Chapter 6

New congruences for Andrews’
singular overpartitions

6.1 Introduction

Recall from Section 1.7 of the introductory chapter that if C},;(n) denotes the
number of overpartitions of n in which no part is divisible by k& and only parts

= +i (mod k) may be overlined, then

o0 k i _ k—i. k
— (¢:q)
where (a1, as, ..., 0% @)oo = (015 ¢)00(@2; @)oo+ * (Ak; q)oo-

In this chapter, we prove several new congruences for C},;(n) for some k and i
by employing Ramanujan’s theta functions and p-dissections of ¢g-products.
In Section 6.2, we prove the following congruences for C;(n) modulo 4, 18 and

36.

Theorem 6.1.1. Ifp > 5 is a prime and 1 < j < p—1, then for any non-negative

integers v and n, we have

Cy1 (24p* D (pn + j) + p*@*)) =0 (mod 4). (6.1.2)
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Theorem 6.1.2. For any non-negative integer n, we have

C31 (480 +12) = 0 (mod 18), (6.1.3)
Cs1(12n4+7) =0 (mod 36), (6.1.4)
C3, (12n +11) = 0 (mod 36), (6.1.5)
C3, (24n +14) = 0 (mod 36) (6.1.6)
and
C3, (24n +22) = 0 (mod 36). (6.1.7)

In Section 6.3, we find the following infinite families of congruences modulo 2

and 4 for Cgs(n).

Theorem 6.1.3. If p is a prime such that p =3 (mod 4) and 1 < j <p—1, then
for all non-negative integers o and n, we have

5(p2(a+1) . 1)

68,2 (PQO[H(P”/ + j) + o

) =0 (mod 2). (6.1.8)

Theorem 6.1.4. If p is a prime such that p = 13, 17, 19, or 23 (mod 24) and
1 <j<p-—1, then for any non-negative integers o and n, we have

5(p2(a+1) _ 1)

68,2 (PQO[H(P”/ +7) + o1

) =0 (mod 4). (6.1.9)

The following congruences modulo 2 and 3 for Cj52(n) and C5.4(n), respectively,

are proved in Section 6.4.

Theorem 6.1.5. If p is a prime such that p =3 (mod 4) and 1 < j <p—1, then
for all non-negative integers o and n, we have

p2(a+1) -1

612,2 (pmﬂ(pn +J)+5- 3

) =0 (mod 3). (6.1.10)
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Theorem 6.1.6. If p is a prime such that p =3 (mod 4) and 1 < j <p—1, then
for any non-negative integers o and n, we have

2a_1

8

Claa (p%‘(pn +)+L ) =0 (mod 3). (6.1.11)

Theorem 6.1.7. If p is an odd prime and 1 < 57 < p—1, then for any non-negative
integers a and n, we have

prlat) 1

612,4 (p2a+1(pn +7)+ 3

) =0 (mod 2). (6.1.12)

In the penultimate section of this chapter, i.e., Section 6.5, we prove the following

infinite family of congruences modulo 10 for C55(n).

Theorem 6.1.8. For any primep > 5 and 1 < j < p—1, then for any non-negative

integers v and n, we have

2042

6

P

Ciss (100p2a+1(pn + j)n + 25 - + 4) ¢" =0 (mod 10). (6.1.13)

In the final section, we prove the following parity results for Coyg(n) and Cyg 16(n).

Theorem 6.1.9. If p is a prime such that p = —1 (mod 6) and 1 < j <p—1, then

for any non-negative integers o and n, we have

2c

_ 1
Coug (ph“(pnﬂ)w-p 5 ) =0 (mod 2). (6.1.14)

Theorem 6.1.10. If p is a prime such that p =3 (mod 4) and 1 < j <p—1, then

for any non-negative integers o and n, we have

2

el . —1
Clus 6 (phﬂ(pn +7)+5- p 3 ) =0 (mod 2).

It is worthwhile to mention that, in view of (1.3.2) — (1.3.4) and (6.1.1), for any
positive integers ¢ and m with £ > m, we have
610375,%(571 + 4) =0 (IIlOd 5),

614@77,71(771 + 5) =0 (mod 7),
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and

Car11m(11n 4 6) = 0 (mod 11),

respectively.

The results of this chapter, except Theorem 6.1.8, appeared in [4].

6.2 Congruences modulo 4, 18 and 36 for C3;(n)

Theorem 6.2.1. We have

C31(3n)¢" = ¢°(—q) (mod 9), (6.2.1)

i)

> " Csa(3n +1)g" = 2(q:9)% (6% ¢*)% (mod 9), (6.2.2)
n=0
and
s 2. 2)10
> Cs1(3n+2)¢" = S D 04 9) (6.2.3)

(¢ 9)%

i
o

Proof. Setting k =3 and i = 1 in (6.1.1), we have

o 3 2. .3

-~ n q, =4, =479 )
E 03,1(n)q = ( - ) )
— (¢; @)

which can be rewritten as

iﬁg,l(n)q" _vld) (6.2.4)

e(—q)
From Baruah and Ojha’s paper [17], we recall that

1 ¢(=")

o(—q) ¢ (—¢) {1+ 2qu(q’) + 4q°w* (@)},

(43 9)(q% ¢°)2 . .
>, Using the above in (6.2.4), we have
(% ¢*) oo (0% )

Z 63,1 (n)g" =
n=0

where w(q) =

©*(—q")
©*(—q*)

{14 2qw(¢’) + 4¢°w*(¢*)}.
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Extracting the terms containing ¢®"*7, for j = 0, 1, 2, respectively, we find that

> Caal3n)g" = ig((__qq)), (6.2.5)
e v’ (—4%)
;%C 1(3n+1)¢" =2 (=0 w(q), (6.2.6)
and
263,1(?)% +2)q" = 4233((15)) w?(q). (6.2.7)

i
o

With the aid of (5.2.1) for p = 3, it can be shown that
?’(=q) = ¢°(—¢") (mod 9).

Employing the above in (6.2.5), we arrive at (6.2.1).
Identities (6.2.2) and (6.2.3) can be proved in a similar way. O

Remark 6.2.2. Since p(q) = p(—¢q) =1 (mod 2), it follows from (6.2.4) that
C31(n) =0 (mod 2) forn>1, (6.2.8)

which is Theorem 2.9 in [39].

Furthermore, from (6.2.7), we have
C31(3n+2)=0 (mod 4) for n > 1. (6.2.9)
Theorem 6.2.3. If p > 5 is a prime, then for any non-negative integer o, we have

> Csa (24p™n + ™) ¢" = 2(¢; ¢)o (mod 4). (6.2.10)
n=0

Proof. From (6.2.6), it follows that

i (34 1)g 2% (mod 4). (6.2.11)
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But it is known that (for example, see Hirschhorn and Roselin [38])

(5 6%)3,  (a% )2 (% q) N (¢ ¢")2,
(D (¢%¢*)% (0% ¢)x (4% %)

Employing the above identity in (6.2.11) and then simplifying, we find that

i 1(3n+ 1)g" ((qs; ¢%)oo + qw) (mod 4). (6.2.12)

— (¢% %)

Extracting the terms containing ¢®" from both sides of the above congruence and

then replacing ¢® by ¢, we obtain

oo

Z 1(24n 4+ 1)¢" = 2(¢; @) (mod 4).

n=0
which is the @ = 0 case of (6.2.10). Now suppose (6.2.10) holds for some a > 0.
Using (2.2.2) in (6.2.10) and extracting the terms containing qp”Jr = from both
sides of the identity and then replacing ¢” by ¢, we find that

2

- —1
Z Cs (24132“ (pn + 2 2 ) +p2a) " =2(¢"; ") (mod 4). (6.2.13)
n=0

Extracting the terms containing ¢P" from both sides of the above congruence and
replacing ¢P by q again, we arrive at

o0

> Caa (24704 p" D) ¢ = 2(g: ) (mod 4),
n=0

which is the o + 1 case of (6.2.10). O

We now prove Theorem 6.1.1 and Theorem 6.1.2.

Proof of Theorem 6.1.1. Comparing the coefficients of ¢?"*7, for 1 < j < p—1, from
both sides of (6.2.13), we easily arrive (6.1.2). O

Proof of Theorem 6.1.2. Recall from [19, Entries 25(i) and (ii), p. 40] that

o(—q) = o(q") — 2q(¢%). (6.2.14)
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Employing the above identity in (6.2.1), extracting the terms containing ¢** from

both sides, and then replacing ¢* by ¢, we find that

[o.o]

> Csa(12n)q" = ¢*(q) + 69°(9)v*(¢%) (mod 9). (6.2.15)

n=0

Again, recall from [19, Entries 25(v) and (vi), p. 40] that

©*(q) = ©* (%) + 4q¥* (). (6.2.16)

Employing the above identity in (6.2.15), we find that
Z 1(12n)¢" = ¢°(¢%) + 48¢°* ()¢ (¢") + 64¢°¢°(¢")
+ 24 (¢*)¢*(¢") (mod 9),

where we have also used the trivial identity ¢(q)¥(¢*) = ¥*(q). Extracting the terms

involving ¢>"*! from both sides of the above and then replacing ¢* by ¢, we obtain

o0

> Cs.(24n 4 12)¢" = 64¢0°(¢%) (mod 9),

n=0

which readily implies that
C31(48n +12) =0 (mod 9).

Now (6.1.3) follows from the above congruence and (6.2.8).
Again, replacing ¢ by —¢ in (6.2.16), transforming the theta functions into ¢-
products, and then simplifying, we find that

4 R U U
(7:9)> = (6% ¢*)%.(¢% ¢*)% 4q (g5 Y%

which is a 2-dissection of (¢; ¢)%,. Therefore, (6.2.2) can be expressed as

o 5 oo (q4.q4)10
E:o L(3n + 1)g 2(q,q)oo<(q P (6.2.17)
(¢ %)% (0% ¢*)a
e ) (mod 9). (6.2.18)
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Extracting the terms involving ¢?* from both sides of the above and then replacing
q* by ¢, we obtain
1(6n + 1)¢" = 2-——-2 (mod 9).
; (g% q")3

Comparing the coefficients of ¢! from both sides of the above congruence, we find

that
Cs1(12n+7) =0 (mod 9). (6.2.19)
On the other hand, comparing the coefficients of ¢*"*? and ¢*"*3, in turn, from
both sides of (6.2.12), we also have
Cs1(12n+7) =0 (mod 4) (6.2.20)
and
C31(12n +10) = 0 (mod 4). (6.2.21)

From (6.2.19) and (6.2.20), we readily arrive at (6.1.4).
Next, extracting the terms containing ¢***! from both sides of (6.2.17) and then

replacing ¢ by ¢, we find that

0 4 4., 4\4

Val n _ 4,9)560\49734 oo _
> Caa(n + 410" = —8 U < (41411 ) (mod 9),
n=0 ) o)

which, by (6.2.14), is

o0

3" Coa(6n + 40" = (4% 6" (2(a") — 2q0(g"))* (mod 9).

n=0
Comparing the coefficients of ¢**™® from both sides of the above congruence and
also using (6.2.21), we arrive at (6.1.7).

Finally, we turn to prove (6.1.5) and (6.1.6).

With the aid of (6.2.16) and the elementary identity ¢(—q)¢(q) = ¢*(—q?), we
have

1 ©*(q) 0%+ 4qv°(q)
0 (—q) 3 (—q)p*(q) e (—q?)
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from which it follows that

L (44D (4% 495 (0% ¢*)s
()% (%P L(e® )4 (¢ ¢*) 0

Employing the above in (6.2.3), we obtain

(6.2.22)

S (q*4")%
Z 1(3n + 2)q 4(q2'q2)4 @ ) +16q(q*; g2 (¢% ¢ (mod 9).
n=0 ’ ) i [e'e}

Another application of (6.2.22) in the above gives

— ~ (gt (¢%; %)L 2 (6% 6*)2 ("% 4",
2 Cunldn+ 2" =405 5 ((q4;q4)éé‘;(q16;q16)‘éo T )
+164(q*; ¢")2 (0% ¢%)a (mod 9).

Comparing the coefficients, in turn, of ¢*"*3 and ¢®"**, from both sides of the above
congruence and also using (6.2.9), we arrive at (6.1.5) and (6.1.6), respectively, to

finish the proof. O
Remark 6.2.4. From [19, Entries 30 (ii) and (iii), p. 46], we recall that

f(a,b) + f(—a, =b) = 2f(a®b, ab®), (6.2.23)
and

f(a,b) — f(—a,—b) = 2af (b/a,a’®) . (6.2.24)

Setting a = q and b = ¢* in the above two identities and with the aid of (6.1.1), it

can be easily shown that

C31(n) = 2C1a5(n) for all n > 1,
and

63,1@) = 2612,11@ — 1) forall n > 2.
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Therefore, the congruences for 53,1(77,) found in this section can be recast in terms
of C1a5(n) and Ci211(n). We also note from the above that
61275(77,) = 612711(77, — 1) fOT all n Z 2.

Furthermore, adding both (6.2.23) and (6.2.24) and then setting a = ¢' and

b=q"" for k > 2i > 1, it follows from (6.1.1) that

6]@71'(77/ + 1) = 64k,2i+k(n + 1) + 64]67]@,21'(77,) fO?“ all n 2 0.

6.3 Congruences modulo 2 and 4 for Cgs(n)

Theorem 6.3.1. Ifp is a prime such that p = 3 (mod 4), then for any non-negative

integer a, we have

Z? (pmn + %) 0" = (4 0)oe(4";¢")oo (mod 2). (6:3.1)

Proof. Setting k =8 and i = 2 in (6.1.1), we have

e O O e /0 . ') R U
;C&QWC] B (400 (G Do (6 Do0(0% 600 (6.32)

Since (¢;¢)% = (¢% ¢*)o (mod 2), we find that

S Cealn)” % = (65 0) (0" 4") (mod 2),

which is the o = 0 case of (6.3.1). Now suppose that (6.3.1) holds for some « > 0.



39

Substituting (2.2.2) in (6.3.1), we have

oo . 5(p2a _ 1)
C 2 n
nEO 8,2 (p n+ —on )¢

p—1
2 3624k 3p2+(6k+1)p 3p2—(6k+1)p tp—1 p2-1 2
E[ Y (D fl=q 7 =g 2 )+ (=1)7E ¢ f(—¢")
it
ki:ﬁ:p{:l
p—1
2 m 4'3m2+m 4.3p2+(6m+1)p 4.3p27(6m+1)p
X[ (=)™ "= f(—q >, —q )
=25
7'ézl:p(;l
ip
+ (1) g f (=) (mod 2).

(6.3.3)
Now consider the congruence

3k2—|—k+4 3m? +m 5p -5

(6.3.4)
where —(p — 1)/2 < k,m < (p — 1)/2. Since the above congruence is equivalent to

(6k +1)* + (12m + 2)* = 0 (mod p)

+p—1
and ( ) = —1 as p = 3 (mod 4), the only solution of (6.3.4) is k = m = p6 .
p
Therefore, extracting the terms containing qp”Jr 2r

® from both sides of (6.3.3) and
replacing ¢” by ¢, we obtain

ZC ( 2a+1 ), 5(p2a+2 -

7 1))q = (¢"1¢")oo(¢"; ¢")oo (mod 2).  (6.3.5)

Agam extracting the terms containing ¢?" from both sides of the above and replacing
q" by ¢, we find that

ZCS (20 20722 0)

24
which is the o + 1 case of (6.3.1).

(¢;9)oo (4" ") o (mod 2),

O
Theorem 6.3.2. If p is a prime such that p = 13, 17, 19, or 23 (mod 24), then

for any non-negative integer o, we have

2 G (pza” i %) 0" = (1) (q)(¢% ¢)oe (mod 4).
n=0

(6.3.6)
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Proof. Since (¢%;¢*)% = (¢; q)L, (mod 4), from (6.3.2), we have

> Csa(n)d" % Y(9)(¢%:¢%)oo (mod 4),

which is the o = 0 case of (6.3.6). Now suppose that (6.3.6) holds for some « > 0.
With the aid of (2.2.2) and (2.2.1), we rewrite (6.3.6) as

e 50 1)
O 200 n
2 8,2 (p n -+ 24 q

£p-1 = m24m p2+@m+lp  p?—(@m+D)p ~1 2
i [Zq O [ Y K AL Ui

3k2 +k 3p2 4 (6k+1)p 3p2—(6k+1)p
[ Z YT (=T =T )
k=— pg
e
2_
+ (=) 2 f(—g®)| (mod 4). (6.3.7)

Now we consider the congruence

2 2
5 m*+m _ 5(p* — 1)
k™ +k + 5 = o1

(6.3.8)

where —(p—1)/2 <k <(p—1)/2 and 0 <m < p— 1. Since the above congruence

is equivalent to
(12k +2)* + 6(2m + 1)* = 0 (mod p)

—6
and (—) = —lasp =13, 17, 19, or 23(mod 24), the only solution of (6.3.8)
p
+p—1 -1
is k= p6 and m = ])T So, extracting the terms containing qp”Jr >0 from

both sides of (6.3.7) and then replacing ¢” by ¢, we obtain

Z@ ( 2041, %) " = (—1)(““)(“6_1)w(qp)(q2p; %) o (mod 4).
h (6.3.9)

Extracting the terms containing ¢”" from both sides of the above and then replacing

q" by ¢, we find that

ZC ( o W) ¢" = (1) Y () (% ) (mod 4),
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which is the o + 1 case of (6.3.6). O

We are now in a position to prove Theorem 6.1.3 and Theorem 6.1.4.

Proofs of Theorems 6.1.3 and 6.1.4. Comparing the coefficients of ¢gP"*7, for 1 < j <
p—1, from both sides of (6.3.5), we arrive at (6.1.8). On the other hand, comparing

the coefficients of ¢?"*7, 1 < j < p — 1 from both sides of (6.3.9), we obtain(6.1.9).
O

6.4 Congruences modulo 2 and 3 for 61272(71) and

612,4(71)

Theorem 6.4.1. If p is a prime such that p = 3 (mod 4), then for any non-negative

integer a, we have

> Chan (p%‘n +5.2 ag_ 1) ¢" = ¥(¢)v(¢") (mod 3). (6.4.1)
n=0

Proof. Setting k =12 and i = 2 in (6.1.1), we have

- (4%, =42, —4"% ¢
Craa(n)q" = -
Z (9

Manipulating the ¢g-products, with some additional aid from Euler’s identity

1
—q; @)oo = ,
a0 = )
we have
iéw B S ST P oY SR U1 )
—~ (69w ("% ¢") oo (0% ¢*) oo (0% %)

Taking congruence modulo 3 on both sides of the above and noting that (q; )2, =
(¢*:¢*) s (mod 3), we find that

5t = LLLLE ) ot
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which is clearly the a = 0 case of (6.4.1). Now suppose that (6.4.1) be true for some
a > 0. Substituting (2.2.1) in (6.4.1), we have

2c
ral o p —1 n
Ciao (p2n+5- 3 )q

3

1)

D

M|

K24k p2+(2k+D)p  p2—(2k+1)p p2-1 2 }

E[ q? flg 2 ¢ = )+q = ()
[

For 0 < k,m < p— 1, we now consider the congruence

(6.4.2)

R‘
w

m +m 4 P’ +@m+lp 4 p?—(2m+1)p
2

A )+q4~%¢(q4p2)}(mod3). (6.4.3)

k2+k+4_m2+m:5p2—5
2 2 o 8

(mod p), (6.4.4)
which is equivalent to

(2k 4+ 1)* + (4m +2)* = 0 (mod p).

—1 -1
Since (—) = —1 for p = 3 (mod 4), the only solution of (6.4.4) is k =m = pT
b

Therefore, extracting the terms involving qanr ® from both sides of (6.4.2) and

then replacing ¢” by ¢, we find that

> 2 200
> Chaa (p%‘ (pn+ o 3 5) +5. 2 2 1) ¢" = ¢(¢")¥(¢") (mod 3). (6.4.5)
n=0

Again extracting the terms involving ¢?” form both sides of the above and then

replacing ¢P by g, we obtain

) Pt _q . .
20122 n+5- s q" =¢(q)¥(q") (mod 3),

which is the o + 1 case of (6.4.1). O

Theorem 6.4.2. If p is a prime such that p = 3 (mod 4), then for any non-negative

integer o, we have

2512,4 (p%‘n 4 ang_ 1) ¢" = ¥(q)p(q®) (mod 3). (6.4.6)
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Proof. Setting k =12 and i = 4 in (6.1.1), we have

=" 4% 0"
(9o ’

which, by manipulation of the ¢g-products, yields

[e%e) . . (q12; (]12)go((]87 q8)<>o
ZCW(H)C] T (0@ P (05 e (6.4.7)

Taking congruent modulo 3 on both sides of the above and then employing

(¢:9)%, = (¢%;¢*) (mod 3), we obtain

iém 4(n)q" = (750 (250
’ T (69D (@562 (¢% %)%

= 1 (q)¢(q?) (mod 3),

which is the @ = 0 case of (6.4.6). Now suppose that (6.4.6) holds for some o > 0.

From [19, p. 49]), we recall that for any prime p,

p—1

e(q) = p(d”) + Z q’"Qf(qp(zof%)7 qp(erZr)).
r=0

Now, substituting (2.2.1) and the above p-dissection of ¢(q) in (6.4.6), we arrive at

p—3

> — 20 p2°‘ —1 n 2 E2+4k p2+(2k+1)p p2—(2k+1)p p2—1 p?
> Croa(pn+ q E[ ¢ fla = q¢ = )+as ¥ )]
n=0 k=0

8

p—1

2 7‘2 —ar T
% [@(q% )+ > (g, ))]
r=0

(6.4.8)

Now consider the congruence

k2+k+27n2:p2—
. =

1
(mod p), (6.4.9)
where 0 < k,r < p — 1. Since the above congruence is equivalent to

(2k +1)® + (4r)* = 0 (mod p),
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—1 -1
and (—) = —1 as p = 3 (mod 4), the only solution of (6.4.9) is k = b 5 and
b

r = 0. Therefore, extracting the terms involving qanr * from both sides of (6.4.8)

and replacing ¢” by ¢, we obtain

. 2_ 1 200 _ 1
2012,4 (an (pn +2 S ) +2 g ) q" = (") ¢(¢*) (mod 3).  (6.4.10)
n=0

Again, extracting the terms involving ¢” from both sides of the above congruence

and replacing ¢” by ¢, we find that

e o, pRetD -1 ,
Z ( @ n T) 7" = ¢(q)e(q”) (mod 3),
which is the o + 1 case of (6.4.6). O

Theorem 6.4.3. If p is an odd prime, then for any non-negative integer o, we have

e 20
2612,4 (p2an + pTl) ¢" = ¥(q) (mod 2). (6.4.11)
n=0
Proof. From (6.4.7), we have
— (4" ¢")oc
C4 =~ = d
2 Claal o = V(@) (mod 2),

which is clearly the & = 0 case of (6.4.11). Now suppose that (6.4.11) holds for
2
some o > 0. Now using (2.2.1) in (6.4.11), extracting the terms involving qp”+pTl

from both sides of the above congruence and then replacing ¢P by ¢, we find that

S T (pw (pn Y i 1) i 1) = 0(@) (mod 2. (6412)
n=0

8 8

Again extracting the terms involving ¢ from both sides of the above congruence

and replacing ¢ by ¢, we obtain

o . 2(a+1) _ 1
> Ol (10 + E ) = ) (om0 2,

which is the oo + 1 case of (6.4.11). O
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We now prove Theorems 6.1.5 — 6.1.7.

Proofs of Theorems 6.1.5 — 6.1.7. Comparing the coefficients of ¢g?"™7, 1 < j < p—1,
on both sides of (6.4.5), we arrive at (6.1.10). Next, comparing the coefficients of
¢, 1 < j < p—1, from both sides of (6.4.10), we obtain (6.1.11). Finally,
comparing the coefficients of ¢?"™/, 1 < j < p — 1, on both sides of (6.4.12), we
arrive at (6.1.12). O

6.5 Congruences modulo 10 for Cy55(n)

Theorem 6.5.1. If p > 5 is a prime, then for any non-negative integer o, we have

2a0

> 1
> Ciss (100p20‘n +925.2 + 4) 7" = (¢;¢) (mod 2). (6.5.1)
n=0

Proof. Setting k =15 and i = 5 in (6.1.1), we have

- Val f(q57q10)
C TL
XZ:O 105 (¢; @)

o)

= 1(¢°,4")>_p(n)q",

n=0

where p(n) is the ordinary partition function. Extracting the terms containing ¢°* 4

from the above congruence, we obtain

> Cissn+4)q" = f(g.¢4°)>_p(5n +4)¢"
n=0

n=0
In view of (1.3.1) and (4.2.4), the above becomes

- o(—=*) (¢’ 4°)2,
2 Cuss(on+4)q" =5 X(—a)(¢; 9)S

n=0

Under modulo 2, we have

o 5. ,9\5
— (4 9)3

(0*5¢*) o0 (0% ¢°) oo

(0% 4%) oo (05 @)oo

Il
—~
=
o
o
N/

(6.5.2)
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Now, from Hirschhorn and Sellers’ paper [41], we have
(0% 0°)oo _ (¢%0%)oc(d™5 4*)% +q(q 101)%(0"% 4")o0 (4% ¢*) o0
(00 (¢%¢%)3%(0"¢") (0% 4%)3.(0% %) (6% ¢*°) o

Using this in (6.5.2), we obtain

(6*;¢*) oo <(q8' ¢*)oo (@ )2

(7% ¢ \(¢? Q) (4% ¢%) s

(0% 9)3.(¢"; 4" (" ¢ )oo)

(4% ¢%)3.(a% q) (4% ¢%)

m ((q4;q )oo —}-qw) (mod 2).

(0% 4" (4% 4%

20n from the above congruence and replacing ¢

61575(571 + 4)qn =

WK

S
I
o

Extracting the terms containing ¢

by ¢, we find that

o0

> Cis5(100n + 4)¢" = (¢; ¢)se (mod 2).

n=0
Hence, (6.5.1) is true for &« = 0. Now suppose that (6.5.1) is true for some o > 0,

ie.,
200

Y Cuss (100p2°‘n t925. 2

n=0

Ly 4) 7" = (¢;¢)o (mod 2).

Using the p-dissection of (¢;q)s from (2.2.2) in the above, extracting the terms

2_
containing qp?”*pTl1 from both sides, and then replacing ¢” by ¢, we obtain

. 2_1 200 q
> Ciss (100292‘”(1)2” + 2 94 )+25. 2 et 4) 7" = (40
n=0
or
>© p2a+2 1
Z Ciss (100P2a+2n +25- 6 + 4) 7" = (¢; @)oo (mod 2).
n=0

Therefore, (6.5.1) is true for o + 1 if it is true for some o > 0. So, by mathematical

induction, we complete the proof of (6.5.1). O

Proof of Theorem 6.1.8. From (6.5.1) and (2.2.2) and also employing (1.3.2), we

easily arrive at (6.1.13). O
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6.6 Congruences modulo 2 for Cyy5(n) and Cyg16(n)

Theorem 6.6.1. If p is a prime such that p = —1 (mod 6), then for any non-

negative integer o, we have

x© an
Z 024,8 (ann + 7-
n=0

24 ) ¢" = ¥(0)(¢"¢") (mod 2). (6.6.1)

Proof. Setting k = 24 and i = 8 in (6.1.1), we have

0 24 8 16. ,24
- n qg,—q,—q;q [e'e)
E 024,8(n)q = ( ; ) .
o (¢ 4)oo
Thus

Z? 24,8( = ¥(q)(¢"; ¢") (mod 2),

which is the a = 0 case of (6.6.1). Now suppose that (6.6.1) holds for some o > 0
With the aid of (2.2.2) and (2.2.1), we rewrite (6.6.1) as

. 20 1
Z Cosg (pzan +7- b ) q"

— 24
p—3
g2 24(2ktlp  pP-(2kt1) 2
E[ qk;qup+22+1p7qp 22+1p)+qp811/)(qp2)]
k=0
p—1
2 m 4. 3m2tm 4.30°+(6m+1)p 4.30°=(6m+1)p
[N (gt g gt
m——_p=1
#i%_l
_ 2_
+(~1) f(—q4p2)] (mod 2). (6.6.2)
Now consider the congruence
k*+k 3m*+m _ T(p*—1)
4- = 6.6.3
2 * 2 24 ( )

where 0 <k <p—1and —(p—1)/2 <m < (p—1)/2. Since the above congruence
is equivalent to

3(2k +1)* 4+ (12m +2)* = 0 (mod p),
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and (—) = —1 as p= —1 (mod 6), the only one solution of (6.6.3) is k = pT
p

_ 2_
and m = pT Therefore, extracting the terms involving qp””pTll from both sides

of (6.6.2) and then replacing ¢? by ¢, we find that

oy 20 P -1 pr =1\ ip. 4
d Cous (™ (pn+7- sr ) T e )4 = 1(¢")(¢"; ¢™) s (mod 2).
n=0

(6.6.4)

Extracting the terms containing ¢?" from both sides of the above and then replacing

g’ by q, we arrive at

— 2(a+1) prett —1 n 4, 4
2024,8 p n+7'T " =Y(q)(¢";¢")oo (mod 2),
n=0

which is the o + 1 case of (6.6.1). O

We now prove Theorem 6.1.9.

Proof of Theorem 6.1.9. Comparing the coefficients of ¢?"*7, 1 < j < p — 1, from
both sides of(6.6.4), we immediately arrive at (6.1.14). O

Theorem 6.6.2. If p is a prime such that p = 3 (mod 4), then for any non-negative

integer a, we have

o 200
S oo (p% 5.7 1) 0" = ¥()(q") (mod 2).

n=0

Proof. Setting k = 48 and i = 16 in (6.1.1), we have

00 48 16 32
-~ q ,—q ,—q;
Y " Cusas(n)g" = (

q*)

o0

(45 @)oo

Therefore,

> Cusas(n)g” = ¥(g)¢(g") (mod 2).

The rest of the proof is similar to that of Theorem 6.4.1, so we omit the proof. O

Theorem 6.1.10 is an easy consequence of an intermediate step of the proof of

the above theorem. So we omit the proof.



