Chapter 2

New congruences for ℓ-regular partitions for $\ell \in\{5,6,7,49\}$

2.1 Introduction

As mentioned in the introductory chapter, this chapter includes several congruences for ℓ-regular partitions, for certain ℓ. In the next section, we state the p-dissections of $\psi(q), f(-q), f^{3}(-q)$ and $\psi\left(q^{2}\right) f^{2}(-q)$, where the p-dissections of $\psi(q)$ and $f(-q)$ are due to Cui and $\mathrm{Gu}[32]$ and the remaining two are new, which will be used in our subsequent sections. In Sections 2.3-2.5, we prove some theorems from which the following results are easily followed.

Theorem 2.1.1. If $j \in\{0,2,3,4,5,6\}$, then for any non-negative integers α and n,

$$
\begin{equation*}
b_{5}\left(25 \cdot 7^{6 \alpha+5}(7 n+j)+\frac{25 \cdot 7^{6 \alpha+5}-1}{6}\right) \equiv 0(\bmod 25) \tag{2.1.1}
\end{equation*}
$$

Theorem 2.1.2. If p is a prime such that $p \equiv-1(\bmod 6)$ and $1 \leq j \leq p-1$, then for any non-negative integers α and n,

$$
\begin{equation*}
b_{5}\left(25 p^{2 \alpha+1}(p n+j)+\frac{25 p^{2 \alpha+2}-1}{6}\right) \equiv 0(\bmod 25) . \tag{2.1.2}
\end{equation*}
$$

Theorem 2.1.3. If p is a prime such that $\left(\frac{-6}{p}\right)=-1$ and $1 \leq j \leq p-1$, then for any non-negative integers α and n,

$$
\begin{equation*}
b_{6}\left(p^{2 \alpha+1}(p n+j)+5 \cdot \frac{p^{2 \alpha}-1}{24}\right) \equiv 0(\bmod 3) . \tag{2.1.3}
\end{equation*}
$$

Theorem 2.1.4. For any non-negative integers α and n,

$$
\begin{equation*}
b_{7}\left(7^{3} \cdot 3^{2 \alpha+2} \cdot n+\frac{7^{3} \cdot 5 \cdot 3^{2 \alpha+1}-1}{4}\right) \equiv 0(\bmod 147) \tag{2.1.4}
\end{equation*}
$$

and

$$
\begin{equation*}
b_{7}\left(7^{3} \cdot 3^{2 \alpha+3} \cdot n+\frac{7^{3} \cdot 11 \cdot 3^{2 \alpha+2}-1}{4}\right) \equiv 0(\bmod 147) \tag{2.1.5}
\end{equation*}
$$

Theorem 2.1.5. If $p \geq 11$ is a prime such that $\left(\frac{-7}{p}\right)=-1$ and $1 \leq j \leq p-1$, then for any non-negative integers α and n,

$$
\begin{equation*}
b_{49}\left(7 p^{2 \alpha+1}(p n+j)+7\left(p^{2 \alpha+2}-1\right)+5\right) \equiv 0(\bmod 49) . \tag{2.1.6}
\end{equation*}
$$

In the last section of this chapter, we find two theorems from which (1.2.2) and (1.2.4) follow immediately.

The contents of this chapter have been submitted [1].

2.2 Preliminary lemmas

Cui and Gu [32] found the following p-dissections of $\psi(q)$ and $f(-q)$.

Lemma 2.2.1. (Cui and $\mathrm{Gu}[32$, Theorem 2.1]) If p is an odd prime, then

$$
\begin{equation*}
\psi(q)=\sum_{k=0}^{\frac{p-3}{2}} q^{\frac{k^{2}+k}{2}} f\left(q^{\frac{p^{2}+(2 k+1) p}{2}}, q^{\frac{p^{2}-(2 k+1) p}{2}}\right)+q^{\frac{p^{2}-1}{8}} \psi\left(q^{p^{2}}\right) . \tag{2.2.1}
\end{equation*}
$$

Furthermore, for $0 \leq k \leq \frac{p-3}{2}$,

$$
\frac{k^{2}+k}{2} \not \equiv \frac{p^{2}-1}{8}(\bmod p) .
$$

Lemma 2.2.2. (Cui and Gu [32, Theorem 2.2]) If $p \geq 5$ is a prime and

$$
\frac{ \pm p-1}{6}:= \begin{cases}\frac{p-1}{6}, & \text { if } p \equiv 1(\bmod 6) \\ \frac{-p-1}{6}, & \text { if } p \equiv-1(\bmod 6)\end{cases}
$$

then

$$
\begin{align*}
(q ; q)_{\infty}= & \sum^{\frac{p-1}{2}}(-1)^{k} q^{\frac{3 k^{2}+k}{2}} f\left(-q^{\frac{3 p^{2}+(6 k+1) p}{2}},-q^{\frac{3 p^{2}-(6 k+1) p}{2}}\right) \\
& k=-\frac{p-1}{2} \\
& k \neq \frac{ \pm p-1}{6} \\
& +(-1)^{\frac{ \pm p-1}{6}} q^{\frac{p^{2}-1}{24}}\left(q^{p^{2}} ; q^{p^{2}}\right)_{\infty} . \tag{2.2.2}
\end{align*}
$$

Furthermore, if $\frac{-(p-1)}{2} \leq k \leq \frac{(p-1)}{2}, k \neq \frac{(\pm p-1)}{6}$, then

$$
\frac{3 k^{2}+k}{2} \not \equiv \frac{p^{2}-1}{24}(\bmod p) .
$$

In the following two lemmas, we present new p-dissections of $(q ; q)_{\infty}^{3}$ and $\psi\left(q^{2}\right)(q ; q)_{\infty}^{2}$.

Lemma 2.2.3. If $p \geq 3$ is a prime, then

$$
\begin{align*}
(q ; q)_{\infty}^{3}= & \sum^{p-1}(-1)^{k} q^{\frac{k(k+1)}{2}} \sum_{n=0}^{\infty}(-1)^{n}(2 p n+2 k+1) q^{p n \cdot \frac{p n+2 k+1}{2}} \\
& k=0 \\
& k \neq \frac{p-1}{2} \\
& +p(-1)^{\frac{p-1}{2}} q^{\frac{p^{2}-1}{8}}\left(q^{p^{2}} ; q^{p^{2}}\right)_{\infty}^{3} . \tag{2.2.3}
\end{align*}
$$

Furthermore, if $k \neq \frac{p-1}{2}, 0 \leq k \leq p-1$, then

$$
\frac{k^{2}+k}{2} \not \equiv \frac{p^{2}-1}{8}(\bmod p) .
$$

Proof. From [20, p. 14], we recall Jacobi's identity

$$
(q ; q)_{\infty}^{3}=\sum_{n=0}^{\infty}(-1)^{n}(2 n+1) q^{\frac{n(n+1)}{2}} .
$$

Dissecting the above sum into p terms, we obtain

$$
\begin{aligned}
(q ; q)_{\infty}^{3}= & \sum_{k=0}^{p-1} \sum_{n=0}^{\infty}(-1)^{p n+k}(2(p n+k)+1) q^{\frac{(p n+k)((p n+k)+1)}{2}} \\
= & \sum_{k=0}^{p-1}(-1)^{k} q^{\frac{k(k+1)}{2}} \sum_{n=0}^{\infty}(-1)^{n}(2 p n+2 k+1) q^{p n \cdot \frac{p n+2 k+1}{2}} \\
= & \sum^{p-1}(-1)^{k} q^{\frac{k(k+1)}{2}} \sum_{n=0}^{\infty}(-1)^{n}(2 p n+2 k+1) q^{p n \cdot \frac{p n+2 k+1}{2}} \\
& k=0 \\
& k \neq \frac{p-1}{2} \\
= & (-1)^{\frac{p-1}{2}} q^{\frac{p^{2}-1}{8}} \sum_{n=0}^{\infty}(-1)^{n} p(2 n+1) q^{p^{2} \cdot \frac{n(n+1)}{2}} \\
& \quad k=0 \\
& k \neq \frac{p-1}{2} \\
& +p(-1)^{k} q^{\frac{p-1}{2}} q^{\frac{p^{2}-1}{8}}\left(q^{p^{2}} ; q^{p^{2}}\right)_{\infty}^{3} .
\end{aligned}
$$

If $\frac{k^{2}+k}{2} \equiv \frac{p^{2}-1}{8}(\bmod p)$, then we find that $k=\frac{p-1}{2}$, which completes the proof of (2.2.3).

Lemma 2.2.4. If $p \geq 5$ is a prime and

$$
\frac{ \pm p-1}{3}:= \begin{cases}\frac{p-1}{3}, & \text { if } p \equiv 1(\bmod 3) \\ \frac{-p-1}{3}, & \text { if } p \equiv-1(\bmod 3)\end{cases}
$$

then

$$
\begin{align*}
\psi\left(q^{2}\right)(q ; q)_{\infty}^{2}= & \sum^{\frac{p-1}{2}} q^{3 k^{2}+2 k} \sum_{n=-\infty}^{\infty}(3 p n+3 k+1) q^{p n(3 p n+6 k+2)} \\
& k=-\frac{p-1}{2} \\
& k \neq \frac{ \pm p-1}{3} \\
& \pm p q^{\frac{p^{2}-1}{3}} \psi\left(q^{2 p^{2}}\right)\left(q^{p^{2}} ; q^{p^{2}}\right)_{\infty}^{2}, \tag{2.2.4}
\end{align*}
$$

Furthermore, if $k \neq \frac{ \pm p-1}{3},-\frac{p-1}{2} \leq k \leq \frac{p-1}{2}$, then

$$
3 k^{2}+2 k \not \equiv \frac{p^{2}-1}{3}(\bmod p) .
$$

Proof. From [19, p. 21], we recall that

$$
\psi\left(q^{2}\right)(q ; q)_{\infty}^{2}=\sum_{n=-\infty}^{\infty}(3 n+1) q^{3 n^{2}+2 n}
$$

Dissecting the right side into p terms, we find that

$$
\begin{aligned}
& \psi\left(q^{2}\right)(q ; q)_{\infty}^{2}=\sum_{k=-\frac{p-1}{2}}^{\frac{p-1}{2}} \sum_{n=-\infty}^{\infty}(3(p n+k)+1) q^{3(p n+k)^{2}+2(p n+k)} \\
&=\sum_{k=-\frac{p-1}{2}}^{\frac{p-1}{2}} q^{3 k^{2}+2 k} \sum_{n=-\infty}^{\infty}(3 p n+3 k+1) q^{p n(3 p n+6 k+2)} \\
&=\quad \sum_{n=-\frac{p-1}{2}}^{\frac{p-1}{2}} q^{3 k^{2}+2 k} \sum_{n=-\infty}^{\infty}(3 p n+3 k+1) q^{p n(3 p n+6 k+2)} \\
& \quad k \neq \frac{ \pm p-1}{3} \\
& \pm q^{\frac{p^{2}-1}{3}} \sum_{n=-\infty}^{\infty} p(3 n+1) q^{p^{2}\left(3 n^{2}+2 n\right)} \\
&=\quad \sum_{n=-\frac{p-1}{2}} q^{3 k^{2}+2 k} \sum_{n=-\infty}^{\infty}(3 p n+3 k+1) q^{p n(3 p n+6 k+2)} \\
& \quad k=-\frac{p-1}{2} \\
& \quad k \neq \frac{ \pm p-1}{3} \\
& \pm p q^{\frac{p^{2}-1}{3}} \psi\left(q^{2 p^{2}}\right)\left(q^{p^{2}} ; q^{p^{2}}\right)_{\infty}^{2} .
\end{aligned}
$$

Now, if $3 k^{2}+2 k \equiv \frac{p^{2}-1}{3}(\bmod p)$, then $k=\frac{ \pm p-1}{3}$, which completes the proof of (2.2.4).

We end this section by defining an operator H which acts on a Laurent series in one variable by picking out those terms in which the power is congruent to 0 modulo
7. If

$$
\begin{equation*}
\xi:=\frac{(q ; q)_{\infty}}{q^{2}\left(q^{49} ; q^{49}\right)_{\infty}} \text { and } T:=\frac{\left(q^{7} ; q^{7}\right)_{\infty}^{4}}{q^{7}\left(q^{49} ; q^{49}\right)_{\infty}^{4}} \tag{2.2.5}
\end{equation*}
$$

then Garvan [36] proved that

$$
\begin{equation*}
H(\xi)=-1, H\left(\xi^{2}\right)=1, H\left(\xi^{3}\right)=-7, H\left(\xi^{4}\right)=-4 T-7, H\left(\xi^{5}\right)=10 T+49 \tag{2.2.6}
\end{equation*}
$$

and $H\left(\xi^{6}\right)=49$.

2.3 New congruences for 5-regular partitions

Theorem 2.3.1. If p is a prime such that $p \equiv-1(\bmod 6)$, then for all $\alpha \geq 0$,

$$
\begin{equation*}
\sum_{n=0}^{\infty} b_{5}\left(25 p^{2 \alpha} n+\frac{25 p^{2 \alpha}-1}{6}\right) q^{n} \equiv(-1)^{\alpha \cdot \frac{p-2}{3}} 5 p^{\alpha}(q ; q)_{\infty}^{4}(\bmod 25) \tag{2.3.1}
\end{equation*}
$$

Proof. It is clear from the generating function (1.2.1) that

$$
\begin{equation*}
\sum_{n=0}^{\infty} b_{5}(n) q^{n}=\frac{\left(q^{5} ; q^{5}\right)_{\infty}}{(q ; q)_{\infty}}=\left(q^{5} ; q^{5}\right)_{\infty} \sum_{n=0}^{\infty} P(n) q^{n} \tag{2.3.2}
\end{equation*}
$$

where $P(n)$ is the ordinary partition function, that is, the number of unrestricted partitions of the non-negative integer n.

It is well-known (for example, see [20]) that

$$
\sum_{n=0}^{\infty} P(5 n+4) q^{n}=5 \frac{\left(q^{5} ; q^{5}\right)_{\infty}^{5}}{(q ; q)_{\infty}^{6}}
$$

Therefore, from (2.3.2), we have

$$
\sum_{n=0}^{\infty} b_{5}(5 n+4) q^{n}=5 \frac{\left(q^{5} ; q^{5}\right)_{\infty}^{5}}{(q ; q)_{\infty}^{5}}
$$

Since $\left(q^{5} ; q^{5}\right)_{\infty} \equiv(q ; q)_{\infty}^{5}(\bmod 5)$, we find that

$$
\sum_{n=0}^{\infty} b_{5}(5 n+4) q^{n} \equiv 5\left(q^{5} ; q^{5}\right)_{\infty}^{4}(\bmod 25)
$$

Extracting the terms involving $q^{5 n}$ from both sides of the above and then replacing q^{5} by q, we obtain

$$
\begin{equation*}
\sum_{n=0}^{\infty} b_{5}(25 n+4) q^{n} \equiv 5(q ; q)_{\infty}^{4}(\bmod 25), \tag{2.3.3}
\end{equation*}
$$

which is the $\alpha=0$ case of (2.3.1). Now suppose that (2.3.1) holds for some $\alpha \geq 0$. With the help of (2.2.2) and (2.2.3), we can rewrite (2.3.1) as

$$
\begin{align*}
& \sum_{n=0}^{\infty} b_{5}\left(25 p^{2 \alpha} n+\frac{25 p^{2 \alpha}-1}{6}\right) q^{n} \\
& \equiv(-1)^{\alpha \cdot \frac{p-2}{3}} \cdot 5 p^{\alpha}\left[\sum_{\substack{m=-\frac{p-1}{2} \\
m \neq \frac{ \pm p-1}{6}}}^{\frac{p-1}{2}}(-1)^{m} q^{\frac{3 m^{2}+m}{2}} f\left(-q^{\frac{3 p^{2}+(6 m+1) p}{2}},-q^{\frac{3 p^{2}-(6 m+1) p}{2}}\right)\right. \\
& \left.\quad+(-1)^{\frac{ \pm p-1}{6}} q^{\frac{p^{2}-1}{24}} f\left(-q^{p^{2}}\right)\right] \\
& \quad \times \quad\left[\sum_{n=0}^{p-1}(-1)^{k} q^{\frac{k(k+1)}{2}} \sum_{n=0}^{\infty}(-1)^{n}(2 p n+2 k+1) q^{p n \cdot \frac{p n+2 k+1}{2}}\right. \\
& \quad k=0 \\
& \quad+p \neq \frac{p-1}{2} \tag{2.3.4}\\
& \left.\quad p(-1)^{\frac{p-1}{2}} q^{\frac{p^{2}-1}{8}}\left(q^{p^{2}} ; q^{p^{2}}\right)_{\infty}^{3}\right](\bmod 25) .
\end{align*}
$$

Now our objective is to find those terms above for which the powers of q satisfy the congruence

$$
\begin{equation*}
\frac{k^{2}+k}{2}+\frac{3 m^{2}+m}{2} \equiv \frac{p^{2}-1}{6}(\bmod p), \tag{2.3.5}
\end{equation*}
$$

where $0 \leq k \leq p-1$ and $-(p-1) / 2 \leq m \leq(p-1) / 2$. Since the above is equivalent to

$$
3(2 k+1)^{2}+(6 m+1)^{2} \equiv 0(\bmod p)
$$

and $\left(\frac{-3}{p}\right)=-1$ as $p \equiv-1(\bmod 6)$, it follows that the only solution of (2.3.5) is $k=\frac{p-1}{2}$ and $m=\frac{ \pm p-1}{6}$. Therefore, extracting the terms containing $q^{p n+\frac{p^{2}-1}{6}}$ from both sides of (2.3.4) and replacing q^{p} by q, we obtain

$$
\begin{equation*}
\sum_{n=0}^{\infty} b_{5}\left(25 p^{2 \alpha+1} n+\frac{25 p^{2 \alpha+2}-1}{6}\right) q^{n} \equiv(-1)^{(\alpha+1) \frac{p-2}{3}} 5 p^{\alpha+1}\left(q^{p} ; q^{p}\right)_{\infty}^{4}(\bmod 25) \tag{2.3.6}
\end{equation*}
$$

Again extracting the terms containing $q^{p n}$ from both sides of the above and replacing q^{p} by q, we find that

$$
\sum_{n=0}^{\infty} b_{5}\left(25 p^{2 \alpha+2} n+\frac{25 p^{2 \alpha+2}-1}{6}\right) q^{n} \equiv(-1)^{(\alpha+1) \frac{p-2}{3}} 5 p^{\alpha+1}(q ; q)_{\infty}^{4}(\bmod 25),
$$

which is clearly the $\alpha+1$ case of (2.3.1). This completes the proof.

Theorem 2.3.2. For $\alpha \geq 0$, we have

$$
\begin{equation*}
\sum_{n=0}^{\infty} b_{5}\left(25 \cdot 7^{6 \alpha} n+\frac{25 \cdot 7^{6 \alpha}-1}{6}\right) q^{n} \equiv 2^{\alpha} \cdot 5(q ; q)_{\infty}^{4}(\bmod 25) \tag{2.3.7}
\end{equation*}
$$

Proof. We again use induction on α. From (2.3.3), we have

$$
\sum_{n=0}^{\infty} b_{5}(25 n+4) q^{n} \equiv 5(q ; q)_{\infty}^{4}(\bmod 25)
$$

which is the $\alpha=0$ case of (2.3.7). Now suppose that (2.3.7) holds for some $\alpha \geq 0$. With the aid of (2.2.5), we rewrite (2.3.7) as

$$
\sum_{n=0}^{\infty} b_{5}\left(25 \cdot 7^{6 \alpha} n+\frac{25 \cdot 7^{6 \alpha}-1}{6}\right) q^{n} \equiv 2^{\alpha} \cdot 5 q^{8}\left(q^{49} ; q^{49}\right)_{\infty}^{4} \xi^{4}(\bmod 25)
$$

Extracting the terms containing $q^{7 n+1}$ from both sides of the above congruence, and then using (2.2.6), we find that

$$
\begin{aligned}
& \sum_{n=0}^{\infty} b_{5}\left(25 \cdot 7^{6 \alpha}(7 n+1)+\frac{25 \cdot 7^{6 \alpha}-1}{6}\right) q^{7 n+1} \\
& \equiv 2^{\alpha} \cdot 5 q^{8}\left(q^{49} ; q^{49}\right)_{\infty}^{4} H\left(\xi^{4}\right) \\
& \equiv 2^{\alpha} \cdot 5 q^{8}\left(q^{49} ; q^{49}\right)_{\infty}^{4}\left(-4 \frac{\left(q^{7} ; q^{7}\right)_{\infty}^{4}}{q^{7}\left(q^{49} ; q^{49}\right)_{\infty}^{4}}-7\right)(\bmod 25) .
\end{aligned}
$$

Dividing both sides by q and replacing q^{7} by q, we have

$$
\begin{aligned}
& \sum_{n=0}^{\infty} b_{5}\left(25 \cdot 7^{6 \alpha+1} \cdot n+25 \cdot 7^{6 \alpha}+\frac{25 \cdot 7^{6 \alpha}-1}{6}\right) q^{n} \\
& \equiv 2^{\alpha}\left(5(q ; q)_{\infty}^{4}+15 q\left(q^{7} ; q^{7}\right)_{\infty}^{4}\right)(\bmod 25)
\end{aligned}
$$

which can be rewritten with the help of (2.2.5) as

$$
\begin{aligned}
& \sum_{n=0}^{\infty} b_{5}\left(25 \cdot 7^{6 \alpha+1} \cdot n+25 \cdot 7^{6 \alpha}+\frac{25 \cdot 7^{6 \alpha}-1}{6}\right) q^{n} \\
& \equiv 2^{\alpha}\left(5 q^{8}\left(q^{49} ; q^{49}\right)_{\infty}^{4} \xi^{4}+15 q\left(q^{7} ; q^{7}\right)_{\infty}^{4}\right)(\bmod 25)
\end{aligned}
$$

Extracting the terms containing $q^{7 n+1}$ from both sides of the above and then using (2.2.6), we deduce that

$$
\begin{aligned}
& \sum_{n=0}^{\infty} b_{5}\left(25 \cdot 7^{6 \alpha+1} \cdot(7 n+1)+25 \cdot 7^{6 \alpha}+\frac{25 \cdot 7^{6 \alpha}-1}{6}\right) q^{n} \\
& \equiv 2^{\alpha}\left(20(q ; q)_{\infty}^{4}+15 q\left(q^{7} ; q^{7}\right)_{\infty}^{4}\right)(\bmod 25) .
\end{aligned}
$$

Proceeding further in a similar way, we find that

$$
\begin{aligned}
& \sum_{n=0}^{\infty} b_{5}\left(25 \cdot 7^{6 \alpha+4} \cdot(7 n+1)+25 \cdot 7^{6 \alpha}\left(1+7+7^{2}+7^{3}\right)+\frac{25 \cdot 7^{6 \alpha}-1}{6}\right) q^{7 n+1} \\
& \equiv 2^{\alpha}\left(-75 q\left(q^{7} ; q^{7}\right)_{\infty}^{4}+10 q^{8}\left(q^{49} ; q^{49}\right)_{\infty}^{4}\right) \\
& \equiv 2^{\alpha} \cdot 10 q^{8}\left(q^{49} ; q^{49}\right)_{\infty}^{4}(\bmod 25)
\end{aligned}
$$

Dividing both sides of the above by q and replacing q^{7} by q, we obtain

$$
\begin{align*}
& \sum_{n=0}^{\infty} b_{5}\left(25 \cdot 7^{6 \alpha+5} \cdot n+25 \cdot 7^{6 \alpha}\left(1+7+7^{2}+7^{3}+7^{4}\right)+\frac{25 \cdot 7^{6 \alpha}-1}{6}\right) q^{n} \\
& \equiv 2^{\alpha} \cdot 10 q\left(q^{7} ; q^{7}\right)_{\infty}^{4}(\bmod 25) \tag{2.3.8}
\end{align*}
$$

Extracting the terms containing $q^{7 n+1}$ from both sides of the above and then simplifying, we arrive at

$$
\sum_{n=0}^{\infty} b_{5}\left(25 \cdot 7^{6 \alpha+6} \cdot n+\frac{25 \cdot 7^{6 \alpha+6}-1}{6}\right) q^{n} \equiv 2^{\alpha+1} \cdot 5(q ; q)_{\infty}^{4}(\bmod 25)
$$

which is the $\alpha+1$ case of (2.3.7).
Now we prove Theorem 2.1.1 and Theorem 2.1.2.

Proofs of Theorem 2.1.1 and Theorem 2.1.2. Comparing the coefficients of q^{j}, $j \in\{0,2,3,4,5,6\}$ on both sides of (2.3.8), we easily arrive at (2.1.1). Again, comparing the coefficients of $q^{p n+j}, 1 \leq j \leq p-1$, on both sides of (2.3.6), we readily deduce (2.1.2).

2.4 New congruences for 6-regular partitions

Theorem 2.4.1. If p is a prime such that $\left(\frac{-6}{p}\right)=-1$, then for all $\alpha \geq 0$,

$$
\begin{equation*}
\sum_{n=0}^{\infty} b_{6}\left(p^{2 \alpha} n+5 \cdot \frac{p^{2 \alpha}-1}{24}\right) q^{n} \equiv(-1)^{\alpha \frac{ \pm p-1}{6}} \psi(q)\left(q^{2} ; q^{2}\right)_{\infty}(\bmod 3) \tag{2.4.1}
\end{equation*}
$$

Proof. Once again we use induction on α. Since $(q ; q)_{\infty}^{3} \equiv\left(q^{3} ; q^{3}\right)_{\infty}(\bmod 3)$, we have

$$
\sum_{n=0}^{\infty} b_{6}(n) q^{n}=\frac{\left(q^{6} ; q^{6}\right)_{\infty}}{(q ; q)_{\infty}} \equiv \frac{\left(q^{2} ; q^{2}\right)_{\infty}^{3}}{(q ; q)_{\infty}} \equiv \psi(q)\left(q^{2} ; q^{2}\right)_{\infty}(\bmod 3)
$$

which is the $\alpha=0$ case of (2.4.1). Now suppose that (2.4.1) holds for some $\alpha \geq 0$. Using (2.2.1) and (2.2.2), we rewrite (2.4.1) as

$$
\begin{align*}
& \sum_{n=0}^{\infty} b_{6}\left(p^{2 \alpha} n+5 \cdot \frac{p^{2 \alpha}-1}{24}\right) q^{n} \\
& \equiv(-1)^{\alpha \pm p-1} \\
& \quad \times\left[\sum_{m=0}^{\frac{p-3}{2}} q^{\frac{m^{2}+m}{2}} f\left(q^{\frac{p^{2}+(2 m+1) p}{2}}, q^{\frac{p^{2}-(2 m+1) p}{2}}\right)+q^{\frac{p^{2}-1}{8}} \psi\left(q^{p^{2}}\right)\right] \\
& \quad \sum_{\substack{k=-\frac{p-1}{2} \\
k \neq \frac{ \pm p-1}{6}}}^{\frac{p-1}{2}}(-1)^{k} q^{3 k^{2}+k} f\left(-q^{3 p^{2}+(6 k+1) p},-q^{3 p^{2}-(6 k+1) p}\right) \tag{2.4.2}\\
& \left.\quad+(-1)^{\frac{ \pm p-1}{6}} q^{\frac{p^{2}-1}{12}}\left(q^{2 p^{2}} ; q^{2 p^{2}}\right)_{\infty}\right](\bmod 3) .
\end{align*}
$$

We now consider the congruence

$$
\begin{equation*}
3 k^{2}+k+\frac{m^{2}+m}{2} \equiv \frac{5\left(p^{2}-1\right)}{24}(\bmod p), \tag{2.4.3}
\end{equation*}
$$

where $0 \leq m \leq(p-1) / 2$ and $-(p-1) / 2 \leq k \leq(p-1) / 2$. Since the above is equivalent to

$$
(12 k+2)^{2}+6(2 m+1)^{2} \equiv 0(\bmod p)
$$

and $\left(\frac{-6}{p}\right)=-1$, it follows that the only solution of (2.4.3) is $k=\frac{ \pm p-1}{6}$ and $m=\frac{p-1}{2}$. Therefore, extracting the terms containing $q^{p n+\frac{5 p^{2}-5}{24}}$ from both sides of
(2.4.2) and replacing q^{p} by q, we obtain

$$
\begin{align*}
& \sum_{n=0}^{\infty} b_{6}\left(p^{2 \alpha}\left(p n+\frac{5 p^{2}-5}{24}\right)+5 \cdot \frac{p^{2 \alpha}-1}{24}\right) q^{n} \\
& \equiv(-1)^{(\alpha+1) \frac{ \pm p-1}{6}} \psi\left(q^{p}\right)\left(q^{2 p} ; q^{2 p}\right)_{\infty}(\bmod 3) . \tag{2.4.4}
\end{align*}
$$

Again extracting the terms containing $q^{p n}$ from both sides of the above congruence and replacing q^{p} by q, we find that

$$
\sum_{n=0}^{\infty} b_{6}\left(p^{2 \alpha+2} n+5 \cdot \frac{p^{2 \alpha+2}-1}{24}\right) q^{n} \equiv(-1)^{(\alpha+1) \frac{ \pm p-1}{6}} \psi(q)\left(q^{2} ; q^{2}\right)_{\infty}(\bmod 3),
$$

which is obviously the $\alpha+1$ case of (2.4.1).
We now prove Theorem 2.1.3.

Proof of Theorem 2.1.3. Comparing the coefficients of $q^{p n+j}, 1 \leq j \leq p-1$, on both sides of (2.4.4), we easily arrive at (2.1.3).

2.5 New congruences for 7- and 49-regular partitions

We first prove Theorem 2.1.4.

Proof of Theorem 2.1.4. We note that

$$
\begin{equation*}
\sum_{n=0}^{\infty} b_{7}(n) q^{n}=\frac{\left(q^{7} ; q^{7}\right)_{\infty}}{(q ; q)_{\infty}}=\left(q^{7} ; q^{7}\right)_{\infty} \sum_{n=0}^{\infty} P(n) q^{n} \tag{2.5.1}
\end{equation*}
$$

where $P(n)$ is the ordinary partition function.
From [20, Equation 2.4.5, p. 40], we recall the well-known identity

$$
\begin{equation*}
\sum_{n=0}^{\infty} P(7 n+5) q^{n}=7 \frac{\left(q^{7} ; q^{7}\right)_{\infty}^{3}}{(q ; q)_{\infty}^{4}}+49 q \frac{\left(q^{7} ; q^{7}\right)_{\infty}^{7}}{(q ; q)_{\infty}^{8}} \tag{2.5.2}
\end{equation*}
$$

Employing the above in (2.5.1), we find that

$$
\sum_{n=0}^{\infty} b_{7}(7 n+5) q^{n}=7 \frac{\left(q^{7} ; q^{7}\right)_{\infty}^{3}}{(q ; q)_{\infty}^{3}}+49 q \frac{\left(q^{7} ; q^{7}\right)_{\infty}^{7}}{(q ; q)_{\infty}^{7}}
$$

Therefore,

$$
\sum_{n=0}^{\infty} b_{7}(7 n+5) q^{n} \equiv 7 \frac{\left(q^{7} ; q^{7}\right)_{\infty}^{3}}{(q ; q)_{\infty}^{3}} \equiv 7\left(q^{7} ; q^{7}\right)_{\infty}^{2}(q ; q)_{\infty}^{4}(\bmod 49)
$$

which, by (2.2.5), is equivalent to

$$
\sum_{n=0}^{\infty} b_{7}(7 n+5) q^{n} \equiv 7 q^{8}\left(q^{7} ; q^{7}\right)_{\infty}^{2}\left(q^{49} ; q^{49}\right)_{\infty}^{4} \xi^{4}(\bmod 49)
$$

Extracting the terms containing $q^{7 n+1}$ from the above, we have

$$
\sum_{n=0}^{\infty} b_{7}(49 n+12) q^{7 n+1} \equiv 7 q^{8}\left(q^{7} ; q^{7}\right)_{\infty}^{2}\left(q^{49} ; q^{49}\right)_{\infty}^{4} H\left(\xi^{4}\right)(\bmod 49)
$$

which, by (2.2.6), reduces to

$$
\begin{aligned}
\sum_{n=0}^{\infty} b_{7}(49 n+12) q^{7 n+1} & \equiv 7 q^{8}\left(q^{7} ; q^{7}\right)_{\infty}^{2}\left(q^{49} ; q^{49}\right)_{\infty}^{4}\left(-\frac{4\left(q^{7} ; q^{7}\right)_{\infty}^{4}}{q^{7}\left(q^{49} ; q^{49}\right)_{\infty}^{4}}-7\right) \\
& \equiv 21 q\left(q^{7} ; q^{7}\right)_{\infty}^{6}(\bmod 49)
\end{aligned}
$$

Dividing both sides of the above by q and replacing q^{7} by q and then again using (2.2.5), we find that

$$
\sum_{n=0}^{\infty} b_{7}(49 n+12) q^{n} \equiv 21 q^{12}\left(q^{49} ; q^{49}\right)_{\infty}^{6} \xi^{6}(\bmod 49)
$$

Extracting the terms containing $q^{7 n+5}$ from both sides of the above, we have

$$
\sum_{n=0}^{\infty} b_{7}(343 n+257) q^{7 n+5} \equiv 21 q^{12}\left(q^{49} ; q^{49}\right)_{\infty}^{6} H\left(\xi^{6}\right)(\bmod 49)
$$

Employing once again (2.2.6), we arrive at

$$
\begin{equation*}
b_{7}(343 n+257) \equiv 0(\bmod 49) \tag{2.5.3}
\end{equation*}
$$

Now, from Furcy and Penniston's paper [35], for all $\alpha, n \geq 0$, we note that

$$
\begin{equation*}
b_{7}\left(3^{2 \alpha+2} n+\frac{11 \cdot 3^{2 \alpha+1}-1}{4}\right) \equiv 0(\bmod 3) \tag{2.5.4}
\end{equation*}
$$

and

$$
\begin{equation*}
b_{7}\left(3^{2 \alpha+3} n+\frac{11 \cdot 3^{2 \alpha+2}-1}{4}\right) \equiv 0(\bmod 3) . \tag{2.5.5}
\end{equation*}
$$

Again, replacing n by $3^{2 \alpha+2} n+\frac{5 \cdot 3^{2 \alpha+1}-3}{4}$ in (2.5.3), we have

$$
b_{7}\left(7^{3} \cdot\left(3^{2 \alpha+2} n+\frac{5 \cdot 3^{2 \alpha+1}-3}{4}\right)+257\right) \equiv 0(\bmod 49),
$$

that is,

$$
b_{7}\left(3^{2 \alpha+2}\left(7^{3} \cdot n+142\right)+\frac{11 \cdot 3^{2 \alpha+1}-1}{4}\right) \equiv 0(\bmod 49)
$$

Now from (2.5.4) and the above congruence, we easily deduce (2.1.4).
Similarly, replacing n by $3^{2 \alpha+3} n+\frac{11 \cdot 3^{2 \alpha+2}-3}{4}$ in (2.5.3) and using (2.5.5) we easily arrive at (2.1.5) to finish the proof.

Theorem 2.5.1. If p is a prime such that $\left(\frac{-7}{p}\right)=-1$ and $p \geq 5$, then for all $\alpha \geq 0$,

$$
\begin{equation*}
\sum_{n=0}^{\infty} b_{49}\left(7 p^{2 \alpha} n+7\left(p^{2 \alpha}-1\right)+5\right) q^{n} \equiv 7 p^{2 \alpha}(q ; q)_{\infty}^{3}\left(q^{7} ; q^{7}\right)_{\infty}^{3}(\bmod 49) \tag{2.5.6}
\end{equation*}
$$

Proof. We note that

$$
\sum_{n=0}^{\infty} b_{49}(n) q^{n}=\frac{\left(q^{49} ; q^{49}\right)_{\infty}}{(q ; q)_{\infty}}=\left(q^{49} ; q^{49}\right)_{\infty} \sum_{n=0}^{\infty} P(n) q^{n}
$$

Employing (2.5.2), we have

$$
\sum_{n=0}^{\infty} b_{49}(7 n+5) q^{n}=\left(q^{7} ; q^{7}\right)_{\infty}\left(7 \frac{\left(q^{7} ; q^{7}\right)_{\infty}^{3}}{(q ; q)_{\infty}^{4}}+49 q \frac{\left(q^{7} ; q^{7}\right)_{\infty}^{7}}{(q ; q)_{\infty}^{8}}\right)
$$

Therefore,

$$
\begin{equation*}
\sum_{n=0}^{\infty} b_{49}(7 n+5) q^{n} \equiv 7(q ; q)_{\infty}^{24} \equiv 7(q ; q)_{\infty}^{3}\left(q^{7} ; q^{7}\right)_{\infty}^{3}(\bmod 49) \tag{2.5.7}
\end{equation*}
$$

which is clearly the $\alpha=0$ case of (2.5.6). Now suppose that (2.5.6) holds for some $\alpha \geq 0$.

With the help of (2.2.3), we rewrite (2.5.6) as

$$
\begin{align*}
& \sum_{n=0}^{\infty} b_{49}\left(7 p^{2 \alpha} n+14\left(p^{2 \alpha}-1\right)+5\right) q^{n} \\
& \equiv 7 p^{2 \alpha}\left[\sum_{m=0}^{p-1}(-1)^{m} q^{\frac{m(m+1)}{2}} \sum_{n=0}^{\infty}(-1)^{n}(2 p n+2 m+1) q^{p n \cdot \frac{p n+2 m+1}{2}}\right. \\
& \quad m \neq \frac{p-1}{2} \\
& \left.\quad+p(-1)^{\frac{p-1}{2}} q^{\frac{p^{2}-1}{8}}\left(q^{p^{2}} ; q^{p^{2}}\right)_{\infty}^{3}\right] \\
& \quad \times\left[\sum_{n=0}^{p-1}(-1)^{k} q^{\frac{7 k(k+1)}{2}} \sum_{n=0}^{\infty}(-1)^{n}(2 p n+2 k+1) q^{7 p n \cdot \frac{p n+2 k+1}{2}}\right. \\
& \quad k=0 \\
& \quad k \neq \frac{p-1}{2} \tag{2.5.8}\\
& \left.+p(-1)^{\frac{p-1}{2}} q^{7 \cdot \frac{p^{2}-1}{8}}\left(q^{7 p^{2}} ; q^{7 p^{2}}\right)_{\infty}^{3}\right](\bmod 49) .
\end{align*}
$$

We now want to know when the exponents above satisfy the congruence

$$
\begin{equation*}
\frac{m^{2}+m}{2}+7 \frac{k^{2}+k}{2} \equiv p^{2}-1(\bmod p), \tag{2.5.9}
\end{equation*}
$$

where $0 \leq k, m \leq p-1$. Since the above congruence is equivalent to

$$
(2 m+1)^{2}+7(2 k+1)^{2} \equiv 0(\bmod p)
$$

and since $\left(\frac{-7}{p}\right)=-1$, it follows that the only solution of (2.5.9) is $m=\frac{p-1}{2}$ and $k=\frac{p-1}{2}$. Therefore, extracting the terms containing $q^{p n+p^{2}-1}$ from both sides of (2.5.8) and replacing q^{p} by q, we find that

$$
\begin{align*}
& \sum_{n=0}^{\infty} b_{49}\left(7 p^{2 \alpha}\left(p n+p^{2}-1\right)+7\left(p^{2 \alpha}-1\right)+5\right) q^{n} \\
& \equiv 7 p^{2 \alpha+2}\left(q^{p} ; q^{p}\right)_{\infty}^{3}\left(q^{7 p} ; q^{7 p}\right)_{\infty}^{3}(\bmod 49) \tag{2.5.10}
\end{align*}
$$

Again extracting the terms containing $q^{p n}$ from both sides of the above congruence and replacing q^{p} by q, we find that

$$
\sum_{n=0}^{\infty} b_{49}\left(7 p^{2 \alpha+2} n+7\left(p^{2 \alpha+2}-1\right)+5\right) q^{n} \equiv 7 p^{2 \alpha+2}(q ; q)_{\infty}^{3}\left(q^{7} ; q^{7}\right)_{\infty}^{3}(\bmod 49)
$$

which is the case for $\alpha+1$ of (2.5.6). Thus we complete the proof.
We now prove Theorem 2.1.5.
Proof of Theorem 2.1.5. Comparing the coefficients of $q^{p n+j}, 1 \leq j \leq p-1$, on both sides of (2.5.10), we can easily deduce (2.1.6).

Using (2.2.3) in (2.5.7) and then comparing the coefficients of $q^{7 n+j}$ for $j \in$ $\{2,4,5\}$, we readily obtain the following result.

Corollary 2.5.2. For any non-negative integer n and $j \in\{2,4,5\}$,

$$
b_{49}(7(7 n+j)+5) \equiv 0(\bmod 49) .
$$

2.6 Proofs of Theorem 1.2.1 and Theorem 1.2.3

Theorem 2.6.1. If p is a prime such that $p \equiv 5$ or $7(\bmod 8)$ and $\alpha \geq 0$, then

$$
\begin{equation*}
\sum_{n=0}^{\infty} b_{10}\left(p^{2 \alpha} n+3 \cdot \frac{p^{2 \alpha}-1}{8}\right) q^{n} \equiv p^{\alpha}(-1)^{\alpha \cdot \frac{p-1}{2}} \psi(q)\left(q^{2} ; q^{2}\right)_{\infty}^{3}(\bmod 5) \tag{2.6.1}
\end{equation*}
$$

Proof. We prove the theorem by induction on α. Note that

$$
\sum_{n=0}^{\infty} b_{10}(n) q^{n}=\frac{\left(q^{10} ; q^{10}\right)_{\infty}}{(q ; q)_{\infty}}
$$

Since $(q ; q)_{\infty}^{5} \equiv\left(q^{5} ; q^{5}\right)_{\infty}(\bmod 5)$, we find that

$$
\sum_{n=0}^{\infty} b_{10}(n) q^{n} \equiv \frac{\left(q^{2} ; q^{2}\right)_{\infty}^{5}}{(q ; q)_{\infty}} \equiv \psi(q)\left(q^{2} ; q^{2}\right)_{\infty}^{3}(\bmod 5)
$$

which is the $\alpha=0$ case of (2.6.1). Suppose (2.6.1) holds for some $\alpha \geq 0$. With the
help of (2.2.1) and (2.2.3), we can rewrite (2.6.1) as

$$
\begin{align*}
& \sum_{n=0}^{\infty} b_{10}\left(p^{2 \alpha} n+3 \cdot \frac{p^{2 \alpha}-1}{8}\right) q^{n} \\
& \equiv p^{\alpha}(-1)^{\alpha \cdot \frac{p-1}{2}}\left[\sum_{m=0}^{\frac{p-3}{2}} q^{\frac{m^{2}+m}{2}} f\left(q^{\frac{p^{2}+(2 m+1) p}{2}}, q^{\frac{p^{2}-(2 m+1) p}{2}}\right)+q^{\frac{p^{2}-1}{8}} \psi\left(q^{p^{2}}\right)\right] \\
& \quad \times\left[\sum_{n=0}^{p-1}(-1)^{k} q^{k(k+1)} \sum_{n=0}^{\infty}(-1)^{n}(2 p n+2 k+1) q^{p n(p n+2 k+1)}\right. \\
& \quad k=0 \\
& \quad k \neq \frac{p-1}{2} \tag{2.6.2}\\
& \left.\quad+p(-1)^{\frac{p-1}{2}} q^{2 \cdot \frac{p^{2}-1}{8}}\left(q^{2 p^{2}} ; q^{2 p^{2}}\right)_{\infty}^{3}\right](\bmod 5) .
\end{align*}
$$

We want those terms above for which the powers of q satisfy the congruence

$$
k^{2}+k+\frac{m^{2}+m}{2} \equiv 3 \cdot \frac{p^{2}-1}{8}(\bmod p)
$$

where $0 \leq k \leq p-1$ and $0 \leq m \leq(p-1) / 2$. The congruence is clearly equivalent to

$$
\begin{equation*}
2(2 k+1)^{2}+(2 m+1)^{2} \equiv 0(\bmod p) \tag{2.6.3}
\end{equation*}
$$

Since $\left(\frac{-2}{p}\right)=-1$ as $p \equiv 5$ or $7(\bmod 8)$, the only solution of $(2.6 .3)$ is $k=\frac{p-1}{2}$ and $m=\frac{p-1}{2}$. Therefore, extracting the terms involving $q^{p n+3 \cdot \frac{p^{2}-1}{8}}$ from both sides of (2.6.2) and then replacing q^{p} by q, we find that

$$
\begin{equation*}
\sum_{n=0}^{\infty} b_{10}\left(p^{2 \alpha+1} n+3 \frac{p^{2 \alpha+2}-1}{8}\right) q^{n} \equiv p^{\alpha+1}(-1)^{(\alpha+1) \frac{p-1}{2}} \psi\left(q^{p}\right)\left(q^{2 p} ; q^{2 p}\right)_{\infty}^{3}(\bmod 5) \tag{2.6.4}
\end{equation*}
$$

Again extracting the terms containing $q^{p n}$ from both sides of the above congruence and replacing q^{p} by q, we arrive at

$$
\sum_{n=0}^{\infty} b_{10}\left(p^{2 \alpha+2} n+3 \frac{p^{2 \alpha+2}-1}{8}\right) q^{n} \equiv p^{\alpha+1}(-1)^{(\alpha+1) \frac{p-1}{2}} \psi(q)\left(q^{2} ; q^{2}\right)_{\infty}^{3}(\bmod 5)
$$

which is the $\alpha+1$ case of (2.6.1).

Theorem 2.6.2. If p is a prime such that $p \equiv-1(\bmod 6)$, then for all $\alpha \geq 0$,

$$
\begin{equation*}
\sum_{n=0}^{\infty} b_{20}\left(p^{2 \alpha} n+19 \cdot \frac{p^{2 \alpha}-1}{24}\right) q^{n} \equiv(-p)^{\alpha} \psi(q) \psi\left(q^{4}\right)\left(-q^{2} ;-q^{2}\right)_{\infty}^{2}(\bmod 5) \tag{2.6.5}
\end{equation*}
$$

Proof. We use induction on α. Clearly,

$$
\sum_{n=0}^{\infty} b_{20}(n) q^{n}=\frac{\left(q^{20} ; q^{20}\right)_{\infty}}{(q ; q)_{\infty}} \equiv \frac{\left(q^{4} ; q^{4}\right)_{\infty}^{5}}{(q ; q)_{\infty}} \equiv \psi(q) \psi\left(q^{4}\right)\left(-q^{2} ;-q^{2}\right)_{\infty}^{2}(\bmod 5)
$$

which is $\alpha=0$ case of (2.6.5). Now suppose (2.6.5) holds for some $\alpha \geq 0$. Using (2.2.1) and (2.2.4) with q replaced by $-q^{2}$ in (2.6.5), we have

$$
\begin{align*}
& \sum_{n=0}^{\infty} b_{20}\left(p^{2 \alpha} n+19 \cdot \frac{p^{2 \alpha}-1}{24}\right) q^{n} \\
& \equiv(-p)^{\alpha}\left[\sum_{m=0}^{\frac{p-3}{2}} q^{\frac{m^{2}+m}{2}} f\left(q^{\frac{p^{2}+(2 m+1) p}{2}}, q^{\frac{p^{2}-(2 m+1) p}{2}}\right)+q^{\frac{p^{2}-1}{8}} \psi\left(q^{p^{2}}\right)\right] \\
& \quad \times\left[\sum_{n=-\infty}^{\frac{p-1}{2}}(-1)^{k} q^{2\left(3 k^{2}+2 k\right)} \sum_{n=-\infty}^{\infty}(-1)^{n}(3 p n+3 k+1) q^{2 p n(3 p n+6 k+2)}\right. \\
& \quad k=-\frac{p-1}{2} \\
& \quad k \neq \frac{ \pm p-1}{3} \tag{2.6.6}\\
& \left.\quad-p(-1)^{\frac{p^{2}-1}{3}} q^{2 \cdot \frac{p^{2}-1}{3}} \psi\left(q^{4 p^{2}}\right)\left(-q^{2 p^{2}} ;-q^{2 p^{2}}\right)_{\infty}^{2}\right](\bmod 5) .
\end{align*}
$$

Now consider the congruence

$$
\begin{equation*}
\frac{m^{2}+m}{2}+6 k^{2}+4 k \equiv 19 \cdot \frac{p^{2}-1}{24}(\bmod p) \tag{2.6.7}
\end{equation*}
$$

where $0 \leq m \leq(p-1) / 2$ and $-(p-1) / 2 \leq k \leq(p-1) / 2$. Since the above congruence is equivalent to

$$
(12 k+4)^{2}+3(2 m+1)^{2} \equiv 0(\bmod p)
$$

and $\left(\frac{-3}{p}\right)=-1$ as $p \equiv-1(\bmod 6)$, it follows that the only solution of $(2.6 .7)$ is $k=\frac{ \pm p-1}{3}$ and $m=\frac{p-1}{2}$. So, extracting the terms containing $q^{p n+19 \cdot \frac{p^{2}-1}{24}}$ from both sides of (2.6.6) and replacing q^{p} by q, we obtain

$$
\begin{equation*}
\sum_{n=0}^{\infty} b_{20}\left(p^{2 \alpha+1} n+19 \cdot \frac{p^{2 \alpha+2}-1}{24}\right) q^{n} \equiv(-p)^{\alpha+1} \psi\left(q^{p}\right) \psi\left(q^{4 p}\right)\left(-q^{2 p} ;-q^{2 p}\right)_{\infty}^{2}(\bmod 5) \tag{2.6.8}
\end{equation*}
$$

Again extracting the terms containing $q^{p n}$ from both sides of the above congruence and replacing q^{p} by q, we arrive at

$$
\sum_{n=0}^{\infty} b_{20}\left(p^{2 \alpha+2} n+19 \cdot \frac{p^{2 \alpha+2}-1}{24}\right) q^{n} \equiv(-p)^{\alpha+1} \psi(q) \psi\left(q^{4}\right)\left(-q^{2} ;-q^{2}\right)_{\infty}^{2}(\bmod 5)
$$

which is the $\alpha+1$ case of (2.6.5).
Now we are in a position to prove Theorem 1.2.1 and Theorem 1.2.3.
Proofs of Theorem 1.2.1 and Theorem 1.2.3. Comparing the coefficients of $q^{p n+j}$, $1 \leq j \leq p-1$, from both sides of (2.6.4), we immediately obtain (1.2.2). On the other hand, comparing the coefficients of $q^{p n+j}, 1 \leq j \leq p-1$ from both sides of (2.6.8), we readily arrive at (1.2.4).

2.7 Table of congruences for ℓ-regular partitions found in the literature

Carlson and Webb [23] have found congruences for ℓ-regular partitions when $\ell=10$, 15 and 20 modulo 5. In this Chapter, we found congruences for ℓ-regular partitions when $\ell=5,6,7$ and 49 modulo $25,3,147$ and 49 , respectively. In the following table, we list other values of ℓ for which congruences for ℓ-regular partitions have been found in the literature.

Authors' names and Source	Year	Values of ℓ	Modulo
Hirschhorn and Sellers [41]	2010	5	2
Furcy and Penniston [35]	2012	$\ell \equiv 1(\bmod 3), \ell \leq 49$	3
Cui and Gu [32]	2013	$2,4,5,8,13,16$	2
Xia and Yao [57]	2013	9	2
Carlson and Webb [23]	2014	$10,15,20$	5
Cui and Gu [31]	2014	9	3

Authors' names and Source	Year	Values of ℓ	Modulo
Lin and Wang [48]	2014	9	3
Yao [63]	2014	9	$4,8,9$
Ahmed and Baruah [1]	2015	$5,6,7,49$	$25,3,147,49$
Lin [47]	2015	13	3
Baruah and Das [13]	2015	7,23	2
Lin [46]	2015	7	3
Hou, Sun and Zhang [42]	2015	$3,5,6,7,10$	$3,5,7$
Webb [56]	2015	13	3

