

qp by q, we find that
∞
∑

n=0

C8,2

(

p2α+2n +
5(p2α+2 − 1)

24

)

qn ≡ (q; q)∞(q4; q4)∞ (mod 2),

which is the α + 1 case of (6.3.1). 2

Theorem 6.3.2. If p is a prime such that p ≡ 13, 17, 19, or 23 (mod 24), then

for any non-negative integer α, we have

∞
∑

n=0

C8,2

(

p2αn +
5(p2α − 1)

24

)

qn ≡ (−1)α·
±p−1

6 ψ(q)(q2; q2)∞ (mod 4). (6.3.6)
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Proof. Since (q2; q2)2∞ ≡ (q; q)4∞ (mod 4), from (6.3.2), we have

∞
∑

n=0

C8,2(n)q
n ≡ (q2; q2)3∞

(q; q)∞
≡ ψ(q)(q2; q2)∞ (mod 4),

which is the α = 0 case of (6.3.6). Now suppose that (6.3.6) holds for some α ≥ 0.

With the aid of (2.2.2) and (2.2.1), we rewrite (6.3.6) as

∞
∑

n=0

C8,2

(

p2αn +
5(p2α − 1)

24

)

qn

≡ (−1)α·
±p−1

6

[

p−3
2
∑

m=0

q
m2+m

2 f(q
p2+(2m+1)p

2 , q
p2−(2m+1)p

2 ) + q
p2−1

8 ψ(qp
2

)
]

×
[

p−1
2
∑

k=− p−1
2

k 6=±p−1
6

(−1)kq2·
3k2+k

2 f(−q2·
3p2+(6k+1)p

2 ,−q2·
3p2−(6k+1)p

2 )

+ (−1)
±p−1

6 q2·
p2−1
24 f(−q2p2)

]

(mod 4). (6.3.7)

Now we consider the congruence

3k2 + k +
m2 +m

2
≡ 5(p2 − 1)

24
, (6.3.8)

where −(p− 1)/2 ≤ k ≤ (p− 1)/2 and 0 ≤ m ≤ p− 1. Since the above congruence

is equivalent to

(12k + 2)2 + 6(2m+ 1)2 ≡ 0 (mod p)

and

(−6

p

)

= −1 as p ≡ 13, 17, 19, or 23(mod 24), the only solution of (6.3.8)

is k =
±p− 1

6
and m =

p− 1

2
. So, extracting the terms containing qpn+

5p2−5
24 from

both sides of (6.3.7) and then replacing qp by q, we obtain

∞
∑

n=0

C8,2

(

p2α+1n +
5(p2α+2 − 1)

24

)

qn ≡ (−1)(α+1)(±p−1
6

)ψ(qp)(q2p; q2p)∞ (mod 4).

(6.3.9)

Extracting the terms containing qpn from both sides of the above and then replacing

qp by q, we find that

∞
∑

n=0

C8,2

(

p2α+2n+
5(p2α+2 − 1)

24

)

qn ≡ (−1)(α+1)(±p−1
6

)ψ(q)(q2; q2)∞ (mod 4),
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which is the α + 1 case of (6.3.6). 2

We are now in a position to prove Theorem 6.1.3 and Theorem 6.1.4.

Proofs of Theorems 6.1.3 and 6.1.4. Comparing the coefficients of qpn+j, for 1 ≤ j ≤
p−1, from both sides of (6.3.5), we arrive at (6.1.8). On the other hand, comparing

the coefficients of qpn+j, 1 ≤ j ≤ p− 1 from both sides of (6.3.9), we obtain(6.1.9).

2

6.4 Congruences modulo 2 and 3 for C12,2(n) and

C12,4(n)

Theorem 6.4.1. If p is a prime such that p ≡ 3 (mod 4), then for any non-negative

integer α, we have

∞
∑

n=0

C12,2

(

p2αn+ 5 · p
2α − 1

8

)

qn ≡ ψ(q)ψ(q4) (mod 3). (6.4.1)

Proof. Setting k = 12 and i = 2 in (6.1.1), we have

∞
∑

n=0

C12,2(n)q
n =

(q12,−q2,−q10; q12)∞
(q; q)∞

.

Manipulating the q-products, with some additional aid from Euler’s identity

(−q; q)∞ =
1

(q; q2)∞
,

we have

∞
∑

n=0

C12,2(n)q
n =

1

(q; q)∞
· (q

6; q6)∞(q24; q24)∞
(q12; q12)∞

· (q4; q4)2∞
(q2; q2)∞(q8; q8)∞

.

Taking congruence modulo 3 on both sides of the above and noting that (q; q)3∞ ≡
(q3; q3)∞ (mod 3), we find that

∞
∑

n=0

C12,2(n)q
n ≡ (q2; q2)2∞

(q; q)∞

(q8; q8)2∞
(q4; q4)∞

≡ ψ(q)ψ(q4) (mod 3),
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which is clearly the α = 0 case of (6.4.1). Now suppose that (6.4.1) be true for some

α ≥ 0. Substituting (2.2.1) in (6.4.1), we have

∞
∑

n=0

C12,2

(

p2αn+ 5 · p
2α − 1

8

)

qn

≡
[

p−3
2
∑

k=0

q
k2+k

2 f(q
p2+(2k+1)p

2 , q
p2−(2k+1)p

2 ) + q
p2−1

8 ψ(qp
2

)
]

(6.4.2)

×
[

p−3
2
∑

m=0

q4·
m2+m

2 f(q4·
p2+(2m+1)p

2 , q4·
p2−(2m+1)p

2 ) + q4·
p2−1

8 ψ(q4p
2

)
]

(mod 3). (6.4.3)

For 0 ≤ k,m ≤ p− 1, we now consider the congruence

k2 + k

2
+ 4 · m

2 +m

2
≡ 5p2 − 5

8
(mod p), (6.4.4)

which is equivalent to

(2k + 1)2 + (4m+ 2)2 ≡ 0 (mod p).

Since

(−1

p

)

= −1 for p ≡ 3 (mod 4), the only solution of (6.4.4) is k = m =
p− 1

2
.

Therefore, extracting the terms involving qpn+
5p2−5

8 from both sides of (6.4.2) and

then replacing qp by q, we find that

∞
∑

n=0

C12,2

(

p2α
(

pn+
5p2 − 5

8

)

+ 5 · p
2α − 1

8

)

qn ≡ ψ(qp)ψ(q4p) (mod 3). (6.4.5)

Again extracting the terms involving qpn form both sides of the above and then

replacing qp by q, we obtain

∞
∑

n=0

C12,2

(

p2(α+1)n+ 5 · p
2(α+1) − 1

8

)

qn ≡ ψ(q)ψ(q4) (mod 3),

which is the α + 1 case of (6.4.1). 2

Theorem 6.4.2. If p is a prime such that p ≡ 3 (mod 4), then for any non-negative

integer α, we have

∞
∑

n=0

C12,4

(

p2αn+
p2α − 1

8

)

qn ≡ ψ(q)ϕ(q2) (mod 3). (6.4.6)
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Proof. Setting k = 12 and i = 4 in (6.1.1), we have

∞
∑

n=0

C12,4(n)q
n =

(q12,−q4,−q8; q12)∞
(q; q)∞

,

which, by manipulation of the q-products, yields

∞
∑

n=0

C12,4(n)q
n =

(q12; q12)2∞(q8; q8)∞
(q; q)∞(q24; q24)∞(q4; q4)∞

. (6.4.7)

Taking congruent modulo 3 on both sides of the above and then employing

(q; q)3∞ ≡ (q3; q3)∞ (mod 3), we obtain

∞
∑

n=0

C12,4(n)q
n ≡ (q2; q2)2∞

(q; q)∞

(q4; q4)5∞
(q2; q2)2∞(q8; q8)2∞

≡ ψ(q)ϕ(q2) (mod 3),

which is the α = 0 case of (6.4.6). Now suppose that (6.4.6) holds for some α ≥ 0.

From [19, p. 49]), we recall that for any prime p,

ϕ(q) = ϕ(qp
2

) +

p−1
∑

r=0

qr
2

f(qp(p−2r), qp(p+2r)).

Now, substituting (2.2.1) and the above p-dissection of ϕ(q) in (6.4.6), we arrive at

∞
∑

n=0

C12,4

(

p2αn+
p2α − 1

8

)

qn ≡
[

p−3
2
∑

k=0

q
k2+k

2 f(q
p2+(2k+1)p

2 , q
p2−(2k+1)p

2 ) + q
p2−1

8 ψ(qp
2

)
]

×
[

ϕ(q2p
2

) +

p−1
∑

r=0

q2r
2

f(q2p(p−2r), q2p(p+2r))
]

(6.4.8)

Now consider the congruence

k2 + k

2
+ 2r2 ≡ p2 − 1

8
(mod p), (6.4.9)

where 0 ≤ k, r ≤ p− 1. Since the above congruence is equivalent to

(2k + 1)2 + (4r)2 ≡ 0 (mod p),
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and

(−1

p

)

= −1 as p ≡ 3 (mod 4), the only solution of (6.4.9) is k =
p− 1

2
and

r = 0. Therefore, extracting the terms involving qpn+
p2−1

8 from both sides of (6.4.8)

and replacing qp by q, we obtain

∞
∑

n=0

C12,4

(

p2α
(

pn+
p2 − 1

8

)

+
p2α − 1

8

)

qn ≡ ψ(qp)ϕ(q2p) (mod 3). (6.4.10)

Again, extracting the terms involving qpn from both sides of the above congruence

and replacing qp by q, we find that

∞
∑

n=0

C12,4

(

p2(α+1)n+
p2(α+1) − 1

8

)

qn ≡ ψ(q)ϕ(q2) (mod 3),

which is the α + 1 case of (6.4.6). 2

Theorem 6.4.3. If p is an odd prime, then for any non-negative integer α, we have

∞
∑

n=0

C12,4

(

p2αn+
p2α − 1

8

)

qn ≡ ψ(q) (mod 2). (6.4.11)

Proof. From (6.4.7), we have

∞
∑

n=0

C12,4(n)q
n ≡ (q4; q4)∞

(q; q)∞
≡ ψ(q) (mod 2),

which is clearly the α = 0 case of (6.4.11). Now suppose that (6.4.11) holds for

some α ≥ 0. Now using (2.2.1) in (6.4.11), extracting the terms involving qpn+
p2−1

8

from both sides of the above congruence and then replacing qp by q, we find that

∞
∑

n=0

C12,4

(

p2α
(

pn+
p2 − 1

8

)

+
p2α − 1

8

)

qn ≡ ψ(qp) (mod 2). (6.4.12)

Again extracting the terms involving qpn from both sides of the above congruence

and replacing qp by q, we obtain

∞
∑

n=0

C12,4

(

p2(α+1)n+
p2(α+1) − 1

8

)

qn ≡ ψ(q) (mod 2),

which is the α + 1 case of (6.4.11). 2



95

We now prove Theorems 6.1.5 – 6.1.7.

Proofs of Theorems 6.1.5 – 6.1.7. Comparing the coefficients of qpn+j, 1 ≤ j ≤ p−1,

on both sides of (6.4.5), we arrive at (6.1.10). Next, comparing the coefficients of

qpn+j, 1 ≤ j ≤ p − 1, from both sides of (6.4.10), we obtain (6.1.11). Finally,

comparing the coefficients of qpn+j, 1 ≤ j ≤ p − 1, on both sides of (6.4.12), we

arrive at (6.1.12). 2

6.5 Congruences modulo 10 for C15,5(n)

Theorem 6.5.1. If p ≥ 5 is a prime, then for any non-negative integer α, we have

∞
∑

n=0

C15,5

(

100p2αn + 25 · p
2α − 1

6
+ 4

)

qn ≡ (q; q)∞ (mod 2). (6.5.1)

Proof. Setting k = 15 and i = 5 in (6.1.1), we have

∞
∑

n=0

C15,5(n)q
n =

f(q5, q10)

(q; q)∞

= f(q5, q10)

∞
∑

n=0

p(n)qn,

where p(n) is the ordinary partition function. Extracting the terms containing q5n+4

from the above congruence, we obtain

∞
∑

n=0

C15,5(5n+ 4)qn = f(q, q2)

∞
∑

n=0

p(5n+ 4)qn.

In view of (1.3.1) and (4.2.4), the above becomes

∞
∑

n=0

C15,5(5n+ 4)qn = 5
ϕ(−q3)(q5; q5)5∞
χ(−q)(q; q)6∞

.

Under modulo 2, we have

∞
∑

n=0

C15,5(5n+ 4)qn ≡ (q5; q5)5∞
(q; q)5∞

≡ (q20; q20)∞(q5; q5)∞
(q4; q4)∞(q; q)∞

(mod 2). (6.5.2)



96

Now, from Hirschhorn and Sellers’ paper [41], we have

(q5; q5)∞
(q; q)∞

=
(q8; q8)∞(q20; q20)2∞
(q2; q2)2∞(q40; q40)∞

+ q
(q4; q4)3∞(q10; q10)∞(q40; q40)∞
(q2; q2)3∞(q8; q8)∞(q20; q20)∞

.

Using this in (6.5.2), we obtain

∞
∑

n=0

C15,5(5n+ 4)qn ≡ (q20; q20)∞
(q4; q4)∞

((q8; q8)∞(q20; q20)2∞
(q2; q2)2∞(q40; q40)∞

+ q
(q4; q4)3∞(q10; q10)∞(q40; q40)∞
(q2; q2)3∞(q8; q8)∞(q20; q20)∞

)

≡ (q20; q20)∞
(q4; q4)∞

(

(q4; q4)∞ + q
(q10; q10)3∞
(q2; q2)∞

)

(mod 2).

Extracting the terms containing q20n from the above congruence and replacing q20

by q, we find that

∞
∑

n=0

C15,5(100n+ 4)qn ≡ (q; q)∞ (mod 2).

Hence, (6.5.1) is true for α = 0. Now suppose that (6.5.1) is true for some α ≥ 0,

i.e.,
∞
∑

n=0

C15,5

(

100p2αn+ 25 · p
2α − 1

6
+ 4

)

qn ≡ (q; q)∞ (mod 2).

Using the p-dissection of (q; q)∞ from (2.2.2) in the above, extracting the terms

containing qp
2n+ p2−1

24 from both sides, and then replacing qp by q, we obtain

∞
∑

n=0

C15,5

(

100p2α(p2n+
p2 − 1

24
) + 25 · p

2α − 1

6
+ 4

)

qn ≡ (q; q)∞

or

∞
∑

n=0

C15,5

(

100p2α+2n+ 25 · p
2α+2 − 1

6
+ 4

)

qn ≡ (q; q)∞ (mod 2).

Therefore, (6.5.1) is true for α+ 1 if it is true for some α ≥ 0. So, by mathematical

induction, we complete the proof of (6.5.1). 2

Proof of Theorem 6.1.8. From (6.5.1) and (2.2.2) and also employing (1.3.2), we

easily arrive at (6.1.13). 2
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6.6 Congruences modulo 2 for C24,8(n) and C48,16(n)

Theorem 6.6.1. If p is a prime such that p ≡ −1 (mod 6), then for any non-

negative integer α, we have

∞
∑

n=0

C24,8

(

p2αn+ 7 · p
2α − 1

24

)

qn ≡ ψ(q)(q4; q4)∞ (mod 2). (6.6.1)

Proof. Setting k = 24 and i = 8 in (6.1.1), we have

∞
∑

n=0

C24,8(n)q
n =

(q24,−q8,−q16; q24)∞
(q; q)∞

.

Thus

∞
∑

n=0

C24,8(n)q
n ≡ ψ(q)(q4; q4)∞ (mod 2),

which is the α = 0 case of (6.6.1). Now suppose that (6.6.1) holds for some α ≥ 0.

With the aid of (2.2.2) and (2.2.1), we rewrite (6.6.1) as

∞
∑

n=0

C24,8

(

p2αn + 7 · p
2α − 1

24

)

qn

≡
[

p−3
2
∑

k=0

q
k2+k

2 f(q
p2+(2k+1)p

2 , q
p2−(2k+1)p

2 ) + q
p2−1

8 ψ(qp
2

)
]

×
[

p−1
2
∑

m=− p−1
2

m6=±p−1
6

(−1)mq4·
3m2+m

2 f(−q4·
3p2+(6m+1)p

2 ,−q4·
3p2−(6m+1)p

2 )

+ (−1)
±p−1

6 q4·
p2−1
24 f(−q4p2)

]

(mod 2). (6.6.2)

Now consider the congruence

k2 + k

2
+ 4 · 3m

2 +m

2
≡ 7(p2 − 1)

24
, (6.6.3)

where 0 ≤ k ≤ p− 1 and −(p− 1)/2 ≤ m ≤ (p− 1)/2. Since the above congruence

is equivalent to

3(2k + 1)2 + (12m+ 2)2 ≡ 0 (mod p),
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and

(−3

p

)

= −1 as p ≡ −1 (mod 6), the only one solution of (6.6.3) is k =
p− 1

2

and m =
p− 1

6
. Therefore, extracting the terms involving qpn+7 p2−1

24 from both sides

of (6.6.2) and then replacing qp by q, we find that

∞
∑

n=0

C24,8

(

p2α
(

pn+ 7 · p
2 − 1

24

)

+ 7 · p
2α − 1

24

)

qn ≡ ψ(qp)(q4p; q4p)∞ (mod 2).

(6.6.4)

Extracting the terms containing qpn from both sides of the above and then replacing

qp by q, we arrive at

∞
∑

n=0

C24,8

(

p2(α+1)n + 7 · p
2(α+1) − 1

24

)

qn ≡ ψ(q)(q4; q4)∞ (mod 2),

which is the α + 1 case of (6.6.1). 2

We now prove Theorem 6.1.9.

Proof of Theorem 6.1.9. Comparing the coefficients of qpn+j, 1 ≤ j ≤ p − 1, from

both sides of(6.6.4), we immediately arrive at (6.1.14). 2

Theorem 6.6.2. If p is a prime such that p ≡ 3 (mod 4), then for any non-negative

integer α, we have

∞
∑

n=0

C48,16

(

p2αn + 5 · p
2α − 1

8

)

qn ≡ ψ(q)ψ(q4) (mod 2).

Proof. Setting k = 48 and i = 16 in (6.1.1), we have

∞
∑

n=0

C48,16(n)q
n =

(q48,−q16,−q32; q24)∞
(q; q)∞

.

Therefore,

∞
∑

n=0

C48,16(n)q
n ≡ ψ(q)ψ(q4) (mod 2).

The rest of the proof is similar to that of Theorem 6.4.1, so we omit the proof. 2

Theorem 6.1.10 is an easy consequence of an intermediate step of the proof of

the above theorem. So we omit the proof.


