
Chapter 1

Introduction

Our thesis comprised of six chapters including this introductory chapter. In

this chapter, we define various partition functions and a brief account of our work.

In the remaining five chapters, we find several new congruences for some partition

functions.

1.1 Partitions

A partition λ = (λ1, λ2, . . . , λk) of a non-negative integer n is a finite sequence

of non-increasing positive integer parts λi such that n =
∑k

i=1 λi. The partition

function p(n) is the number of partitions of a non-negative integer n, with the

convention that p(0) = 1. For example, we have p(4) = 5, as there are five partitions

of 4, namely, (4), (3, 1), (2, 2), (2, 1, 1) and (1, 1, 1, 1). The generating function for

p(n) is given by
∞
∑

n=0

p(n)qn =
1

(q; q)∞
,

where, here and throughout the thesis, for |q| < 1, (a; q)∞ :=
∏∞

n=0(1− aqn).

1.2 ℓ-regular partition function

A partition of a positive integer n is said to be an ℓ-regular partition, ℓ > 1, if

none of its parts is divisible by ℓ. For example, (8, 6, 5, 1) is a 7-regular partition

of 20 as none of its parts is divisible by 7. If bℓ(n) denotes the number of ℓ-regular
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partitions of n then, with the convention that bℓ(0) = 1, the generating function for

bℓ(n) is given by
∞
∑

n=0

bℓ(n)q
n =

(qℓ; qℓ)∞
(q; q)∞

. (1.2.1)

Recently, several mathematicians studied the congruence properties for ℓ-regular

partitions for certain values of ℓ. We refer to Hou, Sun, Zhang [42] and the references

listed there for details. Further work can be found in [33, 56, 23, 13, 46, 47]. In

particular, by using the theory of modular forms, Carlson and Webb [23] obtained

the following congruences.

Theorem 1.2.1. If p is a prime such that p ≡ 5 or 7 (mod 8) and 1 ≤ j ≤ p− 1,
then for all α, n ≥ 0,

b10

(

p2α+1(pn+ j) + 3 · p
2α+2 − 1

8

)

≡ 0 (mod 5). (1.2.2)

Theorem 1.2.2. If p is a prime such that p ≡ 5 (mod 6) and 1 ≤ j ≤ p− 1, then
for all α, n ≥ 0,

b15

(

p2α+1(pn+ j) + 7 · p
2α+2 − 1

24

)

≡ 0 (mod 5). (1.2.3)

Theorem 1.2.3. If p is a prime such that p ≡ 5 (mod 6) and 1 ≤ j ≤ p− 1, then
for all α, n ≥ 0,

b20

(

p2α+1(pn+ j) + 19 · p
2α+2 − 1

24

)

≡ 0 (mod 5). (1.2.4)

In Chapter 2 of this thesis, we find alternative proofs of (1.2.2) and (1.2.4) by

employing p-dissections of some q-products. Note that we could not apply these

p-dissections to effect a proof of (1.2.3). We also find new infinite families of con-

gruences for ℓ-regular partitions for ℓ ∈ {5, 6, 7, 49}. For example, we have the

following results.

Theorem 1.2.4. If p is a prime such that p ≡ −1 (mod 6) and 1 ≤ j ≤ p− 1, then
for all α, n ≥ 0,

b5

(

25p2α+1(pn + j) +
25p2α+2 − 1

6

)

≡ 0 (mod 25).

Theorem 1.2.5. If p ≥ 11 is a prime such that −7 is a quadratic nonresidue modulo

p, i.e., in Legendre symbol

(−7

p

)

= −1, and 1 ≤ j ≤ p− 1, then for all α, n ≥ 0,

b49
(

7p2α+1(pn+ j) + 7(p2α+2 − 1) + 5
)

≡ 0 (mod 49).



3

1.3 2-color partition function

Ramanujan’s so-called “most beautiful identity” for the partition function p(n)

is

∞
∑

n=0

p(5n+ 4)qn = 5
(q5; q5)5∞
(q; q)6∞

, (1.3.1)

which readily implies one of his three famous partition congruences modulo 5, 7 and

11, namely,

p(5n+ 4) ≡ 0 (mod 5). (1.3.2)

The other two famous partition congruences found by Ramanujan are

p(7n+ 5) ≡ 0 (mod 7) (1.3.3)

and

p(11n+ 6) ≡ 0 (mod 11). (1.3.4)

We refer to a recent paper by Bruinier, Folsom, Kent and Ono [22] for further

references on the partition function.

Now, let p0(n) := p(n) and for a positive integer k, let pk(n) denote the number

of 2-color partitions of n where one of the colors appears only in parts that are

multiples of k. Then the generating function for pk(n) is given by

∞
∑

n=0

pk(n)q
n =

1

(q; q)∞(qk; qk)∞
.

It is clear from (1.3.2), with n replaced by 5n+ 4 that

p0(25n+ 24) ≡ 0 (mod 5). (1.3.5)

A stronger version

p0(25n+ 24) ≡ 0 (mod 25),
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can also be deduced easily from (1.3.1) (see [20, p. 38]).

For k = 1, it is known that [18, Eq. (5.4)]

p1(25n+ 23) ≡ 0 (mod 5), (1.3.6)

which can also be shown to be true for modulo 25.

For k = 2, Chan [25] found an analog of (1.3.1), namely,

∞
∑

n=0

p2(3n+ 2)qn = 3
(q3; q3)3∞(q6; q6)3∞
(q; q)4∞(q2; q2)4∞

,

which immediately implies p2(3n+2) ≡ 0 (mod 3). By using the theory of modular

forms, Chen and Lin [27] found four new congruences for p2(n) modulo 7 as well as

the congruence

p2(25n+ 22) ≡ 0 (mod 5). (1.3.7)

Furthermore, when k = 5, 10, 15, 20, it follows from (1.3.1) and the generating

function for pk(n) that

p5(25n+ 19) ≡ 0 (mod 5), (1.3.8)

p10(25n+ 14) ≡ 0 (mod 5), (1.3.9)

p15(25n+ 9) ≡ 0 (mod 5), (1.3.10)

and

p20(25n+ 4) ≡ 0 (mod 5). (1.3.11)

It can be easily seen that (1.3.8) also holds for modulo 25.

In Chapter 3, we give an alternative proof of (1.3.7) and also find two new

congruences for pk(n) modulo 5 for k = 3 and 4:

p3(25n+ 21) ≡ 0 (mod 5) (1.3.12)

and

p4(25n+ 20) ≡ 0 (mod 5). (1.3.13)
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We employ Ramanujan’s simple theta function identities and some other known

identities for the Rogers-Ramanujan continued fraction R(q), defined by

R(q) :=
q1/5

1 +

q

1 +

q2

1 +

q3

1 + · · · = q1/5
(q; q5)∞(q4; q5)∞
(q2; q5)∞(q3; q5)∞

, |q| < 1.

Interestingly, all nine congruences (1.3.5)–(1.3.13) can be written as a combined

result.

Theorem 1.3.1. If k ∈ {0, 1, 2, 3, 4, 5, 10, 15, 20}, then for any non-negative integer
n,

pk(25n+ ℓ) ≡ 0 (mod 5), (1.3.14)

where k + ℓ = 24.

Note that congruences (1.3.7), (1.3.12) and (1.3.13) do not hold for higher powers

of the modulus 5 as p2(22) = 5630, p3(21) = 2035 and p4(20) = 1110. It seems that

(1.3.14) may hold for some more values of k > 5. We make the following conjecture.

Conjecture 1.3.1. If k ∈ {7, 8, 17}, then for any non-negative integer n,

pk(25n+ ℓ) ≡ 0 (mod 5),

where k + ℓ = 24.

We acknowledge that work on Theorem 1.3.1 for k ∈ {3, 4} and Conjecture 1.3.1

was first initiated when Mr. Manosij Ghosh Dastidar, Department of Mathematical

Sciences, Pondicherry University, India, visited my supervisor Prof. Nayandeep

Deka Baruah as a Winter Intern in December, 2014.

1.4 t-cores

The Ferrers-Young diagram of a partition λ = (λ1, λ2, . . . , λm) is a left-aligned

array of nodes with λi nodes in the ith row. The conjugate of a partition λ, denoted

by λ′, is the partition whose Ferrers-Young diagram is the reflection along the main

diagonal of the diagram of λ. A partition λ is self-conjugate if λ = λ′. Let λ′j denote

the number of nodes in column j in the Ferrers-Young diagram of λ. The hook

number of the (i, j)-node in the Ferrers-Young diagram of λ is given by λi + λ′j −
i − j + 1. A partition of n is called a t-core of n if none of the hook numbers is a
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multiple of t. For example, the Ferrers-Young diagram of the partition λ = (4, 3, 1)

of 8 is

bb bb

bbb

b

The nodes (1, 1), (1, 2), (1, 3), (1, 4), (2, 1), (2, 2), (2, 3) and (3, 1) have hook

numbers 6, 4, 3, 1, 4, 2, 1 and 1, respectively. Therefore, λ is a 5-core and a 7-core

but not a 3-core. It is obvious that it is a t-core for t ≥ 8.

If at(n) denotes the number of t-cores of n, then the generating function for at(n)

is [36]
∞
∑

n=0

at(n)q
n =

(qt; qt)t∞
(q; q)∞

. (1.4.1)

Garvan, Kim and Stanton [36] gave some arithmetic properties for 5-cores and

7-cores by using combinatorial method. There are several arithmetic properties for

3- and 5-cores given by Baruah and Berndt [12], Hirschhon and Sellers [40] and

Baruah and Nath [14, 15].

In the last section of Chapter 3, we find that

a5(n− 1) ≡ τ(n) (mod 25),

where τ(n) is Ramanujan’s famous tau function defined by

q(q; q)24 =

∞
∑

n=1

τ(n)qn, (1.4.2)

and find several congruences for 3- and 5-cores. Some of them are given below.

Theorem 1.4.1. For any integer k ≥ 2 and any non-negative integer n, we have

a3

(

22k · n+
3 · 22k−1 + 4k − 1

3

)

≡ 0 (mod 9).

Theorem 1.4.2. For any positive integer k and any non-negative integer n , we
have

a3

(

52k · n+
52k − 1

3

)

≡ (−5)3ka3(n) (mod 9),

a3

(

22k · n+
22k − 1

3

)

≡ (−8)ka3(n) (mod 9).
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Theorem 1.4.3. For any non-negative integers k and n, we have

a5
(

2k+2 · n+ 2k+2 − 1
)

≡ rka5(2n+ 1) + ska5(n) (mod 25),

where rk = −24rk−1 + sk−1, sk = −2048rk−1 with r0 = −24 and b0 = −2048.

Recently, some more partition functions with some restrictions on the parts are

studied by various mathematicians. We introduce some of those functions in the

next three sections and present a brief description of our work.

1.5 Broken k-diamond partitions

MacMahon in his renowned book “Combinatory Analysis” [49] introduced the

partition analysis as the most important tool for solving combinatorial problems

which are related with the system of linear diophantine inequalities and equations.

MacMahon commenced with the most simplest case of plane partitions where the

non-negative integers ai of the partitions placed at the corners of a square such that

the following order relations are satisfied:

a1 ≥ a2, a1 ≥ a3, a2 ≥ a4 and a3 ≥ a4. (1.5.1)

To represent ≥ relation, an arrow can be used as an alternative, for instance Fig.1

represents (1.5.1). Here and throughout the thesis, an arrow pointing from ai to aj

is interpreted as ai ≥ aj.

By using partition analysis, MacMahon derived the generating function

ϕ :=
∑

xa11 x
a2
2 x

a3
3 x

a4
4 ,

=
1− x21x2x3

(1− x1)(1− x1x2)(1− x1x3)(1− x1x2x3)(1− x1x2x3x4)
,

where the sum is taken over all non-negative integers ai satisfying (1.5.1). MacMa-

hon also observed that, by putting x1 = x2 = x3 = x4 = q, the generating

function becomes
1

(1− q)(1− q2)2(1− q3)
.

By using MacMahon’s partition analysis, Andrews, Paule and Riese [7] intro-

duced partition diamonds as new variations of plane partitions as shown in Fig.2.
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Fig.1. The inequality (1.5.1).
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a7

a9

a10

a8

a1

a3

a2

a4

a5

a6

a3n−2

a3n

a3n+1

a3n−1

Fig.2. A plane partition diamond of length n.

In 2007, Andrews and Paule [8] studied the generalization of this partition di-

amonds by introducing k-elongated partition diamonds as shown in Fig.3, as the

building blocks of the chain.

b

b

bb

b bb

b

b

b

b

b

bb b

bbb

a1

a2

a3

a4

a5

a6

a7

a2k−2 a2k

a2k−1 a2k+1

a2k+2

Fig.3. A k-elongated partition diamond of length 1.

Andrews and Paule [8] also introduced Broken k-diamonds. Broken k-diamonds

consist of two separated k-elongated partition diamonds of length n where in one of

them, the source is deleted, as shown in Fig.4.
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a(2k+1)n−1

a(2k+1)n+1

a(2k+1)n

b2

b3

b4

b5

b6

b7

b2k

b2k+2

b2k+1

b(2k+1)n−1

b(2k+1)n+1

b(2k+1)n

Fig.4. A broken k-diamond of length 2n.

Definition 1.5.1. For n, k ≥ 1, define

H♦
n,k := {(b2, . . . , b(2k+1)n+1, a1, a2, . . . , a(2k+1)n) ∈ N(4k+1)n,

the ai and bi satisfy all order relations in Fig.4}
h♦n,k := h♦n,k(x2, . . . , x(2k+1)n+1, y1, y2, . . . , y(2k+1)n+1)

:=
∑

(b2,...,b(2k+1)n+1,a1,a2,...,a(2k+1)n)∈H
♦
n,k

xb22 · · ·xb(2k+1)n+1

(2k+1)n+1y
a1
1 y

a2
2 · · · ya(2k+1)n+1

(2k+1)n+1

and

h♦n,k(q) := h♦n,k(q, q, . . . , q).

Andrews and Paule [8] also found the generating function for the number of

broken k-diamond partitions of n as given in the next theorem.

Theorem 1.5.2. Let for n ≥ 0 and k ≥ 1, ∆k(n) denote the total number of broken
k-diamond partitions of n. Then

h♦∞,k(q) =

∞
∑

n=0

∆k(n)q
n =

(q2; q2)∞
(q; q)3∞(−q2k+1; q2k+1)∞

. (1.5.2)

For k = 1, they also proved the congruence

∆1(2n+ 1) ≡ 0 (mod 3) (1.5.3)

and stated three more conjectures. Hirschhorn and Sellers [39] provided a new

proof of (1.5.3) as well as elementary proofs of congruences modulo 2 for k = 1

and 2. Combinatorial proofs of (1.5.3) were given by Mortenson [50] and Fu [34].

There are a number of other congruences for ∆2(n) in [51, 25, 28, 53]. Radu and

Sellers [52] found parity results for broken k-diamond partitions for some values of

k. Paule and Radu [51] conjectured four congruences for broken 3- and 5-diamond
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partitions. Two of those congruences were proved by Xiong [60] and the remaining

two were proved by Jameson [43]. Radu and Sellers [53] found some parity results for

broken 3-diamond partitions by using the theory of modular forms and subsequently,

Lin [45] found the elementary proofs of those parity results. Cui and Gu [30] and

Wang [55] also found more parity results for broken 3- and 8-diamond partitions

respectively. Recently, Xia [58] found infinite families of congruences modulo 7 for

broken 3-diamond partitions.

In Chapter 4, we find parity results for broken 5-, 7- and 11-diamond partitions

by employing p-dissection of Ramanujan’s theta functions. Some of the results are

given in the following theorems.

Theorem 1.5.3. For any odd prime p, α ≥ 0 and if n is not a triangular number,
then

∆5

(

396 · p2α · n +
99 · p2α + 1

2

)

≡ 0 (mod 2).

Theorem 1.5.4. For all n ≥ 0 and α ≥ 0,

∆7

(

8 · 52α+1 · n+ 8 · r · 52α +
16 · 52α + 2

3

)

≡ 0 (mod 2), (1.5.4)

for r = 3, 4, 8, 9, 13, and 14.

Theorem 1.5.5. For all n ≥ 0 and α ≥ 0,

∆11(2 · 23α+1 · n+ 2 · r · 23α + 1) ≡ 0 (mod 2), (1.5.5)

for r = 5, 7, 10, 11, 14, 15, 17, 19, 20, 21, 22.

1.6 k dots bracelet partitions

In 2011, Fu [34] gave a combinatorial proof of (1.5.3) and also applied the com-

binatorial approach to generalise the broken k-diamond partitions which he called

k dots bracelet partitions. Before defining k dots bracelet partitions, Fu defined

infinite bracelet partitions which consist of repeating diamonds and dots with k− 2

dots between two consecutive diamonds as shown in Fig.5 and we see that an infinite

bracelet partitions can be cut into k − 1 different ways with k dots in half. For any



11

k ≥ 3, a k dots bracelet partitions consist of k − 1 different half bracelet as shown

in Fig.6.

bb b b bbbbb am+k−3

am+k−2

am+k

am+k−1

am

am−2

am−3

am−1

Fig.5. Infinite bracelet with k dots.

Fu [34] denoted the number of k dots bracelet partitions for a positive integer n

by Bk(n). The generating function for Bk(n) is given by

∞
∑

0

Bk(n)q
n =

(q2; q2)∞
(q; q)k∞(−qk; qk)∞

. (1.6.1)

b b bbbb

am+k−2

am+k

am+k−1

am+k−3am

b b bbbb

am+k−2

am+k

am+k−1

am+k−3am+1

b

b

b

b bb b b bam+2k−3

am+2k−2

am+2k

am+2k−1

am+k

am+k−2

am+k−3

am+k−1
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b b b b b bam+2k−3

am+2k−2

am+2k

am+2k−1

am+k

am+k−2

am+k−1

Fig.6. k − 1 different half bracelet.

He also proved the following congruences for k dots bracelet partitions:

(i) for n ≥ 0, k ≥ 3 if k = pr is a prime power,

Bk(2n+ 1) ≡ 0 (mod p),

(ii) for any k ≥ 3, s an integer between 1 and p−1 such that 12s+1 is a quadratic

nonresidue modulo p and any n ≥ 0, if p
∣

∣k for some prime p ≥ 5, say k = pm,

then

Bk(pn+ s) ≡ 0 (mod p),

(iii) for any n ≥ 0, k ≥ 3 even, say k = 2ml, where l is odd,

Bk(2n+ 1) ≡ 0 (mod 2m).

Radu and Sellers [54] extended the set of congruences given by Fu. They proved

that for all n ≥ 0

B5(10n+ 7) ≡ 0 (mod 52),

B7(14n+ 11) ≡ 0 (mod 72),

and

B11(22n+ 21) ≡ 0 (mod 112).

More recently, Cui and Gu [29] found several congruences modulo 2 for 5 dots

bracelet partitions and congruences modulo p for any prime p ≥ 5 for k dots bracelet
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partitions. Xia and Yao [59] also found several congruences modulo powers of 2 for

5 dots bracelet partitions. Recently, Yao [62] established the generating functions of

B9(An+B) modulo 4 for some values of A and B and hence obtained congruences

for modulo 2 and 4.

In Chapter 5 of this thesis, we find several new congruences modulo 2 for 7 and

11 dots bracelet partitions and also find congruences modulo p2 and p3 for k dots

bracelet partitions for any prime p > 3 by employing Ramanujan’s theta functions

and by finding the binomial expansion of (q; q)p
n

∞ congruent modulo pn for n = 2

and n = 3 respectively. A few examples of our results are given below.

Theorem 1.6.1. For any prime p ≥ 5, α ≥ 0 and n ≥ 0, where n 6= k(3k − 1)

2
, we

have

B11

(

4 · p2α · n +
p2α + 5

6

)

≡ 0 (mod 2).

Theorem 1.6.2. Let k = mpr, where m ∈ N, p ≥ 5 and r ≥ 2. Then for any
positive integer n, we have

Bk(pn + ℓ) ≡ 0 (mod p2),

where 1 ≤ ℓ ≤ p− 1 and 12ℓ+1 is quadratic nonresidue modulo p, i.e., in Legendre

symbol

(

12ℓ+ 1

p

)

= −1.

Theorem 1.6.3. Let k = mps, where m ∈ N, p ≥ 5 and s ≥ 3. Then for any
positive integer n, we have

Bk(pn+ j) ≡ 0 (mod p3),

where 1 ≤ j ≤ p− 1 and 12j+1 is quadratic nonresidue modulo p, i.e., in Legendre

symbol

(

12j + 1

p

)

= −1.

Theorem 1.6.4. Let k = mps, where m ∈ N, p ≥ 5 and s ≥ 3. Then for any
positive integer n, we have

Bk

(

p(pn+ j) +
p2 − 1

12

)

≡ 0 (mod p2),

for j = 1, 2, . . . , p− 1.
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1.7 Singular overpartitions

Recently, Andrews [5] introduced singular overpartitions. To introduce singular

overpartitions, first he defined some properties of the entries in a Frobenius symbol

for n, which is of the form

(

a1 a2 · · · ar

b1 b2 · · · br

)

where the rows are strictly decreasing sequences of non-negative integers and

∑r
i=1(ai + bi + 1) = n. Andrews defined a column

aj

bj
in a Frobenius symbol

as (k, i)-positive if aj − bj ≥ k − i − 1, (k, i)-negative if aj − bj ≤ −i + 1, and

(k, i)-neutral if −i + 1 < aj − bj < k − i− 1, where we have corrected the misprint

in Andrews [5] on the last expression by replacing k− i+ 1 with k− i− 1. He then

divided the Frobenius symbol into (k, i)-parity blocks, where if two coloumns
an

bn

and
aj

bj
are both (k, i)-positive or both (k, i)-negative, then they have the same

(k, i)-parity. These blocks are the sets of contiguous columns maximally extended

to the right:

an an+1 · · · aj

bn bn+1 · · · bj

where all the entries have either the same (k, i)-parity or are (k, i)-neutral. The first

non-neutral column in each parity block is called the anchor of the block.

A Frobenius symbol is said to be (k, i)-singular, if the following properties hold

(i) there are no overlined entries, or

(ii) the one overlined entry on the top row occurs in the anchor of a (k, i)-positive

block, or

(iii) the one overlined entry on the bottom row occurs in an anchor of a (k, i)-

negative block, and
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(iv) if there is one overlined entry in each row, then they occur in adjacent (k, i)-

parity blocks.

Andrews denoted the number of such singular overpartitions of n as Qk,i(n). He

found that Qk,i(n) is equal to Ck,i(n), the number of overpartitions of n in which no

part is divisible by k and only parts ≡ ±i (mod k) may be overlined, i.e.,

∞
∑

n=0

Qk,i(n)q
n =

∞
∑

n=0

Ck,i(n)q
n =

(qk,−qi,−qk−i; qk)∞
(q; q)∞

,

where (a1, a2, . . . , ak; q)∞ := (a1; q)∞(a2; q)∞ · · · (ak; q)∞. Andrews also found the

following two congruences

C3,1(9n+ 3) ≡ C3,1(9n+ 6) ≡ 0 (mod 3). (1.7.1)

Chen, Hirschhorn and Sellers [26] found some infinite families of congruences

modulo 3 for C3,1, C6,1 and C6,2. For example, they found the following congruences

for C3,1.

Theorem 1.7.1. For all k, m ≥ 0,

C3,1(2
k(4m+ 3)) ≡ 0 (mod 3).

Theorem 1.7.2. Let p ≡ 1 (mod 4) be prime. Then for all k, m ≥ 0 with p ∤ m,

C3,1(p
3k+2m) ≡ 0 (mod 3).

Theorem 1.7.3. Let p ≡ 3 (mod 4) be prime. Then for all k, m ≥ 0 with p ∤ m,

C3,1(p
2k+1m) ≡ 0 (mod 3).

From the above theorem for p = 3, k = 0 and m ≡ 1, 2 (mod 3), one can

easily arrive at (1.7.1). In the same paper, they also found parity results for

C3,1, C4,1 and C6,1.

In the last chapter of this thesis, we obtain several new congruences for Ck,i(n)

for certain values of k and i by employing simple p-dissections of Ramanujan’s theta

functions. For example, we have the following results.

Theorem 1.7.4. If p ≥ 5 is a prime and 1 ≤ j ≤ p− 1, then for any non-negative
integers α and n, we have

C3,1

(

24p(2α+1)(pn+ j) + p2(α+1)
)

≡ 0 (mod 4).
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Theorem 1.7.5. For any non-negative integer n, we have

C3,1 (48n+ 12) ≡ 0 (mod 18),

C3,1 (12n+ 7) ≡ 0 (mod 36),

C3,1 (12n+ 11) ≡ 0 (mod 36),

C3,1 (24n+ 14) ≡ 0 (mod 36)

and

C3,1 (24n+ 22) ≡ 0 (mod 36).

Theorem 1.7.6. If p is a prime such that p ≡ 3 (mod 4) and 1 ≤ j ≤ p− 1, then
for all non-negative integers α and n, we have

C8,2

(

p2α+1(pn+ j) +
5(p2(α+1) − 1)

24

)

≡ 0 (mod 2).

Theorem 1.7.7. If p is a prime such that p ≡ 13, 17, 19, or 23 (mod 24) and
1 ≤ j ≤ p− 1, then for any non-negative integers α and n, we have

C8,2

(

p2α+1(pn+ j) +
5(p2(α+1) − 1)

24

)

≡ 0 (mod 4).

Since our proofs mainly rely on various properties of Ramanujan’s theta functions

and dissections of certain q-products, in the last section of this chapter, we define a

t-dissection and Ramanujan’s general theta function and some of its special cases.

1.8 t-dissection and Ramanujan’s theta functions

If P (q) denotes a power series in q, then a t-dissection of P (q) is given by

[P (q)]t−dissection =
t−1
∑

k=0

qkPk(q
t),

where Pk are power series in qt.

Ramanujan’s general theta function f(a, b) is defined by

f(a, b) :=

∞
∑

n=−∞

an(n+1)/2bn(n−1)/2, |ab| < 1.
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Three special cases of f(a, b) are [19, p. 36, Entry 22]

ϕ(q) := f(q, q) =
∞
∑

k=−∞

qk
2

= (−q; q2)2∞(q2; q2)∞,

ψ(q) := f(q, q3) =
1

2
f(1, q) =

∞
∑

k=0

qk(k+1)/2 =
(q2; q2)∞
(q; q2)∞

, (1.8.1)

and

f(−q) := f(−q,−q2) =
∞
∑

k=0

(−1)kqk(3k−1)/2 +

∞
∑

k=1

(−1)kqk(3k+1)/2 = (q; q)∞,

where the product representations in the above arise from Jacobi’s famous triple

product identity [19, p. 35, Entry 19]

f(a, b) = (−a; ab)∞(−b; ab)∞(ab; ab)∞. (1.8.2)

Also define

χ(q) := (−q; q2)∞,

where (−q; q2)∞ generates partitions into distinct odd parts.

By manipulating the q-products, one can easily arrive at the following represen-

tations:

ϕ(q) =
(q2; q2)5∞

(q; q)2∞(q4; q4)2∞
, ϕ(−q) = (q; q)2∞

(q2; q2)∞
, ψ(q) =

(q2; q2)2∞
(q; q)∞

,

ψ(−q) = (q; q)∞(q4; q4)∞
(q2; q2)∞

, χ(q) =
(q2; q2)2∞

(q; q)∞(q4; q4)∞
, χ(−q) = (q; q)∞

(q2; q2)∞
. (1.8.3)


