
Chapter 4

Weak nil clean rings

4.1 Introduction

In the year 2006, Ahn and Anderson defined a ring R to be weakly clean if each

element r ∈ R can be written as r = u + e or r = u − e for some u ∈ U(R)

and e ∈ Idem(R) [2]. Motivated by this concept, we observe the example Z6 =

{0, 1, 2, 3, 4, 5}, here Idem(Z6) = {0, 1, 3, 4} and Nil(Z6) = {0}. So clearly

Z6 is not a nil clean ring as 2 and 5 can not be written as a sum of an idempotent

and a nilpotent of Z6. But we see that every elements r ∈ Z6 can be written as

r = n− e or r = n+ e for e ∈ Idem(Z6) and n ∈ Nil(Z6), which led us to introduce

weak nil clean ring. A weak nil clean ring is a ring with unity in which each element

of the ring can be expressed as a sum or difference of a nilpotent and an idempotent.

A study on commutative weak nil clean rings have been done by Peter V. Danchev

and W. Wm. McGovern (see [21]). Here we have given a stronger version of a

few of their results along with some new results. We have also determined all

natural numbers n, for which Zn is a weak nil clean ring but not nil clean ring.

Further we have discussed an S-weak nil clean ring, a ring in which each element

can be expressed as a sum or difference of a nilpotent and an element of S, where

S ⊆ Idem(R), and have shown that if S = {0, 1}, then an S-weak nil clean ring

contains a unique maximal ideal. Finally we have shown that weak* nil clean rings

(Definition 4.2.1) are exchange rings and strongly nil clean rings provided 2 ∈ R is
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nilpotent in the later case. We have ended the chapter by introducing weak J-clean

rings and obtain a few results on weak J-clean rings as an effort to answer Problem

5 of [21].

4.2 Weak nil clean rings

Definition 4.2.1. An element r ∈ R is said to be a weak nil clean element of the

ring R, if r = n + e or r = n− e, for some n ∈ Nil(R), e ∈ Idem(R), and a ring is

said to be a weak nil clean ring if each of its elements is weak nil clean. Further if

r = n− e or n+ e with ne = en, then r is called weak* nil clean.

Obviously every nil clean ring is weak nil clean, but the above example denies

the converse. Also if R is a weak nil clean ring or a weak* nil clean ring then for

n ≥ 2,

S = {A = (aij) ∈ Tn(R) : a11 = a22 = · · · = ann},

is a weak nil clean ring which is not weak* nil clean, where Tn(R) is the ring of

upper triangular matrices of order n over R. Analogous to the concept of clean and

nil clean rings, it is easy to see that every weak nil clean ring is weakly clean and

the converse is not true. The following theorem is easy to see.

Theorem 4.2.2. Every homomorphic image of a weak nil clean ring is weak nil

clean.

However the converse is not true as Z6
∼= Z/〈6〉 is a weak nil clean ring, but Z

is not a weak nil clean ring. A finite direct product
∏

Rα of rings is nil clean if and

only if each Rα is nil clean. The next result shows that this is not true for weak nil

clean rings (the following result generates (ii) of Proposition 1.9 of [21]).
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Theorem 4.2.3. Let {Rα} be a finite collection of rings. Then the direct product

R =
∏

Rα is weak nil clean if and only if each Rα is weak nil clean and at most one

Rα is not nil clean.

Proof. (⇒) Let R be weak nil clean. Then each Rα being a homomorphic image

of R is weak nil clean. Suppose for some α1 and α2, α1 6= α2, Rα1
and Rα2

are

not nil clean. Since Rα1
is not nil clean, not all elements x ∈ Rα1

are of the form

n − e, where n ∈ Nil(Rα1
) and e ∈ Idem(Rα1

). But Rα1
is weak nil clean, so there

exists xα1
∈ Rα1

, with xα1
= nα1

+ eα1
, where eα1

∈ Idem(Rα1
) and nα1

∈ Nil(Rα1
),

but xα1
6= n − e for any n ∈ Nil(Rα1

) and e ∈ Idem(Rα1
). Likewise there exists

xα2
∈ Rα2

, with xα2
= nα2

− eα2
, where eα2

∈ Idem(Rα2
) and nα2

∈ Nil(Rα2
), but

xα2
6= n+ e for any n ∈ Nil(Rα2

) and e ∈ Idem(Rα2
).

Define x = (xα) ∈ R, such that xα = xα if α ∈ {α1, α2}

= 0 if α /∈ {α1, α2}.

Then clearly x 6= n± e for any n ∈ Nil(R) and e ∈ Idem(R). Hence at most one Rα

is not nil clean.

(⇐) If each Rα is nil clean, then R =
∏

Rα is nil clean, so weak nil clean. So assume

some Rα0
is weak nil clean but not nil clean and that all other Rα’s are nil clean.

Let x = (xα) ∈ R. In Rα0
we can write xα0

= nα0
+ eα0

or xα0
= nα0

− eα0
, where

nα0
∈ Nil(Rα0

), eα0
∈ Idem(Rα0

). If xα0
= nα0

+ eα0
, for α 6= α0, let xα = nα + eα

and if xα0
= nα0

− eα0
, for α 6= α0, let xα = nα− eα then n = (nα) ∈ Nil(R) and e =

(eα) ∈ Idem(R) and x = n+ e or x = n− e respectively. Hence R is weak nil clean.

�

Proposition 4.2.4. If R be a weak nil clean ring, then J(R) ⊆ Nil(R).

P roof. Let x ∈ J(R), and x = n − e or x = n + e, where n ∈ Nil(R) and e ∈

Idem(R). If x = n− e then there exists a k ∈ N such that (x+ e)k = 0, which gives

e ∈ J(R) ∩ Idem(R). Hence e = 0 i.e., x = n ∈ Nil(R). Similarly for x = n + e, we

get x = n ∈ Nil(R). Thus J(R) ⊆ Nil(R). �
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Proposition 4.2.5. If a commutative ring R is weak nil clean then R/Nil(R) is

weak nil clean. The converse holds if idempotents can be lifted modulo Nil(R).

Proof. (⇒) Follows from Theorem (4.2.2).

(⇐) Let x ∈ R. Since R/Nil(R) is weak nil clean, so x+Nil(R) = y+Nil(R) or (−y)+

Nil(R), where y2 − y ∈ Nil(R) ( as R/Nil(R) is a reduced ring). Since idempotents

of R lift modulo Nil(R), there exists e ∈ Idem(R) such that y − e ∈ Nil(R), which

implies x−e ∈ Nil(R) or x+e ∈ Nil(R) i.e., x−e = n or x+e = m for some m,n ∈

Nil(R), which proves the result. �

For more examples of weak nil clean rings, we consider the method of idealization.

Let R be a commutative ring and M an R−module. The trivial extension of R and

M is the ring

R(M) = R⊕M

with product defined as

(r,m)(r′, m′) = (rr′, rm′ + r′m)

and sum as

(r,m) + (r′, m′) = (r + r′, m+m′),

for (r,m), (r′, m′) ∈ R(M).

Theorem 4.2.6. Let R be a ring and M be an R-module. Then R is weak nil clean

if and only if R(M) is weak nil clean.

Proof. (⇐) Note that R ≈ R(M)/(0 ⊕ M) is a homomorphic image of R(M).

Hence by Theorem (4.2.2), R is a weak nil clean ring.

(⇒) Let R be a weak nil clean ring and (r,m) ∈ R⊕M, where r ∈ R and m ∈ M .

We have r = n+ e or n− e for n ∈ Nil(R) and e ∈ Idem(R). Then

(r,m) = (n+ e,m) or (n− e,m)

= (n,m) + (e, 0) or (n,m)− (e, 0)
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is a weak nil clean expression of (r,m), where (n,m) ∈ Nil(R) and (e, 0) ∈ Idem(R).

Hence R(M) = R⊕M is weak nil clean. �

Now we try to determine all n for which Zn is weak nil clean but not nil clean. We

recall that, Idem (Zpk) = {0, 1}, for any prime p ∈ N and k ∈ N.

Lemma 4.2.7. Z3k , is weak nil clean but not nil clean for every k ∈ N.

Proof . The proof follows from the fact that

Idem (Z3k) = {0, 1} and Nil (Z3k) = {0, 3, 6, ..., 3(3k−1 − 1)}.

So if a ∈ Z3k

a ≡















0(mod 3) ;

1(mod 3) ;

2(mod 3) .

If a ≡ 1(mod3), a = n + 1 where n ∈ Nil (Z3k); If a ≡ 2(mod3), a = n − 1 where

n ∈ Nil (Z3k); If a ≡ 0(mod3), a = n where n ∈ Nil (Z3k). �

Lemma 4.2.8. Let p be a prime and k ∈ N. Then Zpk is weak nil clean but not nil

clean iff p = 3.

Proof . (⇐) It follows from Lemma 4.2.7.

(⇒) We know that Z2k is nil clean ∀k ∈ N and Z3k is weak nil clean ∀k ∈ N but not

nil clean. Now consider p > 3. We have

Idem (Zpk) = {0, 1} and Nil (Zpk) = {0, p, 2p, . . . , (pk−1 − 1)p}.

So if we consider the sum or difference of nilpotents and idempotents of Zpk respec-

tively, then at most 4pk−1 elements can be obtained, but p > 4, so pk > 4pk−1.

Hence not all elements of Zpk can be written as a sum or difference of a nilpotent

and an idempotent of Zpk . So p = 3. �
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Theorem 4.2.9. The only n for which Zn is weak nil clean but not nil clean is of

the form 2r3t, where t ∈ N, r ∈ N ∪ {0}.

Proof. We have already seen that Z3t is weak nil clean but not nil clean. Next let

n = pα1

1 p
α2

2 · · · pαk

k

with αi ∈ N, 1 ≤ i ≤ k and pi’s are distinct primes such that

p1 ≤ p2 ≤ ... ≤ pn.

If k > 2, then there exists some i with 1 ≤ i ≤ k such that pi > 3. Then Zp
αi
i

is not

weak nil clean. Hence Zn can not be weak nil clean as

Zn = Zp
α1

1

⊕ Zp
α2

2

⊕ · · · ⊕ Zp
αk
k
.

So k ≤ 2 and pi ≤ 3 i.e., n = pα1

1 p
α2

2 . If k = 1, then p1 must be 3 as Z2r is nil clean.

Again if k = 2, then since pi’s are distinct so p1 = 2 and p2 = 3. Also if n = 2α13α2,

then Zn = Z2α1 ⊕Z3α2 . Since Z2α1 is nil clean and Z3α2 is weak nil clean but not nil

clean, so Zn is weak nil clean but not nil clean. This completes the proof. �

If R is commutative then R[x] is never weak nil clean. For if x ∈ R[x] is of the

form
∑

i aix
i − e or

∑

i aix
i + e, where ai ∈ Nil(R), e ∈ Idem(R), then a0 − e = 0 or

a0 + e = 0, which is absurd.

However if R is weak nil clean and σ : R → R is a ring endomorphism then for any

n ∈ N, the quotient

S = R[x; σ]/< xn >,

where R[x; σ] is the Hilbert twist, is a weak nil clean ring. Indeed if

f = a0 + a1x+ a2x
2 + ... + an−1x

n−1 ∈ S

and a0 = n+ e or a0 = n− e, where n ∈ Nil(R), e ∈ Idem(R), then f = (f − e) + e

or f = (f + e)− e is a weak nil clean decomposition of f in S.
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In order to show that, weak* nil cleanness penetrates to corner, we need the

following lemmas.

Lemma 4.2.10. Let R be a ring and x = n+ e or n− e be weak* nil clean decom-

position of x ∈ R with n ∈ Nil(R) and e ∈ Idem(R). Then annl(x) ⊆ annl(e) and

annr(x) ⊆ annr(e), where annl(a) and annr(a) denote the left and right annihilator

of an element a in R respectively.

Proof. Let r ∈ annl(x). Then rx = 0. Now if x = e + n, then rn + re = 0 and so

rne+ re = 0, i.e., re(n+ 1) = 0, implying re = 0. Hence r ∈ annl(e).

Again if x = n − e, then rn − re = 0 and so rne − re = 0, i.e., re(n − 1) = 0,

implying re = 0. So r ∈ annl(e). Hence annl(x) ⊆ annl(e). Similarly we have

annr(x) ⊆ annr(e). �

Lemma 4.2.11. Let R be a ring and x = n+ e or n− e be weak* nil clean decom-

position of x ∈ R with n ∈ Nil(R) and e ∈ Idem(R). Then annl(x) ⊆ R(1− e) and

annr(x) ⊆ (1− e)R.

Proof. Straightforward.

Theorem 4.2.12. Let R be a ring and f ∈ Idem(R). Then x ∈ fRf is weak* nil

clean in R if and only if x is weak* nil clean in fRf.

Proof.(⇐) If x ∈ fRf is weak* nil clean in fRf , then by the same weak* nil clean

decomposition, x is weak* nil clean in R.

(⇒) Let x be weak* nil clean in R. Then x = n + e or n − e for some n ∈

Nil(R) and e ∈ Idem(R) with ne = en. First let x = n + e. Since x ∈ fRf ,

we have

(1− f) ∈ annl(x) ∩ annr(x)

⊆ R(1− e) ∩ (1− e)R

= (1− e)R(1− e) [ by Lemma 4.2.11].
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Thus we have (1 − f)e = 0 = e(1 − f), giving fe = e = ef , and consequently

fef ∈ Idem(fRf). Also xf = fx, therefore we have nf = fn, i.e., fnf ∈ Nil(fRf).

Hence x = fnf + fef . Similarly if x = n− e then x = fnf − fef. Hence x is weak*

nil clean in fRf . �

The following is an immediate consequence of Theorem 4.2.12.

Corollary 4.2.13. Let R be a weak* nil clean ring and e ∈ Idem(R). Then the

corner ring eRe is also weak* nil clean.

4.3 S-weak nil clean rings

An S-weak nil clean ring is a generalization of a weak nil clean ring, which is defined

as follows:

Definition 4.3.1. Let S be a non-empty set of idempotents of R. The ring R is

called S−weak nil clean if each r ∈ R can be written as r = n+ e or n− e, where

n ∈ Nil(R) and e ∈ S. Further if ne = en, then R is called S-weak* nil clean.

Proposition 4.3.2. If R is a {0, 1}-weak nil clean ring, then R has exactly one

maximal ideal.

Proof . Since R is a {0, 1}-weak nil clean ring. We have

R = U(R) ∪Nil(R)

and

U(R) = (1 + Nil(R)) ∪ (−1 + Nil(R)).

It follows that for any x ∈ Nil(R) and any r ∈ R, we have xr, rx ∈ Nil(R). Next if

possible let n1−n2 = u, where n1, n2 ∈ Nil(R) and u ∈ U(R). Then u−1n1−u
−1n2 =

1 i.e., n3 = 1 + n4, where u
−1n1 = n3 ∈ Nil(R) and u−1n2 = n4 ∈ Nil (R), which is

a contradiction. Thus n1 − n2 ∈ Nil(R), for any n1, n2 ∈ Nil(R), implying that
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Nil(R) is an ideal. Hence, by proposition 4.2.4. J(R) = Nil(R). This completes the

proof. �

From above theorem it is clear that {0, 1}− nil clean rings are local rings. The

converse is not true.

Theorem 4.3.3. If a ring R is S-weak* nil clean for S ⊆ Idem(R), then S =

Idem(R).

Proof. Let e′ ∈ Idem(R). Since R is S-weak* nil clean, −e′ = n+ e or − e′ = n− e

for some n ∈ Nil(R), and e ∈ S, with ne = en. If −e′ = n+ e, then

1− e′ = 1 + n + e

⇒ (1 + n + e)2 = 1 + n + e [1− e′ ∈ Idem(R)]

⇒ 1 + n2 + e+ 2n + 2e+ 2ne = 1 + n+ e

⇒ n2 + n+ 2e(1 + n) = 0

⇒ (n + 2e)(1 + n) = 0.

But 1 + n ∈ U(R) , so n = −2e, giving

−e′ = n + e = −2e + e = −e.

Thus e′ = e ∈ S. Again if −e′ = n− e, then

(−e′)2 = e′
2
= e′,

⇒ (n− e)2 = −n + e

⇒ n2 − 2ne + e = −n + e

⇒ n2 + n(1− 2e) = 0

⇒ n{n+ (1− 2e)} = 0.

But n+ (1− 2e) ∈ U(R), so n = 0, i.e., e′ = e ∈ S. Hence Idem(R) = S. �

But in case of a weak clean ring, it is possible that R is S−weak clean and

S ( Idem(R) [2].
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4.4 More results on weak nil clean rings

It is well known that Z3 is clean, so the upper triangular matrix ring T2(Z3) is clean

and hence exchange, but T2(Z3) is not weak nil clean. So in general, exchange rings

are not weak nil clean rings. But one can see that weak* nil clean rings are exchange.

Theorem 4.4.1. Let R be a weak* nil clean ring. Then R is an exchange ring.

Proof. Let R be a weak* nil clean ring and x ∈ R. Then x = n + e or x = n − e,

where n ∈ Nil(R) and e ∈ Idem(R).

If x = n− e, then

(1− n)[x− (1− n)−1e(1− n)] = (1− n)[(n− e)− (1− n)−1e(1− n)]

= n− e− n2 + ne− e+ en

= x− (n− e)2 = x− x2

implying [x− (1− n)−1e(1− n)] = (1− n)−1(x− x2).

Similarly if x = n + e, we have x − e = u−1(x2 − x) for u = (2e − 1) + n ∈ U(R).

Then by condition (1) of Proposition 1.1 of [36], R is exchange. �

Finally we take the question “ under what condition a weak* nil clean ring is

strongly nil clean ring?” To answer this question we need the following Lemma.

Lemma 4.4.2. Let R be a ring with 2 ∈ Nil(R) and MR a right R-module. If

an endomorphism φ ∈ End(MR) is a sum or difference of a nilpotent n and an

idempotent e that commute. Then there exists a direct sum decompositionM = A⊕B

such that φ|A is an element of End(A) which is nilpotent and (1−φ)|B is an element

of End(B) which is nilpotent.

Proof. Suppose φ = a − e, where e ∈ Idem(End(MR)), a ∈ Nil(End(MR)) and

ea = ae. We have decomposition M = A⊕B, where

A = (1− e)M and B = eM. Then A and B are φ−invariant.
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Now φ|A= (a− e)|A= a|A−e|A= a|A and so φ|A is nilpotent.

And (1 − φ)|B= (1 − (a − e))|B= (1 − a + e)|B= (2 − a − (1 − e))|B= (2 − a)|B is

nilpotent as 2 is nilpotent.

Again, if φ = a + e, where e ∈ Idem(End(MR)) and a ∈ Nil(End(MR)), then by

Definition 1.2.8 and Lemma 1.2.3 of [22] such a decomposition exists. �

Now we can state the following theorem.

Theorem 4.4.3. A ring R is strongly nil clean if and only if R is weak* nil clean

with 2 ∈ Nil(R).

Proof.(⇒) It is by the definition of a weak* nil clean ring.

(⇐) The result follows from Lemma 1.2.6 of [22] and Lemma (4.4.2).

Corollary 4.4.4. A weak* nil clean ring R with 2 ∈ Nil(R) is strongly π−regular.

4.5 Weak J-clean rings

In this section we have defined a weak J-clean ring, as a generalization of J-clean

rings introduced by Chen [19].

Definition 4.5.1. An element a in a ring R is said to be weak J-clean if a can be

written as a = j + e or a = j − e for some j ∈ J(R) and e ∈ Idem(R). Moreover if

ae = ea we say a is weak* J-clean.

Below are some of the preliminary results related to weak J-clean rings.

Lemma 4.5.2. Every weak* J-clean element in a ring is strongly clean.

Proof. Let a ∈ R, e ∈ Idem(R) and w ∈ J(R). If a = w + e we have a =

(1− e) + (2e− 1 + w); else if a = w − e we have a = (1− e)− (1− w). �

Lemma 4.5.3. Let R be a ring and a = w + e or a = w − e be a weak* J-clean

decomposition of a in R, where e ∈ Idem(R) and w ∈ J(R). Then annl(a) ⊆ annl(e)

and annr(a) ⊆ annr(e).
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Proof. Let r ∈ annl(a). Then ra = 0. If a = w + e, then re = −rw, so re =

−rwe = −rew. It follows that re = 0, i.e., r ∈ annl(e). Similarly annr(a) ⊆ annr(e)

holds. �

Theorem 4.5.4. Let R be a ring and let f ∈ R be an idempotent. Then a ∈ fRf

is weak* J-clean in R if and only if a is weak* J-clean in fRf .

Proof. Let a ∈ fRf and a = w+e or w−e for w ∈ J(R) and e ∈ Idem(R). We show

that e ∈ Idem(fRf), and it will follow that w ∈ J(fRf). This will show that the

above weak* J-clean expression of a is also a weak* J-clean expression of a in fRf .

To show e ∈ Idem(fRf) observe that 1−f ∈ annl(a)∩annr(a) ⊆ annl(e)∩annr(e),

implying ef = e = fe. So e ∈ Idem(fRf). The other implication is easy to see. �

Corollary 4.5.5. Let R be a weak* J-clean ring and e ∈ R be an idempotent. Then

eRe is weak* J-clean.

Before proceeding further we have generalized one popular concept of idempotent

lifting modulo ideal I of a ring R.

Definition 4.5.6. Let I be an ideal of R. We say idempotents lift weakly modulo

I, if for each idempotent e ∈ R/I, there exists an idempotent e ∈ R such that

e− f ∈ I or e + f ∈ I.

Theorem 4.5.7. If R is a ring such that R/J(R) is boolean and each idempotent

lifts weakly modulo J(R), then R is weak J-clean.

Proof. For a ∈ R, a ∈ R/J(R) is an idempotent. By assumption we can find an

idempotent e ∈ R, such that a− e ∈ R/J(R) or a+ e ∈ J(R). In both cases we get

a weak J-clean expression for a in R, so R is weak J-clean. �


