Bibliography

[1] Ahmed, Z. \& Baruah, N.D. New congruences for ℓ-regular partitions for $\ell \in\{5,6,7,49\}$, Ramanujan J., to appear.
[2] Ahmed, Z., Baruah, N.D. \& Dastidar, M.G. New congruences modulo 5 for the number of 2-color partitions, J. Number Theory 157, 184-198, 2015.
[3] Ahmed, Z. \& Baruah, N.D. Parity results for broken 5-diamond, 7-diamond and 11-diamond partitions, Int. J. Number Theory 11, 527-542, 2015.
[4] Ahmed, Z. \& Baruah, N.D. New congruences for Andrews' singular overpartitions, Int. J. Number Theory 11, 2247-2264, 2015.
[5] Andrews, G.E. Singular overpartitions, Int. J. Number Theory 11, 1523-1533, 2015.
[6] Andrews, G.E. \& Berndt, B.C. Ramanujan's Lost Notebooks, Part I, Springer, New York, 2005.
[7] Andrews, G.E., Paule, P. \& Riese, A. MacMahon's partition analysis VIII: plane partition diamonds, Adv. Appl. Math. 27, 231-242, 2001.
[8] Andrews, G.E. \& Paule, P. MacMahon's partition analysis XI: broken diamonds and modular forms, Acta Arith. 126, 281-294, 2007.
[9] Bailey, D.F. Two p^{3} variations of Lucas' Theorem, J. Number Theory 35, 208215, 1990.
[10] Bailey, D.F. Some binomial coefficient congruences, Appl. Math. Lett. 4, 1-5, 1991.
[11] Baruah, N.D. \& Ahmed, Z. Congruences modulo p^{2} and p^{3} for k dots bracelet partitions with $k=m p^{s}$, J. Number Theory 151, 129-146, 2015.
[12] Baruah, N.D. \& Berndt, B.C. Partition identities and Ramanujan's modular equations, J. Combin. Theory Ser. A 114, 1024-1045, 2007.
[13] Baruah, N.D. \& Das, K. Parity results for 7-regular and 23-regular partitions, Int. J. Number Theory 11, 2221-2238, 2015.
[14] Baruah, N.D. \& Nath, K. Two quotients of theta functions and arithmetic identities for 3-cores, in The Legacy of Srinivasa Ramanuajan, B.C. Berndt and D. Prasad (eds.), RMS Lecture Notes Series, Ramanujan Mathematical Society, 20, 99-110, 2013.
[15] Baruah, N.D. \& Nath, K. Some results on 3-cores, Proc. Amer. Math. Soc. 142, 441-448, 2014.
[16] Baruah, N.D. \& Ojah, K.K. Analogues of Ramanujans partition identities and congruences arising from his theta functions and modular equations, Ramanujan J. 28, 385-407, 2012.
[17] Baruah, N.D. \& Ojah, K.K. Some congruences deducible from Ramanujan's cubic continued fraction, Int. J. Number Theory 7, 1331-1343, 2011.
[18] Baruah, N.D. \& Sarmah, B.K. Identities and congruences for the general partition and Ramanujan's tau function, Indian J. Pure Appl. Math. 44, 643-671, 2013
[19] Berndt, B.C. Ramanujan's Notebooks, Part III, Springer, New York, 1991.
[20] Berndt, B.C. Number Theory in the Spirit of Ramanujan, American Mathematical Society, Providence, RI, 2006.
[21] Berndt, B.C. \& Ono, K. Ramanujan's unpublished manuscript on the partition and tau functions with proofs and commentary, Sem. Lotharingien de Combinatorie 42, 63 pp., 1999; in The Andrews Festschrift, D. Foata and G.-N. Han, eds., Springer-Verlag, Berlin (2001) 39-110.
[22] Bruinier, J.H., Folsom, A., Kent, Z.A. \& Ono, K. Recent work on the partition function, The Legacy of Srinivasa Ramanuajan, B.C. Berndt and D. Prasad (eds.), RMS Lecture Notes Series, Ramanujan Mathematical Society, 20, 139151, 2013.
[23] Carlson, R. \& Webb, J.J. Infinite families of congruences for k-regular partitions, Ramanujan J. 33, 329-337, 2014.
[24] Chan, S.H. Some congruences for Andrews-Paule's broken 2-diamond partitions, Discrete Math. 308, 5735-5741, 2008.
[25] Chan, H.C. Ramanujans cubic continued fraction and a generalization of his "Most beautiful identity", Int. J. Number Theory 6, 673-680, 2010.
[26] Chen, S.C., Hirschhorn, M.D. \& Sellers, J.A. Arithmatic properties of Andrews' singular overpartitions, Int. J. Number Theory 11, 1463-1476, 2015.
[27] Chen, W.Y.C. \& Lin, B.L.S. Congruences for the number of cubic partitions derived from modular forms, arXiv:0910.1263v1 [math.NT] 7 Oct 2009.
[28] Chen W.Y.C., Fan A.R.B. \& Yu R.T. Ramanujan-type congruences for broken 2-diamond partitions modulo 3, Sci. China Math. 57, 1553-1560, 2014.
[29] Cui, S.P. \& Gu, N.S.S. Congruences for k dots bracelet partition functions, Int. J. Number Theory 9, 1885-1894, 2013.
[30] Cui, S.P. \& Gu, N.S.S. Congruences for broken 3-diamond and 7 dots bracelet partitions, Ramanujan J. 35, 165-178, 2014.
[31] Cui, S.P. \& Gu, N.S.S. Congruences for 9-regular partitions modulo 3, Ramanujan J. 38. 503-512, 2015.
[32] Cui, S.P. \& Gu, N.S.S. Arithmetic properties of ℓ-regular partitions, Adv. Appl. Math. 51, 507-523, 2013.
[33] Dandurand, B. \& Penniston, D. ℓ-divisibility of ℓ-regular partition functions, Ramanujan J. 19, 63-70, 2009.
[34] Fu, S. Combinatorial proof of one congruence for the broken 1-diamond partition and a generalization, Int. J. Number Theory 7, 133-144, 2011.
[35] Furcy, D. \& Penniston, D. Congruences for ℓ-regular partitions modulo 3, Ramanujan J. 27, 101-108, 2012.
[36] Garvan, F., Kim, D. \& Stanton, D. Cranks and t-cores, Invent. Math. 101, 1-17, 1990.
[37] Gugg, C. Modular equations for cubes of the Rogers-Ramanujan and Ramanu-jan-Göllnitz-Gordon functions and their associated continued fractions, J. Number Theory 132, 1519 - 1553, 2012.
[38] Hirschhorn, M.D. \& Roselin On 2-, 3-, 4-, and 6-dissections of the Ramanujan's cubic continued fraction and its reciprocal, in Ramanujan Rediscovered, N.D. Baruah, B.C. Berndt, S. Cooper, T. Huber, M. Schlosser (eds.), RMS Lecture Note Series, 14, 125-138, 2009.
[39] Hirschhorn, M.D. \& Sellers,J.A. On recent congruence results of Andrews and Paule, Bull. Aust. Math. Soc. 75, 121-126, 2007.
[40] Hirschhorn, M.D. \& Sellers, J.A. Elementary proofs of various facts about 3cores, Bull. Aust. Math. Soc. 79, 507-512, 2009.
[41] Hirschhorn, M.D. \& Sellers, J.A. Elementary proofs of parity results for 5regular partitions, Bull. Aus. Math. Soc. 81, 58-63, 2010.
[42] Hou, Q.H., Sun, L.H. \& Zhang, L. Quadratic forms and congruences for ℓ regular partitions modulo 3, 5 and 7, Adv. Appl. Math. 70, 32-44, 2015.
[43] Jameson, M. Congruences for broken k-diamond partitions, Ann. Comb. 17, 333-338, 2013.
[44] Lin, B.L.S., Malik, A. \& Wang, A.Y.Z. Extensive parity analysis of broken 5-diamond partitions, Int. J. Number Theory to appear.
[45] Lin, B.L.S. Elementary proofs of parity results for broken 3-diamond partitions, J. Number Theory 135, 1-7, 2014.
[46] Lin, B.L.S. Arithmetic of the 7-regular bipartition function modulo 3, Ramanujan J. 37, 469-478, 2015.
[47] Lin, B.L.S. An infinite family of congruences modulo 3 for 13-regular bipartitions, Ramanujan J. DOI 10.1007/s11139-014-9610-7, 2015.
[48] Lin, B.L.S. \& Wang A.Y.Z. Generalisation of keiths conjecture on 9-regular partitions and 3-cores, Bull. Aust. Math. Soc. DOI 10.1017/S0004972714000343, 2014.
[49] MacMahon, P.A. Combinatory Analysis, 2 vols., Cambridge University Press, Cambridge, 1915-1916; Reprinted by Chelsea, New York, 1960.
[50] Mortenson, E. On the broken 1-diamond partition, Int. J. Number Theory 4, 199-218, 2008.
[51] Paule P. \& Radu, S. Infinite families of strange partition congruences for broken 2-diamonds, Ramanujan J. 23, 409-416, 2010.
[52] Radu, S. \& Sellers, J.A. An extensive analysis of the parity of broken 3-diamond partitions, J. Number Theory 133, 3703-3716, 2013.
[53] Radu, S. \& Sellers, J.A. Parity results for broken k-diamond partitions and $(2 k+1)$-cores, Acta Arith. 146, 43-52, 2011.
[54] Radu, S. \& Sellers, J.A. Congruences modulo squares of primes for Fu's k dots bracelet partitions, Int. J. Number Theory 9, 939-943, 2013.
[55] Wang Y. More parity results for broken 8-diamond partitions, Ramanujan J. DOI 10.1007/s11139-014-9660-x, 2015.
[56] Webb, J.J. Arithmetic of the 13-regular partition function modulo 3, Ramanujan J. 25, 49-56, 2011.
[57] Xia, E.X.W. \& Yao, O.X.M. Parity results for 9 regular partitions, Ramanujan J. 34, 109-117, 2014.
[58] Xia, E.X.W. Infinite families of congruences modulo 7 for broken 3-diamond partitions, Ramanujan J. DOI 10.1007/s11139-015-9692-x, 2015.
[59] Xia, E.X.W. \& Yao, O.X.M. Congruences modulo powers of 2 for Fu's 5 dots bracele partitions, Bull. Aust. Math. Soc. 89, 360-372, 2014.
[60] Xiong, X. Two congruences involving Andrews-Paule's broken 3-diamond partitions and 5-diamond partitions, Proc. Japan Acad. Ser. A Math. Sci. 87, 65-68, 2011.
[61] Yao, O.X.M. New parity results for broken 11-diamond partitions, J. Number Theory 140, 267-276, 2014.
[62] Yao, O.X.M. Arithmetic properties for Fus 9 dots bracelet partitions, Int. J. Number Theory 11, 1063-1072, 2015.
[63] Yao, O.X.M. New congruences modulo powers of 2 and 3 for 9-regular partitions, J. Number Theory 142, 89-101, 2014.

