Chapter 2

New congruences for /-regular
partitions for ¢ € {5,6,7,49}

2.1 Introduction

As mentioned in the introductory chapter, this chapter includes several con-
gruences for (-regular partitions, for certain ¢. In the next section, we state the
p-dissections of ¥(q), f(—q), f2(—q) and ¥(¢*)f*(—q), where the p-dissections of
¥(q) and f(—q) are due to Cui and Gu [32] and the remaining two are new, which
will be used in our subsequent sections. In Sections 2.3-2.5, we prove some theorems

from which the following results are easily followed.

Theorem 2.1.1. If j € {0,2,3,4,5,6}, then for any non-negative integers o and n,

25 . 76a+5 -1

G ) =0 (mod 25). (2.1.1)

bs (25 70T (T + 5) +

Theorem 2.1.2. If p is a prime such that p = —1 (mod 6) and 1 < j < p—1, then

for any non-negative integers o and n,

25p2a+2 -1

5 ) =0 (mod 25). (2.1.2)

bs (25p2°‘+1(pn +7)+

—6
Theorem 2.1.3. If p is a prime such that (—) =—land1 <j<p-—1, then
p

for any non-negative integers o and n,

2c -1
be <]92a+1(]m +J)+5- b 51 ) =0 (mod 3). (2.1.3)

18
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Theorem 2.1.4. For any non-negative integers o and n,

73.5. 3%+ 1
by (73 R 1 ) =0 (mod 147) (2.1.4)
and
731132042 1
by (73 R AR} 1 ) =0 (mod 147). (2.1.5)

-7
Theorem 2.1.5. If p > 11 is a prime such that (—) =—land1 <j<p-—1,
p

then for any non-negative integers o and n,
b (7™ (pn + j) + 7(p**™* — 1) +5) =0 (mod 49). (2.1.6)

In the last section of this chapter, we find two theorems from which (1.2.2) and
(1.2.4) follow immediately.

The contents of this chapter have been submitted [1].

2.2 Preliminary lemmas
Cui and Gu [32] found the following p-dissections of ¥(q) and f(—q).
Lemma 2.2.1. (Cui and Gu [32, Theorem 2.1]) If p is an odd prime, then

K24k P2+ (2k+D)p  p2—(2k+1)p p2—1 2
2

42 )+q s p(d). (2.2.1)

-3
Furthermore, for 0 < k < pT,

BP+k | pP—1
5 g (modp)

Lemma 2.2.2. (Cui and Gu [32, Theorem 2.2]) If p > 5 is a prime and

—1
+p—1 pT, if p=1 (mod 6);

6 ) —»p-—1
6

, if p=—1 (mod 6),
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then
p—1
(4;9)00 = - (_1)kq3kQT+k (_q3p2+(gk+1)p7 —qug_(ng)p)
1
k= _pT
+p—1
ot 2
_ 2
+ (_1)iP6 1qp241 (qp27 qPQ)OO (222)
—(p—1 —1 +p—1
Furthermore, zf% <k< (p - )’ - %7 o

In the following two lemmas, we present new p-dissections of (q;q)3, and
U(@*) (¢ 0%

Lemma 2.2.3. If p > 3 is a prime, then

p—1 0
k(k+1) n n'pn+2k+1
(Gal= > (=Df 2 ) (=1)"(2pn+ 2k + 1)g™ ">
n=0
k=0
—1
ey

_ 2_
+p(=1)"7 ¢ (¢ ¢ (2.2.3)

—1
Furthermore, if k #+ pT, 0<k<p-—1, then

2+ k

P
5 * 3 (mod p).

Proof. From [20, p. 14], we recall Jacobi’s identity

(@:9)% = Y (-1)"2n+ g~

n=0
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Dissecting the above sum into p terms, we obtain

Pl (Pt k) (ot k) +1)
Z VPR 4+ k) +1)g 2
k=0 n=0
i K 41)
41 n+2k+1
= (=fg 2 ) (—1)"(2pn+ 2k + )¢
k=0 n=0
P2 k(k+1) > k
n+2k+1
= Y (=Dfg 2 D (—D)"(2pn+2k+1)g e
n=0
k=
k#
R n 2, n(n+1)
+(-D)"7 g " Y (~1)"p2n+1)g" e
n=0
p-1 K(h41)
+ n+2k+1
— (—1)Fq— 7 > (—1)"(2pn + 2k + 1)g"™
n=0
k=20
o

p—1 p

p—1 -1 2 2
+p(=1)"7q 5 (¢";¢" )2,

kE? +k 21 -1
If ;_ =P 8 (mod p), then we find that k = p?, which completes the
proof of (2.2.3). O

Lemma 2.2.4. If p > 5 is a prime and

—1
4p—1 p?, if p=1 (mod 3);
= _ _ 1
3 p3 , if p=—1 (mod 3),
then
s
VAN G = Y @D (Bpn o+ 3k 4 1) Gt
e n=-—00
=7
k ?é +p—1

2
+pg" 5 () )2, (2.2.4)
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+p — 1
Furthermore, if k # P , — <k <——, then

Proof. From [19, p. 21], we recall that

oo

V) g0k = Y (Bn+1)g .

n=—oo

Dissecting the right side into p terms, we find that

n 2
(g*)(g; Q)zo = Z Z (pn+ k) + 1)q 3(pn+k)2+2(pn+k)

2 o
_ Z 3k2+2k Z (3pn+3k+ 1)qpn(3pn+6k+2)

n=—oo

p—1

2 [e’e]
_ Z q3k2+2k Z (3pn+3k+ 1)qpn(3pn+6k+2)

p—1 n=—00

2

+p—1

k# =5
+ g > p(3n+ 1)gr i

n=—oo

p &)
_ Z q3k2+2k Z (3pn+3k:+ 1)qpn(3pn+6k+2)

-1 n=-—00

p*—1 +p —

(mod p), then k = , which completes the proof of

Now, if 3k 4 2k =
(2.2.4). O
We end this section by defining an operator H which acts on a Laurent series in

one variable by picking out those terms in which the power is congruent to 0 modulo
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7.1t

. 7. ., 7\4
£ = — (ZZJQ)ZZ and T':= 7((]4;)(] 21304 )
(4% ¢*) o q" (g% ¢*)%,

then Garvan [36] proved that

(2.2.5)

H(¢) =1, HE) =1, HE) = =7, H(Y) = —4T — 7, H(&®) = 10T + 49,
and H(£°%) = 49. (2.2.6)

2.3 New congruences for 5-regular partitions
Theorem 2.3.1. If p is a prime such that p = —1 (mod 6), then for all « > 0,

= 20 25p2a —1 n a2 o 4
sty 25p™"n + — 6 1= (=1)*" 5p"(¢; ¢) (mod 25). (2.3.1)
n=0

Proof. Tt is clear from the generating function (1.2.1) that

> talm” = U — (i) Y P (2.2

where P(n) is the ordinary partition function, that is, the number of unrestricted
partitions of the non-negative integer n.

It is well-known (for example, see [20]) that

N (¢°:9°)3
P(bn +4)¢" = 5——==.
HZO (:0)%
Therefore, from (2.3.2), we have
oo 5. 15\5
S bs(5n + 4)¢" = ACALBE 2)°°.
(4 9)%

n=0

Since (¢°; ¢°)oo = (¢; @)%, (mod 5), we find that

e}

265(577/ +4)¢" = 5(¢%; ¢°)%, (mod 25).
n=0
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Extracting the terms involving ¢° from both sides of the above and then replacing

¢° by ¢, we obtain

Z bs(25n + 4)¢" = 5(q; ¢)%, (mod 25), (2.3.3)
n=0

which is the a = 0 case of (2.3.1). Now suppose that (2.3.1) holds for some o > 0.
With the help of (2.2.2) and (2.2.3), we can rewrite (2.3.1) as

> 25p% — 1
Z bs <25p2°‘n + pT) q"

n=0
p—1
. P2 o 2 m 3mZdm 3p2+(6m+1)p 3p2 —(6m+1)p
= ()" et N (1)t (g T
me—_P=1
m#ﬂ:pgl
6
tp—1 p2-1 2
+ (1) ¢ f(—q" )}
> k(k+1) > +2k+1
X [ (—1)fq = Z(—l)”(an%—Zk—i—l)qp”'mf
n=0
k=20
—1
k# b
12
+p(_1)”21qpsl(qp2;qp2)go} (mod 25). (2.3.4)

Now our objective is to find those terms above for which the powers of ¢ satisfy

the congruence

K2 +k  3m? 2 -1
;_ + rm_Pp 5 (mod p), (2.3.5)

2
where 0 <k <p-—1land —(p—1)/2 <m < (p—1)/2. Since the above is equivalent

to
3(2k +1)* + (6m + 1)* = 0 (mod p)

and (_—3) = —1 as p = —1 (mod 6), it follows that the only solution of (2.3.5)

p
-1 +p—1
isk:p and m = P

2
. Therefore, extracting the terms containing ¢#"* "%

from both sides of (2.3.4) and replacing ¢” by ¢, we obtain

= 2041 25p2a+2 . n _ (a+1) 22k a1/ p. p\4
> by (25p™ 0+ ) " = (D (¢ ¢f)g, (mod 25).
n=0

(2.3.6)
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Again extracting the terms containing ¢ from both sides of the above and replacing
q" by ¢, we find that

S 25p? 2 — 1
Z bs (25p2a+2n e A — ) q"
n=0

6 (1)@ V554 (g )% (mod 25),

which is clearly the o + 1 case of (2.3.1). This completes the proof.

0
Theorem 2.3.2. For a > 0, we have
= 25 - 76 — 1

> b (25 7% 4 T) ¢" = 2%-5(¢; )%, (mod 25). (2.3.7)
n=0

Proof. We again use induction on «a. From (2.3.3), we have

> b5(25n + 4)q" = 5(q; q)3, (mod 25),
n=0

o0

which is the o = 0 case of (2.3.7). Now suppose that (2.3.7) holds for some « > 0.
With the aid of (2.2.5), we rewrite (2.3.7) as

= 25 - 7% — 1
Z bs (25 7% T) q" = 2%-5¢%(¢"; ¢") 2 & (mod 25).
n=0

Extracting the terms containing ¢™*! from both sides of the above congruence, and
then using (2.2.6), we find that

> 25 76> — 1
> bs (25 78T 4 1) + T) gt
n=0
=2%-5¢%(¢"; ") H (E")

=92%.5 8( 19 "4 _4M_7 (mod 25)
= 79 549 oo 7 (4% )’ mo .

Dividing both sides by ¢ and replacing ¢” by ¢, we have

> 25 . 70 _ 1
> b (25-766”+1 -n+25-76°‘+?) q"
n=0

2% (5(¢; ¢)ae + 15q(¢"; ¢")%) (mod 25).
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which can be rewritten with the help of (2.2.5) as

> 25 . 76> _ 1
Zb5 (25-760‘+1 -n+25-76a+?) q"
n=0

= 2% (5¢°(¢"; ¢")o€" +154(q";¢7)5) (mod 25).
Extracting the terms containing ¢™**! from both sides of the above and then using

(2.2.6), we deduce that

S 25 . 760 _ 1
st (25-76““-(7n+1)+25~76a+?) q"
n=0

= 2% (20(q; ¢)% + 15q(¢"; ¢")%,) (mod 25).
Proceeding further in a similar way, we find that

- 25 75 — 1
> b (25 ST (T 1) 4+ 25 T (L + T+ TP+ T + ?) g

n=0
= 2% (=75q(q"; ¢")a + 10¢°(¢*%; ¢*)%.)

=2%.10¢°(¢"; ¢*)L (mod 25).

oo

Dividing both sides of the above by ¢ and replacing ¢” by ¢, we obtain

= 6a+5 6o 2 3 4 2570 —1 n
D by (257425 T TH T 4T +7)+——— )¢
n=0

=2“-10q(q"; ¢")2% (mod 25). (2.3.8)

Extracting the terms containing ¢™*! from both sides of the above and then sim-

plifying, we arrive at

= 25 . 7016 — ]
Z bs (25 L 70etl 4 T) ¢" = 2" 5(q;¢)% (mod 25),
n=0

which is the o + 1 case of (2.3.7). O
Now we prove Theorem 2.1.1 and Theorem 2.1.2.

Proofs of Theorem 2.1.1 and Theorem 2.1.2. Comparing the coefficients of ¢,

Jj € {0,2,3,4,5,6} on both sides of (2.3.8), we easily arrive at (2.1.1). Again,

comparing the coefficients of ¢, 1 < j < p — 1, on both sides of (2.3.6), we
readily deduce (2.1.2). O
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2.4 New congruences for 6-regular partitions

—6
Theorem 2.4.1. If p is a prime such that (—) = —1, then for all a > 0,
p

o0
1

St (45 ot 0t = (UM U P (mod 3). (24)

n=0

Proof. Once again we use induction on a. Since (¢;¢)3, = (¢%;¢*)s (mod 3), we

have

> tulmg” = 1= < H () ) (moa 3)

which is the a = 0 case of (2.4.1). Now suppose that (2.4.1) holds for some o > 0.
Using (2.2.1) and (2.2.2), we rewrite (2.4.1) as

e 200 _q
> (e Zt) o

n=0

p—3
+p—1 2 m24m p2+(@m+1)p  p?—(2m+1)p -1 2
() [0 R ) 4 )|
m=0
p—1
2

2 2 2_
% [ Z (—1)kg®*+ f(— g +Ok+1)p 3 (6k+1)p)
k—=—p=1
k;ﬁ ipzl
6

+p—1 p3-1 2

_|_(_1) 5 g 12 (q2p ;q2p2)oo] (mod 3). (2‘4‘2>

We now consider the congruence

>+ 5(p* — 1
3K+ k+ 5 m— (p24 ) (mod p), (2.4.3)

where 0 < m < (p—1)/2 and —(p — 1)/2 < k < (p — 1)/2. Since the above is
equivalent to

(12k +2)* +6(2m + 1)*> = 0 (mod p)

+p—1
and (—) = —1, it follows that the only solution of (2.4.3) is k = b
b

6
-1 2_
m = p? Therefore, extracting the terms containing qp”JrLu ® from both sides of

and
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(2.4.2) and replacing ¢? by ¢, we obtain

- 5p® =5 P —1

b 2 5. n
S (5 (m 52) e 250,
+p—1

5 (¢") (4”75 ¢ ) oo (mod 3). (2.4.4)

= (_1)(a+1)

Again extracting the terms containing ¢?" from both sides of the above congruence

and replacing ¢” by ¢, we find that

200+2

Zb ( 52 24 1) ¢" = (—1) I (q) (g% ¢P) e (mod 3),

which is obviously the « + 1 case of (2.4.1). O

We now prove Theorem 2.1.3.

Proof of Theorem 2.1.3. Comparing the coefficients of ¢?"*7, 1 < j < p—1, on both
sides of (2.4.4), we easily arrive at (2.1.3). 0

2.5 New congruences for 7- and 49-regular parti-

tions
We first prove Theorem 2.1.4.

Proof of Theorem 2.1.4. We note that

Zm g = LD _ron S Py, 25.1)

(¢ 9o

where P(n) is the ordinary partition function.

From [20, Equation 2.4.5, p. 40], we recall the well-known identity

(4":9")% (q"4")%
P(Tn+5)¢" =7 + 49¢ . 2.5.2
; =T s T Gk, 252)
Employing the above in (2.5.1), we find that
S (¢597)% (4543
bz(Tn+5)¢" =7 + 49¢q ==N
Z : ) CHES (¢ 9%
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Therefore,
3
Zb7 Tn+5)q 7(q 45 =7(¢"¢")2.(¢; ¢)%, (mod 49),

which, by (2.2.5), is equivalent to

2.5)
Z b (Tn +5)q" = 7¢°(¢"; ¢")2 (%5 ¢*) 2. &* (mod 49).
n=0

Extracting the terms containing ¢"**! from the above, we have

Zb7 (490 +12)¢™ " = 7¢%(q": 475 (6™ ¢) S H(E") (mod 49),

n=0

which, by (2.2.6), reduces to

26749n+12) " =7¢%(¢" 43 (6" 675 (—%—7)

7(A49. ,49)4
n=0 (q ;4 00

= 219(¢";¢")S (mod 49).

Dividing both sides of the above by ¢ and replacing ¢” by ¢ and then again using
(2.2.5), we find that

o0

Z by (49n 4 12)¢" = 21¢*(¢*; ¢*)%.£° (mod 49).

n=0

Extracting the terms containing ¢™"*5 from both sides of the above, we have

Z b7(343n + 257)¢"" " = 21¢"(¢*; ¢**)° H (£°) (mod 49).

n=0

Employing once again (2.2.6), we arrive at
b7(343n 4+ 257) = 0 (mod 49). (2.5.3)

Now, from Furcy and Penniston’s paper [35], for all a, n > 0, we note that

11 - 2a+1 __ 1
by (32°‘+2n + BT) =0 (mod 3) (2.5.4)
and
11-3%+2 -1
by (320‘+3n + T) =0 (mod 3). (2.5.5)
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5.320+1 _ 3
Again, replacing n by 32*2n + — in (2.5.3), we have
by (73 : (32a+2n + &:l_?’) + 257) =0 (mod 49),
that is,
by (32a+2(73 n 4 142) + %) = 0 (mod 49).

Now from (2.5.4) and the above congruence, we easily deduce (2.1.4).
11 - 32a+2 -3
4
easily arrive at (2.1.5) to finish the proof. O

Similarly, replacing n by 3%**3n + in (2.5.3) and using (2.5.5) we

-7
Theorem 2.5.1. If p is a prime such that (—) = —1 and p > 5, then for all
p

a >0,

> bao (7070 + 707 — 1) +5) ¢" = 10" (¢: )%, (¢ ¢))3, (mod 49).  (2.5.6)

n=0

Proof. We note that

- no__ (94956149)00 (.49, 49 = n
E bigp(n)q" = —~ = (747 )0 E P(n)q".
n=0 (Q? q)OO n=0

Employing (2.5.2), we have

© 7. ,7\3 7. ,T\7

— (¢:9)% (495
Therefore,
> bio(Tn +5)q" = T(q; )% = 7(¢; 9)%.(¢7; ¢7)2, (mod 49), (2.5.7)
n=0

which is clearly the a = 0 case of (2.5.6). Now suppose that (2.5.6) holds for some

a > 0.
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With the help of (2.2.3), we rewrite (2.5.6) as

Z bag (7p2an + 14(p** — 1) + 5) q"

n=0

= 7p%| (=175 Y (1) (2pn + 2m + g

n=0

o0
d (=175 Y (—1)"(2pn + 2k + 1)

+p(=1)= ¢" 5 (¢ ;q7p2)§o} (mod 49). (2:5.8)

We now want to know when the exponents above satisfy the congruence

2 k2 + k
o ;m+7 ; =% — 1 (mod p), (2.5.9)

where 0 < k,m < p — 1. Since the above congruence is equivalent to

(2m+ 1)+ 7 (2k+1)> = 0 (mod p)

-7 -1
and since (—) = —1, it follows that the only solution of (2.5.9) is m = b 5 and
p

k= % Therefore, extracting the terms containing ¢?"*?°~! from both sides of

(2.5.8) and replacing ¢? by ¢, we find that

Z bag (7p2a(pn +P2 - 1)+ 7(P2a -1+ 5) q"
n=0

= Tp2V2(¢%; ¢°)3. (¢ ¢™)%. (mod 49). (2.5.10)

Again extracting the terms containing ¢?” from both sides of the above congruence

and replacing ¢” by ¢, we find that

D bag (TP P+ T(p™ = 1) +5) ¢" = T (q;9)%.(¢7: ¢7)2, (mod 49),
n=0
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which is the case for a + 1 of (2.5.6). Thus we complete the proof. a

We now prove Theorem 2.1.5.

Proof of Theorem 2.1.5. Comparing the coefficients of ¢?"*7, 1 < j < p—1, on both
sides of (2.5.10), we can easily deduce (2.1.6). 0

Using (2.2.3) in (2.5.7) and then comparing the coefficients of ¢™*/ for j €
{2,4,5}, we readily obtain the following result.

Corollary 2.5.2. For any non-negative integer n and j € {2,4,5},

2.6 Proofs of Theorem 1.2.1 and Theorem 1.2.3

Theorem 2.6.1. If p is a prime such that p =5 or 7 (mod 8) and o > 0, then

> 20 1
Z b1o (ann +3.2 S 1) "= p*(=D)*" 7 ¥(q)(¢* ¢»)2, (mod 5). (2.6.1)
n=0

Proof. We prove the theorem by induction on a.. Note that

& 10. 410
> buolnjy” = 1
— (¢:q)oc

Since (¢; )2 = (¢°; ¢°)oo (mod 5), we find that

> bl = 4 = ()i )% (mod 5),

which is the a = 0 case of (2.6.1). Suppose (2.6.1) holds for some a > 0. With the
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help of (2.2.1) and (2.2.3), we can rewrite (2.6.1) as

-1

P24+ (2m+l)p  p?—(2m+1)p p2-1

Ep‘”(—l)a'T[qu2 fla™ 7 a2 ) +d w()

Z ]C ]C ]C-I—l) Z 2pn + Qk + 1) pn(pn+2k+1)

(=1 T (5 7)L] (mod 5). (2.6.2)

We want those terms above for which the powers of ¢ satisfy the congruence

m? +m p?—1

K+ k+ 3.

(mod p),

where 0 < k <p—1and 0 <m < (p—1)/2. The congruence is clearly equivalent

to

2(2k + 1)+ (2m +1)*> = 0 (mod p). (2.6.3)
: —2 . : p—1
Since [ — | = —1 as p =5 or 7 (mod 8), the only solution of (2.6.3) is k = 5
p
1
and m = p? Therefore, extracting the terms involving qp”+3 * from both sides

of (2.6.2) and then replacing ¢? by ¢, we find that

= 20-+1 Pt -1 n a+1 (a+1)E=L 0 pye 9p. 9pN3
Zblo P n+3T q" =p*(-1) 2 Y(¢")(¢";¢")5 (mod 5).

n=0
(2.6.4)
Again extracting the terms containing ¢?" from both sides of the above congruence
and replacing ¢ by ¢, we arrive at
o 20+2 _ 1

Z ( o BpT) ¢" = p* T (=1) D () (g% ¢B)% (mod 5),

=0

which is the o + 1 case of (2.6.1). O
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Theorem 2.6.2. If p is a prime such that p = —1 (mod 6), then for all & > 0,

2

> by (phn +19- 2 T 1) ¢" = (-p)* ()¢ (¢")(=¢* —¢*)% (mod 5). (2.6.5)

Proof. We use induction on «. Clearly,

> (g = 10 = M (g s P (mod 5),

which is o = 0 case of (2.6.5). Now suppose (2.6.5) holds for some a > 0. Using
(2.2.1) and (2.2.4) with ¢ replaced by —¢? in (2.6.5), we have

e 2a_1
Zb20<p2an+19~p24 )q”

n=0

p—3
o 2 m2m P2 +@m+p  p2—(@@m+p p2-1 p?
(—p) [Zq > fle = ¢ = )+aqF U )]
m=0

p—1
2 o0

% [ Z (_1)kq2(3k2+2k) Z (_1)n(3pn+3k+ 1)q2pn(3pn+6k+2)

1 n=—00
k=1t
2

b

2

(") (—g* ;—qQPQ)iO} (mod 5). (2.6.6)

2 2
p°—=1 o p°—1
2 3

—p(=1) 7 ¢
Now consider the congruence

2 2
1
= ;m +6k? + 4k = 19-7924 (mod p), (2.6.7)

where 0 < m < (p—1)/2 and —(p —1)/2 < k < (p— 1)/2. Since the above

congruence is equivalent to
(12k + 4)* 4+ 3(2m + 1)*> = 0 (mod p)

-3
and (—) = —1asp = —1 (mod 6), it follows that the only solution of (2.6.7) is

2_
=3 and m = 5 So, extracting the terms containing ¢?" %3 from

both sides of (2.6.6) and replacing ¢” by ¢, we obtain

200+2

> b (PQQH” +19- pT) q" = (=p)" (@) (q") (=g —¢7)% (mod 5).
n=0

(2.6.8)
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Again extracting the terms containing ¢?" from both sides of the above congruence

and replacing ¢” by ¢, we arrive at

- 2042 p2a+2 —1 n _ a+l 4 2. 212
> by [P0+ 19 —y )" =(D) V(@) (g") (=4 —¢°)%, (mod 5),
n=0

which is the o + 1 case of (2.6.5). O

Now we are in a position to prove Theorem 1.2.1 and Theorem 1.2.3.

Proofs of Theorem 1.2.1 and Theorem 1.2.3. Comparing the coefficients of ¢P"*7,
1 < j <p-—1, from both sides of (2.6.4), we immediately obtain (1.2.2). On the
other hand, comparing the coefficients of ¢""*7/, 1 < j < p — 1 from both sides of
(2.6.8), we readily arrive at (1.2.4). O

2.7 Table of congruences for /-regular partitions

found in the literature

Carlson and Webb [23] have found congruences for ¢-regular partitions when ¢ =10,
15 and 20 modulo 5. In this Chapter, we found congruences for ¢-regular partitions
when ¢ =5, 6, 7 and 49 modulo 25, 3, 147 and 49, respectively. In the following
table, we list other values of ¢ for which congruences for ¢-regular partitions have

been found in the literature.

Authors’ names and Source | Year Values of ¢ Modulo
Hirschhorn and Sellers [41] | 2010 5 2
Furcy and Penniston [35] | 2012 | £ =1 (mod3), ¢ < 49

3

Cui and Gu [32] 2013 | 2,4,5,8,13, 16 P
Xia and Yao [57] 2013 9 2
)

3

Carlson and Webb [23] 2014 10, 15, 20
Cui and Gu [31] 2014 9




Authors’ names and Source | Year | Values of ¢ Modulo
Lin and Wang [48] 2014 9 3

Yao [63] 2014 9 4, 8,9

Ahmed and Baruah [1] 2015 | 5,6,7,49 | 25,3, 147, 49

Lin [47] 2015 13 3
Baruah and Das [13] 2015 7,23 2
Lin [46] 2015 7 3

Hou, Sun and Zhang [42] | 2015 | 3, 5, 6, 7, 10 3,5, 7
Webb [56] 2015 13 3
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