
Chapter 2

New congruences for ℓ-regular
partitions for ℓ ∈ {5, 6, 7, 49}

2.1 Introduction

As mentioned in the introductory chapter, this chapter includes several con-

gruences for ℓ-regular partitions, for certain ℓ. In the next section, we state the

p-dissections of ψ(q), f(−q), f 3(−q) and ψ(q2)f 2(−q), where the p-dissections of

ψ(q) and f(−q) are due to Cui and Gu [32] and the remaining two are new, which

will be used in our subsequent sections. In Sections 2.3–2.5, we prove some theorems

from which the following results are easily followed.

Theorem 2.1.1. If j ∈ {0, 2, 3, 4, 5, 6}, then for any non-negative integers α and n,

b5

(

25 · 76α+5(7n+ j) +
25 · 76α+5 − 1

6

)

≡ 0 (mod 25). (2.1.1)

Theorem 2.1.2. If p is a prime such that p ≡ −1 (mod 6) and 1 ≤ j ≤ p− 1, then

for any non-negative integers α and n,

b5

(

25p2α+1(pn + j) +
25p2α+2 − 1

6

)

≡ 0 (mod 25). (2.1.2)

Theorem 2.1.3. If p is a prime such that

(−6

p

)

= −1 and 1 ≤ j ≤ p − 1, then

for any non-negative integers α and n,

b6

(

p2α+1(pn + j) + 5 · p
2α − 1

24

)

≡ 0 (mod 3). (2.1.3)

18
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Theorem 2.1.4. For any non-negative integers α and n,

b7

(

73 · 32α+2 · n +
73 · 5 · 32α+1 − 1

4

)

≡ 0 (mod 147) (2.1.4)

and

b7

(

73 · 32α+3 · n+
73 · 11 · 32α+2 − 1

4

)

≡ 0 (mod 147). (2.1.5)

Theorem 2.1.5. If p ≥ 11 is a prime such that

(−7

p

)

= −1 and 1 ≤ j ≤ p − 1,

then for any non-negative integers α and n,

b49
(

7p2α+1(pn+ j) + 7(p2α+2 − 1) + 5
)

≡ 0 (mod 49). (2.1.6)

In the last section of this chapter, we find two theorems from which (1.2.2) and

(1.2.4) follow immediately.

The contents of this chapter have been submitted [1].

2.2 Preliminary lemmas

Cui and Gu [32] found the following p-dissections of ψ(q) and f(−q).

Lemma 2.2.1. (Cui and Gu [32, Theorem 2.1]) If p is an odd prime, then

ψ(q) =

p−3
2
∑

k=0

q
k2+k

2 f(q
p2+(2k+1)p

2 , q
p2−(2k+1)p

2 ) + q
p2−1

8 ψ(qp
2

). (2.2.1)

Furthermore, for 0 ≤ k ≤ p− 3

2
,

k2 + k

2
6≡ p2 − 1

8
(mod p).

Lemma 2.2.2. (Cui and Gu [32, Theorem 2.2]) If p ≥ 5 is a prime and

±p− 1

6
:=











p− 1

6
, if p ≡ 1 (mod 6);

−p− 1

6
, if p ≡ −1 (mod 6),
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then

(q; q)∞ =

p−1
2
∑

k = −p−1
2

k 6= ±p−1
6

(−1)kq
3k2+k

2 f

(

−q
3p2+(6k+1)p

2 ,−q
3p2−(6k+1)p

2

)

+ (−1)
±p−1

6 q
p2−1
24 (qp

2

; qp
2

)∞. (2.2.2)

Furthermore, if
−(p− 1)

2
≤ k ≤ (p− 1)

2
, k 6= (±p− 1)

6
, then

3k2 + k

2
6≡ p2 − 1

24
(mod p).

In the following two lemmas, we present new p-dissections of (q; q)3∞ and

ψ(q2)(q; q)2∞.

Lemma 2.2.3. If p ≥ 3 is a prime, then

(q; q)3∞ =

p−1
∑

k = 0

k 6= p−1
2

(−1)kq
k(k+1)

2

∞
∑

n=0

(−1)n(2pn+ 2k + 1)qpn·
pn+2k+1

2

+ p(−1)
p−1
2 q

p2−1
8 (qp

2

; qp
2

)3∞. (2.2.3)

Furthermore, if k 6= p− 1

2
, 0 ≤ k ≤ p− 1, then

k2 + k

2
6≡ p2 − 1

8
(mod p).

Proof. From [20, p. 14], we recall Jacobi’s identity

(q; q)3∞ =
∞
∑

n=0

(−1)n(2n+ 1)q
n(n+1)

2 .
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Dissecting the above sum into p terms, we obtain

(q; q)3∞ =

p−1
∑

k=0

∞
∑

n=0

(−1)pn+k(2(pn+ k) + 1)q
(pn+k)((pn+k)+1)

2

=

p−1
∑

k=0

(−1)kq
k(k+1)

2

∞
∑

n=0

(−1)n(2pn+ 2k + 1)qpn·
pn+2k+1

2

=

p−1
∑

k = 0

k 6= p−1
2

(−1)kq
k(k+1)

2

∞
∑

n=0

(−1)n(2pn+ 2k + 1)qpn·
pn+2k+1

2

+ (−1)
p−1
2 q

p2−1
8

∞
∑

n=0

(−1)np(2n+ 1)qp
2·n(n+1)

2

=

p−1
∑

k = 0

k 6= p−1
2

(−1)kq
k(k+1)

2

∞
∑

n=0

(−1)n(2pn+ 2k + 1)qpn·
pn+2k+1

2

+ p(−1)
p−1
2 q

p2−1
8 (qp

2

; qp
2

)3∞.

If
k2 + k

2
≡ p2 − 1

8
(mod p), then we find that k =

p− 1

2
, which completes the

proof of (2.2.3). 2

Lemma 2.2.4. If p ≥ 5 is a prime and

±p− 1

3
:=











p− 1

3
, if p ≡ 1 (mod 3);

−p− 1

3
, if p ≡ −1 (mod 3),

then

ψ(q2)(q; q)2∞ =

p−1
2
∑

k = −p−1
2

k 6= ±p−1
3

q3k
2+2k

∞
∑

n=−∞

(3pn+ 3k + 1)qpn(3pn+6k+2)

± pq
p2−1

3 ψ(q2p
2

)(qp
2

; qp
2

)2∞, (2.2.4)
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Furthermore, if k 6= ±p− 1

3
, −p− 1

2
≤ k ≤ p− 1

2
, then

3k2 + 2k 6≡ p2 − 1

3
(mod p).

Proof. From [19, p. 21], we recall that

ψ(q2)(q; q)2∞ =
∞
∑

n=−∞

(3n+ 1)q3n
2+2n.

Dissecting the right side into p terms, we find that

ψ(q2)(q; q)2∞ =

p−1
2
∑

k=− p−1
2

∞
∑

n=−∞

(3(pn+ k) + 1)q3(pn+k)2+2(pn+k)

=

p−1
2
∑

k=− p−1
2

q3k
2+2k

∞
∑

n=−∞

(3pn+ 3k + 1)qpn(3pn+6k+2)

=

p−1
2
∑

k = −p−1
2

k 6= ±p−1
3

q3k
2+2k

∞
∑

n=−∞

(3pn+ 3k + 1)qpn(3pn+6k+2)

± q
p2−1

3

∞
∑

n=−∞

p(3n+ 1)qp
2(3n2+2n)

=

p−1
2
∑

k = −p−1
2

k 6= ±p−1
3

q3k
2+2k

∞
∑

n=−∞

(3pn+ 3k + 1)qpn(3pn+6k+2)

± pq
p2−1

3 ψ(q2p
2

)(qp
2

; qp
2

)2∞.

Now, if 3k2 + 2k ≡ p2 − 1

3
(mod p), then k =

±p− 1

3
, which completes the proof of

(2.2.4). 2

We end this section by defining an operator H which acts on a Laurent series in

one variable by picking out those terms in which the power is congruent to 0 modulo
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7. If

ξ :=
(q; q)∞

q2(q49; q49)∞
and T :=

(q7; q7)4∞
q7(q49; q49)4∞

, (2.2.5)

then Garvan [36] proved that

H(ξ) = −1, H(ξ2) = 1, H(ξ3) = −7, H(ξ4) = −4T − 7, H(ξ5) = 10T + 49,

and H(ξ6) = 49. (2.2.6)

2.3 New congruences for 5-regular partitions

Theorem 2.3.1. If p is a prime such that p ≡ −1 (mod 6), then for all α ≥ 0,

∞
∑

n=0

b5

(

25p2αn+
25p2α − 1

6

)

qn ≡ (−1)α·
p−2
3 5pα(q; q)4∞ (mod 25). (2.3.1)

Proof. It is clear from the generating function (1.2.1) that

∞
∑

n=0

b5(n)q
n =

(q5; q5)∞
(q; q)∞

= (q5; q5)∞

∞
∑

n=0

P (n)qn, (2.3.2)

where P (n) is the ordinary partition function, that is, the number of unrestricted

partitions of the non-negative integer n.

It is well-known (for example, see [20]) that

∞
∑

n=0

P (5n+ 4)qn = 5
(q5; q5)5∞
(q; q)6∞

.

Therefore, from (2.3.2), we have

∞
∑

n=0

b5(5n+ 4)qn = 5
(q5; q5)5∞
(q; q)5∞

.

Since (q5; q5)∞ ≡ (q; q)5∞ (mod 5), we find that

∞
∑

n=0

b5(5n+ 4)qn ≡ 5(q5; q5)4∞ (mod 25).
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Extracting the terms involving q5n from both sides of the above and then replacing

q5 by q, we obtain
∞
∑

n=0

b5(25n+ 4)qn ≡ 5(q; q)4∞ (mod 25), (2.3.3)

which is the α = 0 case of (2.3.1). Now suppose that (2.3.1) holds for some α ≥ 0.

With the help of (2.2.2) and (2.2.3), we can rewrite (2.3.1) as

∞
∑

n=0

b5

(

25p2αn+
25p2α − 1

6

)

qn

≡ (−1)α·
p−2
3 · 5pα

[

p−1
2
∑

m=− p−1
2

m6=±p−1
6

(−1)mq
3m2+m

2 f

(

−q 3p2+(6m+1)p
2 ,−q 3p2−(6m+1)p

2

)

+ (−1)
±p−1

6 q
p2−1
24 f(−qp2)

]

×
[

p−1
∑

k = 0

k 6= p−1
2

(−1)kq
k(k+1)

2

∞
∑

n=0

(−1)n(2pn+ 2k + 1)qpn·
pn+2k+1

2

+ p(−1)
p−1
2 q

p2−1
8 (qp

2

; qp
2

)3∞

]

(mod 25). (2.3.4)

Now our objective is to find those terms above for which the powers of q satisfy

the congruence

k2 + k

2
+

3m2 +m

2
≡ p2 − 1

6
(mod p), (2.3.5)

where 0 ≤ k ≤ p− 1 and −(p− 1)/2 ≤ m ≤ (p− 1)/2. Since the above is equivalent

to

3(2k + 1)2 + (6m+ 1)2 ≡ 0 (mod p)

and

(−3

p

)

= −1 as p ≡ −1 (mod 6), it follows that the only solution of (2.3.5)

is k =
p− 1

2
and m =

±p− 1

6
. Therefore, extracting the terms containing qpn+

p2−1
6

from both sides of (2.3.4) and replacing qp by q, we obtain

∞
∑

n=0

b5

(

25p2α+1n+
25p2α+2 − 1

6

)

qn ≡ (−1)(α+1)p−2
3 5pα+1(qp; qp)4∞ (mod 25).

(2.3.6)
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Again extracting the terms containing qpn from both sides of the above and replacing

qp by q, we find that

∞
∑

n=0

b5

(

25p2α+2n+
25p2α+2 − 1

6

)

qn ≡ (−1)(α+1)p−2
3 5pα+1(q; q)4∞ (mod 25),

which is clearly the α + 1 case of (2.3.1). This completes the proof. 2

Theorem 2.3.2. For α ≥ 0, we have

∞
∑

n=0

b5

(

25 · 76αn+
25 · 76α − 1

6

)

qn ≡ 2α · 5(q; q)4∞ (mod 25). (2.3.7)

Proof. We again use induction on α. From (2.3.3), we have

∞
∑

n=0

b5(25n+ 4)qn ≡ 5(q; q)4∞ (mod 25),

which is the α = 0 case of (2.3.7). Now suppose that (2.3.7) holds for some α ≥ 0.

With the aid of (2.2.5), we rewrite (2.3.7) as

∞
∑

n=0

b5

(

25 · 76αn+
25 · 76α − 1

6

)

qn ≡ 2α · 5q8(q49; q49)4∞ξ4 (mod 25).

Extracting the terms containing q7n+1 from both sides of the above congruence, and

then using (2.2.6), we find that

∞
∑

n=0

b5

(

25 · 76α(7n+ 1) +
25 · 76α − 1

6

)

q7n+1

≡ 2α · 5q8(q49; q49)4∞H(ξ4)

≡ 2α · 5q8(q49; q49)4∞
(

−4
(q7; q7)4∞

q7(q49; q49)4∞
− 7

)

(mod 25).

Dividing both sides by q and replacing q7 by q, we have

∞
∑

n=0

b5

(

25 · 76α+1 · n+ 25 · 76α +
25 · 76α − 1

6

)

qn

≡ 2α
(

5(q; q)4∞ + 15q(q7; q7)4∞
)

(mod 25).
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which can be rewritten with the help of (2.2.5) as

∞
∑

n=0

b5

(

25 · 76α+1 · n+ 25 · 76α +
25 · 76α − 1

6

)

qn

≡ 2α
(

5q8(q49; q49)4∞ξ
4 + 15q(q7; q7)4∞

)

(mod 25).

Extracting the terms containing q7n+1 from both sides of the above and then using

(2.2.6), we deduce that

∞
∑

n=0

b5

(

25 · 76α+1 · (7n+ 1) + 25 · 76α +
25 · 76α − 1

6

)

qn

≡ 2α
(

20(q; q)4∞ + 15q(q7; q7)4∞
)

(mod 25).

Proceeding further in a similar way, we find that
∞
∑

n=0

b5

(

25 · 76α+4 · (7n+ 1) + 25 · 76α(1 + 7 + 72 + 73) +
25 · 76α − 1

6

)

q7n+1

≡ 2α
(

−75q(q7; q7)4∞ + 10q8(q49; q49)4∞
)

≡ 2α · 10q8(q49; q49)4∞ (mod 25).

Dividing both sides of the above by q and replacing q7 by q, we obtain
∞
∑

n=0

b5

(

25 · 76α+5 · n+ 25 · 76α(1 + 7 + 72 + 73 + 74) +
25 · 76α − 1

6

)

qn

≡ 2α · 10q(q7; q7)4∞ (mod 25). (2.3.8)

Extracting the terms containing q7n+1 from both sides of the above and then sim-

plifying, we arrive at
∞
∑

n=0

b5

(

25 · 76α+6 · n+
25 · 76α+6 − 1

6

)

qn ≡ 2α+1 · 5(q; q)4∞ (mod 25),

which is the α + 1 case of (2.3.7). 2

Now we prove Theorem 2.1.1 and Theorem 2.1.2.

Proofs of Theorem 2.1.1 and Theorem 2.1.2. Comparing the coefficients of qj,

j ∈ {0, 2, 3, 4, 5, 6} on both sides of (2.3.8), we easily arrive at (2.1.1). Again,

comparing the coefficients of qpn+j, 1 ≤ j ≤ p − 1, on both sides of (2.3.6), we

readily deduce (2.1.2). 2
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2.4 New congruences for 6-regular partitions

Theorem 2.4.1. If p is a prime such that

(−6

p

)

= −1, then for all α ≥ 0,

∞
∑

n=0

b6

(

p2αn+ 5 · p
2α − 1

24

)

qn ≡ (−1)α
±p−1

6 ψ(q)(q2; q2)∞ (mod 3). (2.4.1)

Proof. Once again we use induction on α. Since (q; q)3∞ ≡ (q3; q3)∞ (mod 3), we

have

∞
∑

n=0

b6(n)q
n =

(q6; q6)∞
(q; q)∞

≡ (q2; q2)3∞
(q; q)∞

≡ ψ(q)(q2; q2)∞ (mod 3),

which is the α = 0 case of (2.4.1). Now suppose that (2.4.1) holds for some α ≥ 0.

Using (2.2.1) and (2.2.2), we rewrite (2.4.1) as

∞
∑

n=0

b6

(

p2αn+ 5 · p
2α − 1

24

)

qn

≡ (−1)α
±p−1

6

[

p−3
2
∑

m=0

q
m2+m

2 f(q
p2+(2m+1)p

2 , q
p2−(2m+1)p

2 ) + q
p2−1

8 ψ(qp
2

)
]

×
[

p−1
2
∑

k=− p−1
2

k 6=±p−1
6

(−1)kq3k
2+kf(−q3p2+(6k+1)p,−q3p2−(6k+1)p)

+ (−1)
±p−1

6 q
p2−1
12 (q2p

2

; q2p
2

)∞

]

(mod 3). (2.4.2)

We now consider the congruence

3k2 + k +
m2 +m

2
≡ 5(p2 − 1)

24
(mod p), (2.4.3)

where 0 ≤ m ≤ (p − 1)/2 and −(p − 1)/2 ≤ k ≤ (p − 1)/2. Since the above is

equivalent to

(12k + 2)2 + 6(2m+ 1)2 ≡ 0 (mod p)

and

(−6

p

)

= −1, it follows that the only solution of (2.4.3) is k =
±p− 1

6
and

m =
p− 1

2
. Therefore, extracting the terms containing qpn+

5p2−5
24 from both sides of
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(2.4.2) and replacing qp by q, we obtain

∞
∑

n=0

b6

(

p2α
(

pn+
5p2 − 5

24

)

+ 5 · p
2α − 1

24

)

qn

≡ (−1)(α+1)±p−1
6 ψ(qp)(q2p; q2p)∞ (mod 3). (2.4.4)

Again extracting the terms containing qpn from both sides of the above congruence

and replacing qp by q, we find that

∞
∑

n=0

b6

(

p2α+2n+ 5 · p
2α+2 − 1

24

)

qn ≡ (−1)(α+1)±p−1
6 ψ(q)(q2; q2)∞ (mod 3),

which is obviously the α + 1 case of (2.4.1). 2

We now prove Theorem 2.1.3.

Proof of Theorem 2.1.3. Comparing the coefficients of qpn+j, 1 ≤ j ≤ p−1, on both

sides of (2.4.4), we easily arrive at (2.1.3). 2

2.5 New congruences for 7- and 49-regular parti-

tions

We first prove Theorem 2.1.4.

Proof of Theorem 2.1.4. We note that

∞
∑

n=0

b7(n)q
n =

(q7; q7)∞
(q; q)∞

= (q7; q7)∞

∞
∑

n=0

P (n)qn, (2.5.1)

where P (n) is the ordinary partition function.

From [20, Equation 2.4.5, p. 40], we recall the well-known identity

∞
∑

n=0

P (7n+ 5)qn = 7
(q7; q7)3∞
(q; q)4∞

+ 49q
(q7; q7)7∞
(q; q)8∞

. (2.5.2)

Employing the above in (2.5.1), we find that

∞
∑

n=0

b7(7n+ 5)qn = 7
(q7; q7)3∞
(q; q)3∞

+ 49q
(q7; q7)7∞
(q; q)7∞

.
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Therefore,

∞
∑

n=0

b7(7n+ 5)qn ≡ 7
(q7; q7)3∞
(q; q)3∞

≡ 7(q7; q7)2∞(q; q)4∞ (mod 49),

which, by (2.2.5), is equivalent to

∞
∑

n=0

b7(7n+ 5)qn ≡ 7q8(q7; q7)2∞(q49; q49)4∞ξ
4 (mod 49).

Extracting the terms containing q7n+1 from the above, we have

∞
∑

n=0

b7(49n+ 12)q7n+1 ≡ 7q8(q7; q7)2∞(q49; q49)4∞H(ξ4) (mod 49),

which, by (2.2.6), reduces to

∞
∑

n=0

b7(49n+ 12)q7n+1 ≡ 7q8(q7; q7)2∞(q49; q49)4∞

(

− 4(q7; q7)4∞
q7(q49; q49)4∞

− 7

)

≡ 21q(q7; q7)6∞ (mod 49).

Dividing both sides of the above by q and replacing q7 by q and then again using

(2.2.5), we find that

∞
∑

n=0

b7(49n+ 12)qn ≡ 21q12(q49; q49)6∞ξ
6 (mod 49).

Extracting the terms containing q7n+5 from both sides of the above, we have

∞
∑

n=0

b7(343n+ 257)q7n+5 ≡ 21q12(q49; q49)6∞H(ξ6) (mod 49).

Employing once again (2.2.6), we arrive at

b7(343n+ 257) ≡ 0 (mod 49). (2.5.3)

Now, from Furcy and Penniston’s paper [35], for all α, n ≥ 0, we note that

b7

(

32α+2n+
11 · 32α+1 − 1

4

)

≡ 0 (mod 3) (2.5.4)

and

b7

(

32α+3n+
11 · 32α+2 − 1

4

)

≡ 0 (mod 3). (2.5.5)
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Again, replacing n by 32α+2n +
5 · 32α+1 − 3

4
in (2.5.3), we have

b7

(

73 ·
(

32α+2n+
5 · 32α+1 − 3

4

)

+ 257

)

≡ 0 (mod 49),

that is,

b7

(

32α+2(73 · n + 142) +
11 · 32α+1 − 1

4

)

≡ 0 (mod 49).

Now from (2.5.4) and the above congruence, we easily deduce (2.1.4).

Similarly, replacing n by 32α+3n +
11 · 32α+2 − 3

4
in (2.5.3) and using (2.5.5) we

easily arrive at (2.1.5) to finish the proof. 2

Theorem 2.5.1. If p is a prime such that

(−7

p

)

= −1 and p ≥ 5, then for all

α ≥ 0,

∞
∑

n=0

b49
(

7p2αn+ 7(p2α − 1) + 5
)

qn ≡ 7p2α(q; q)3∞(q7; q7)3∞ (mod 49). (2.5.6)

Proof. We note that

∞
∑

n=0

b49(n)q
n =

(q49; q49)∞
(q; q)∞

= (q49; q49)∞

∞
∑

n=0

P (n)qn.

Employing (2.5.2), we have

∞
∑

n=0

b49(7n+ 5)qn = (q7; q7)∞

(

7
(q7; q7)3∞
(q; q)4∞

+ 49q
(q7; q7)7∞
(q; q)8∞

)

.

Therefore,

∞
∑

n=0

b49(7n+ 5)qn ≡ 7(q; q)24∞ ≡ 7(q; q)3∞(q7; q7)3∞ (mod 49), (2.5.7)

which is clearly the α = 0 case of (2.5.6). Now suppose that (2.5.6) holds for some

α ≥ 0.
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With the help of (2.2.3), we rewrite (2.5.6) as

∞
∑

n=0

b49
(

7p2αn+ 14(p2α − 1) + 5
)

qn

≡ 7p2α
[

p−1
∑

m = 0

m 6= p−1
2

(−1)mq
m(m+1)

2

∞
∑

n=0

(−1)n(2pn+ 2m+ 1)qpn·
pn+2m+1

2

+ p(−1)
p−1
2 q

p2−1
8 (qp

2

; qp
2

)3∞

]

×
[

p−1
∑

k = 0

k 6= p−1
2

(−1)kq7
k(k+1)

2

∞
∑

n=0

(−1)n(2pn+ 2k + 1)q7pn·
pn+2k+1

2

+ p(−1)
p−1
2 q7·

p2−1
8 (q7p

2

; q7p
2

)3∞

]

(mod 49). (2.5.8)

We now want to know when the exponents above satisfy the congruence

m2 +m

2
+ 7

k2 + k

2
≡ p2 − 1 (mod p), (2.5.9)

where 0 ≤ k,m ≤ p− 1. Since the above congruence is equivalent to

(2m+ 1)2 + 7 (2k + 1)2 ≡ 0 (mod p)

and since

(−7

p

)

= −1, it follows that the only solution of (2.5.9) is m =
p− 1

2
and

k =
p− 1

2
. Therefore, extracting the terms containing qpn+p2−1 from both sides of

(2.5.8) and replacing qp by q, we find that

∞
∑

n=0

b49
(

7p2α(pn+ p2 − 1) + 7(p2α − 1) + 5
)

qn

≡ 7p2α+2(qp; qp)3∞(q7p; q7p)3∞ (mod 49). (2.5.10)

Again extracting the terms containing qpn from both sides of the above congruence

and replacing qp by q, we find that

∞
∑

n=0

b49
(

7p2α+2n+ 7(p2α+2 − 1) + 5
)

qn ≡ 7p2α+2(q; q)3∞(q7; q7)3∞ (mod 49),
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which is the case for α + 1 of (2.5.6). Thus we complete the proof. 2

We now prove Theorem 2.1.5.

Proof of Theorem 2.1.5. Comparing the coefficients of qpn+j, 1 ≤ j ≤ p−1, on both

sides of (2.5.10), we can easily deduce (2.1.6). 2

Using (2.2.3) in (2.5.7) and then comparing the coefficients of q7n+j for j ∈
{2, 4, 5}, we readily obtain the following result.

Corollary 2.5.2. For any non-negative integer n and j ∈ {2, 4, 5},

b49(7(7n+ j) + 5) ≡ 0 (mod 49).

2.6 Proofs of Theorem 1.2.1 and Theorem 1.2.3

Theorem 2.6.1. If p is a prime such that p ≡ 5 or 7 (mod 8) and α ≥ 0, then

∞
∑

n=0

b10

(

p2αn + 3 · p
2α − 1

8

)

qn ≡ pα(−1)α·
p−1
2 ψ(q)(q2; q2)3∞ (mod 5). (2.6.1)

Proof. We prove the theorem by induction on α. Note that

∞
∑

n=0

b10(n)q
n =

(q10; q10)∞
(q; q)∞

.

Since (q; q)5∞ ≡ (q5; q5)∞ (mod 5), we find that

∞
∑

n=0

b10(n)q
n ≡ (q2; q2)5∞

(q; q)∞
≡ ψ(q)(q2; q2)3∞ (mod 5),

which is the α = 0 case of (2.6.1). Suppose (2.6.1) holds for some α ≥ 0. With the
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help of (2.2.1) and (2.2.3), we can rewrite (2.6.1) as

∞
∑

n=0

b10

(

p2αn+ 3 · p
2α − 1

8

)

qn

≡ pα(−1)α·
p−1
2

[

p−3
2
∑

m=0

q
m2+m

2 f(q
p2+(2m+1)p

2 , q
p2−(2m+1)p

2 ) + q
p2−1

8 ψ(qp
2

)
]

×
[

p−1
∑

k = 0

k 6= p−1
2

(−1)kqk(k+1)
∞
∑

n=0

(−1)n(2pn+ 2k + 1)qpn(pn+2k+1)

+ p(−1)
p−1
2 q2·

p2−1
8 (q2p

2

; q2p
2

)3∞

]

(mod 5). (2.6.2)

We want those terms above for which the powers of q satisfy the congruence

k2 + k +
m2 +m

2
≡ 3 · p

2 − 1

8
(mod p),

where 0 ≤ k ≤ p − 1 and 0 ≤ m ≤ (p − 1)/2. The congruence is clearly equivalent

to

2(2k + 1)2 + (2m+ 1)2 ≡ 0 (mod p). (2.6.3)

Since

(−2

p

)

= −1 as p ≡ 5 or 7 (mod 8), the only solution of (2.6.3) is k =
p− 1

2

and m =
p− 1

2
. Therefore, extracting the terms involving qpn+3· p

2−1
8 from both sides

of (2.6.2) and then replacing qp by q, we find that

∞
∑

n=0

b10

(

p2α+1n+ 3
p2α+2 − 1

8

)

qn ≡ pα+1(−1)(α+1)p−1
2 ψ(qp)(q2p; q2p)3∞ (mod 5).

(2.6.4)

Again extracting the terms containing qpn from both sides of the above congruence

and replacing qp by q, we arrive at

∞
∑

n=0

b10

(

p2α+2n + 3
p2α+2 − 1

8

)

qn ≡ pα+1(−1)(α+1)p−1
2 ψ(q)(q2; q2)3∞ (mod 5),

which is the α + 1 case of (2.6.1). 2
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Theorem 2.6.2. If p is a prime such that p ≡ −1 (mod 6), then for all α ≥ 0,

∞
∑

n=0

b20

(

p2αn+ 19 · p
2α − 1

24

)

qn ≡ (−p)αψ(q)ψ(q4)(−q2;−q2)2∞ (mod 5). (2.6.5)

Proof. We use induction on α. Clearly,
∞
∑

n=0

b20(n)q
n =

(q20; q20)∞
(q; q)∞

≡ (q4; q4)5∞
(q; q)∞

≡ ψ(q)ψ(q4)(−q2;−q2)2∞ (mod 5),

which is α = 0 case of (2.6.5). Now suppose (2.6.5) holds for some α ≥ 0. Using

(2.2.1) and (2.2.4) with q replaced by −q2 in (2.6.5), we have

∞
∑

n=0

b20

(

p2αn+ 19 · p
2α − 1

24

)

qn

≡ (−p)α
[

p−3
2
∑

m=0

q
m2+m

2 f(q
p2+(2m+1)p

2 , q
p2−(2m+1)p

2 ) + q
p2−1

8 ψ(qp
2

)
]

×
[

p−1
2
∑

k = −p−1
2

k 6= ±p−1
3

(−1)kq2(3k
2+2k)

∞
∑

n=−∞

(−1)n(3pn+ 3k + 1)q2pn(3pn+6k+2)

− p(−1)
p2−1

3 q2·
p2−1

3 ψ(q4p
2

)(−q2p2 ;−q2p2)2∞
]

(mod 5). (2.6.6)

Now consider the congruence

m2 +m

2
+ 6k2 + 4k ≡ 19 · p

2 − 1

24
(mod p), (2.6.7)

where 0 ≤ m ≤ (p − 1)/2 and −(p − 1)/2 ≤ k ≤ (p − 1)/2. Since the above

congruence is equivalent to

(12k + 4)2 + 3(2m+ 1)2 ≡ 0 (mod p)

and

(−3

p

)

= −1 as p ≡ −1 (mod 6), it follows that the only solution of (2.6.7) is

k =
±p− 1

3
and m =

p− 1

2
. So, extracting the terms containing qpn+19· p

2−1
24 from

both sides of (2.6.6) and replacing qp by q, we obtain

∞
∑

n=0

b20

(

p2α+1n + 19 · p
2α+2 − 1

24

)

qn ≡ (−p)α+1ψ(qp)ψ(q4p)(−q2p;−q2p)2∞ (mod 5).

(2.6.8)
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Again extracting the terms containing qpn from both sides of the above congruence

and replacing qp by q, we arrive at

∞
∑

n=0

b20

(

p2α+2n+ 19 · p
2α+2 − 1

24

)

qn ≡ (−p)α+1ψ(q)ψ(q4)(−q2;−q2)2∞ (mod 5),

which is the α + 1 case of (2.6.5). 2

Now we are in a position to prove Theorem 1.2.1 and Theorem 1.2.3.

Proofs of Theorem 1.2.1 and Theorem 1.2.3. Comparing the coefficients of qpn+j,

1 ≤ j ≤ p − 1, from both sides of (2.6.4), we immediately obtain (1.2.2). On the

other hand, comparing the coefficients of qpn+j, 1 ≤ j ≤ p − 1 from both sides of

(2.6.8), we readily arrive at (1.2.4). 2

2.7 Table of congruences for ℓ-regular partitions

found in the literature

Carlson and Webb [23] have found congruences for ℓ-regular partitions when ℓ =10,

15 and 20 modulo 5. In this Chapter, we found congruences for ℓ-regular partitions

when ℓ =5, 6, 7 and 49 modulo 25, 3, 147 and 49, respectively. In the following

table, we list other values of ℓ for which congruences for ℓ-regular partitions have

been found in the literature.

Authors’ names and Source Year Values of ℓ Modulo

Hirschhorn and Sellers [41] 2010 5 2

Furcy and Penniston [35] 2012 ℓ ≡ 1 (mod3), ℓ ≤ 49 3

Cui and Gu [32] 2013 2, 4, 5, 8, 13, 16 2

Xia and Yao [57] 2013 9 2

Carlson and Webb [23] 2014 10, 15, 20 5

Cui and Gu [31] 2014 9 3
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Authors’ names and Source Year Values of ℓ Modulo

Lin and Wang [48] 2014 9 3

Yao [63] 2014 9 4, 8, 9

Ahmed and Baruah [1] 2015 5, 6, 7, 49 25, 3, 147, 49

Lin [47] 2015 13 3

Baruah and Das [13] 2015 7, 23 2

Lin [46] 2015 7 3

Hou, Sun and Zhang [42] 2015 3, 5, 6, 7, 10 3, 5, 7

Webb [56] 2015 13 3


