
Chapter 5

Nil clean graph of rings

5.1 Introduction

In this chapter we have introduced the nil clean graph GN(R) associated with a

finite commutative ring R. The properties on girth, diameter, dominating sets etc.

of GN(R) have been studied. The set of nil clean elements of a ring R is denoted

by NC(R).

5.2 Basic properties

In this section we defined the nil clean graph of a finite commutative ring and discuss

its basic properties.

Definition 5.2.1. The nil clean graph of a ring R, denoted by GN(R), is defined

by setting R as vertex set and defining two distinct verities x and y to be adjacent

if and only if x + y is a nil clean element in R. Here we are not considering loops

at a point (vertex) in the graph.

2The contents of this chapter have been accepted for publication in Algebra Colloquium (2017)
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For illustration below is the nil clean graph of GF (25), where GF (25) is the

finite field with 25 elements.

GF (25) ∼= Z5[x]/〈x
2 + x+ 1〉

= {ax+ b+ 〈x2 + x+ 1〉 : a, b ∈ Z5}.

Let us define α := x+ 〈x2 + x+ 1〉. Then we have

GF (25) = { 0, 1, 2, 3, 4,

α, 1 + α, 2 + α, 3 + α, 4 + α,

2α, 1 + 2α, 2 + 2α, 3 + 2α, 4 + 2α,

3α, 1 + 3α, 2 + 3α, 3 + 3α, 4 + 3α,

4α, 1 + 4α, 2 + 4α, 3 + 4α, 4 + 4α }.

Observe that NC(GF (25)) = {0, 1}.

b b b b b0 1 4 2 3

b b b b b

b b b b b

α 4α + 1 α + 4 4α + 2 α + 3

4α α + 1 4α + 4 α + 2 4α + 3

b b b b b

b b b b b

2α 3α + 1 2α + 4 3α + 2 2α + 3

3α 2α + 1 3α + 4 2α + 2 3α + 3

Figure 5.1: Nil clean graph of GF (25)

In graph theory, a complete graph is a simple undirected graph (with no loops

and no multiple edges between two given vertices) in which every pair of distinct

vertices is connected by a unique edge.
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So by this definition the following theorem follows.

Theorem 5.2.2. The nil clean graph GN (R) is a complete graph if and only if R

is a nil clean ring.

Proof. Let GN(R) be a complete nil clean graph of a ring R. For r ∈ R, r is

adjacent to 0, so r = r + 0 is nil clean. Hence R is nil clean. The converse is clear

from the definition of the nil clean graph. �

Two graphs G1 and G2 are said to be isomorphic if there exists an isomorphism

from G1 to G2, i.e., a bijective mapping f : V (G1) → V (G2), such that two vertices

u1 and v1 are adjacent in G1 if and only if the vertices f(u1) and f(v1) are adjacent

in G2 [16]. For rings R and S if R ∼= S it is easy to see that GN(R) ∼= GN(S).

Lemma 5.2.3. Let R be a ring and idempotents lift modulo Nil(R). If x + Nil(R)

and y + Nil(R) are adjacent in GN (R/Nil(R)) then every element of x + Nil(R) is

adjacent to every element of y +Nil(R) in the nil clean graph GN(R).

Proof. Let x+Nil(R) and y +Nil(R) be adjacent in GN(R/Nil(R)). Then

(x+Nil(R)) + (y +Nil(R)) = e+Nil(R),

where e is an idempotent in R, as idempotents lift modulo Nil(R). Thus we have

x+ y = e+ n, for some n ∈ Nil(R) and hence x and y are adjacent in GN(R). Now

for a ∈ x+Nil(R) and b ∈ y+Nil(R), we have a = x+ n1 and b = y + n2, for some

n1, n2 ∈ Nil(R). Therefore a + b = e + (n− n1 − n2). Hence, a and b are adjacent

in GN(R). �

Let G be a graph. For x ∈ V (G), the degree of x, denoted by deg(x), is defined

to be the number of edges of G for which x is an end point. The neighbor set of

x ∈ V (G), is defined to be NG(x) := {y ∈ V (G)|y is adjacent to x}. Let NG[x] =

NG(x) ∪ {x}.



66

Lemma 5.2.4. Let GN(R) be the nil clean graph of a ring R and let x ∈ R.

(i) If 2x is nil clean, then deg(x) = |NC(R)|−1.

(ii) If 2x is not nil clean, then deg(x) = |NC(R)|.

Proof. Let x ∈ R. Observe that x +R = R. So for every y ∈ NC(R), there exists

a unique element xy ∈ R, such that x+ xy = y. Thus we have

deg(x) ≤ |NC(R)|.

Now if 2x ∈ NC(R), define

f : NC(R) → NGN (R)[x]

by

f(y) = xy.

It is easy to see that f is a bijection and therefore

deg(x) = |NGN (R)(x)|= |NGN (R)[x]|−1 = |NC(R)|−1.

If 2x /∈ NC(R), define

f : NC(R) → NGN (R)(x)

by

f(y) = xy.

Then f is a bijection and therefore

deg(x) = |NGN (R)(x)|= |NC(R)|.

�

A graph G is said to be connected if for any two distinct vertices of G, there is

a path in G connecting them.
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Theorem 5.2.5. For a ring R, the following hold:

(i) GN(R) need not be connected.

(ii) Let R = Zn. For a ∈ Zn there is a path from a to 0.

(iii) GN(Zn) is connected.

(iv) Let R = Zn. For A ∈Mn(Zn) there is a path from A to 0, where 0 is the zero

matrix of Mn(Zn).

(v) GN(Mn(Zn)) is connected.

Proof. (i) is clear by the graph GN(GF (25)), figure 5.1. For (ii) and (iii) if n is

odd replacing p by n in the figure 5.5, we get a Hamiltonian path in GN(Zn); if n is

even the following is a Hamiltonian path in GN(Zn).

b b b b b b b b b b b b0 1 n− 1 2 n− 2 3
n−2
2

n+2
2

n
2

Figure 5.2: Hamiltonian path in GN(Zn), when n is an even natural number.

Now for the proof of (iv), let A = [aij ] ∈Mn(Zn), now we define

A1 = [a1ij ] =

{

−aij , i ≥ j;

0, otherwise.

Observe that A1+A is nilpotent, hence nil clean. Thus there exists an edge between

A and A1. Again define

A2 = [a2ij] =

{

aij , i = j;

0, otherwise.

Then we have an edge between A1 and A2 in GN(Mn(Zn)). For each element aii of

A2, by (ii) we have a path

{aii, bi1, bi2, bi3, . . . , biki = 0}
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of length ki ∈ N to 0. Now let

K = max{ki : 1 ≤ i},

and we can construct a path of length K from A2 to 0, as follows. For 1 ≤ i ≤ k,

define

Bi = [b1jl] =

{

bji, if b1ij appears in some above paths;

0, otherwise.

Thus

{A,A1, A2, B1, B2, . . . , BK = 0}

is a path from A to 0 in GN(Mn(Zn)). Lastly (v) follows from (iv). �

The following result is a corollary of the Wedderburn’s Theorem [32].

Lemma 5.2.6. A ring R is a finite commutative reduced ring with no non trivial

idempotents if and only if R is a finite field.

Proof.(⇒) Let 0 6= x ∈ R. Observe the set A = {xk : k ∈ N} is a finite set.

Therefore there exist m > l such that xl = xm. Note that

xl = xm

= xm−l+l

= xm−l.xl

= xm−l.xm

= x2m−l+l−l

= x2(m−l)+l

=
...

= xk(m−l)+l.
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Where k is a natural number. Now we have

[xl(m−l)]2 = xl(m−l).xl(m−l)

= xl(m−l)+l(m−l)+l−l

= xl(m−l)+l.xl(m−l)−l

= xl.xl(m−l)−l

= xl(m−l),

that is xl(m−l) is an idempotent. Thus xl(m−l) = 1, which gives that x is a unit,

therefore R is a finite field. (⇐) Obvious. �

5.3 Invariants of a nil clean graph

In this section, we prove some results related to several invariants of a nil clean

graph. Following subsection is for girth of GN (R).

5.3.1 Girth of GN(R)

For a graph G, the girth of G is the length of the shortest cycle in G.

Theorem 5.3.1. The following hold for the nil clean graph GN(R) of R:

(i) If R is not a field, then the girth of GN(R) is equal to 3.

(ii) Suppose that R is a field.

(a) The girth of GN(R) is 2p if R ∼= GF (pk) (field of order pk), where p is a

odd prime and k > 1.

(b) The girth of GN (R) is infinite, in fact GN (R) is a path, otherwise.
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Proof. (i) Let R have at least one non-trivial idempotent or non trivial nilpotent.

If e ∈ R is a nontrivial idempotent, then we have

b

b

b

0

(1− e)

e

Figure 5.3: A cycle of length 3 in GN(R) for an idempotent e

so the girth of GN(R) is 3. Again if R contains a nontrivial nilpotent n ∈ R, then

we have the cycle

b

b

b

0

1

n

Figure 5.4: A cycle of length 3 in GN (R) for a nilpotent e

so the girth is 3. By Lemma 5.2.6 rings without non trivial idempotents and

nilpotents are field. This proves (i).

(ii) The set of nil clean elements of a finite field is {0, 1}, so the nil clean graph of

Fp, where p is a prime, is

b b b b b b b b b b b b0 1 p− 1 2 p− 2 3
p+3
2

p−1
2

p+1
2

Figure 5.5: Nil clean graph of Zp

From the graph, it is clear that the grith of GN(Fp) is infinite, which proves (b). It

is easy to observe that the nil clean graph of GF (pk) for p > 2, is a disconnected
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graph consisting of a path of length p and (p
k−1

−1
2

) 2p−cycles. For the proof, let

GF (pk) = Zp[X ]/〈f(x)〉,

where f(x) is an irreducible polynomial of degree k over Zp. Let A ⊆ GF (pk), such

that A consists of all linear combinations of x, x2, . . . , xk−1 with coefficients from Zp

such that if g(x) + 〈f(x)〉 ∈ A then −g(x) + 〈f(x)〉 /∈ A. Clearly, A can be written

as

A = {gi(x) + 〈f(x)〉 | 1 ≤ i ≤ (
pk−1 − 1

2
)}.

Let gi(x) = gi(x) + 〈f(x)〉 for 1 ≤ i ≤ (p
k−1

−1
2

). So (a) follows from

Figure 5.6.
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b b b b b b b b b0 1 p− 1 2
p−1
2

p+1
2

b b b b b b b b bg1(x) (−g1(x) + 1)(g1(x) + p− 1)(−g1(x) + 2) (−g1(x) +
p−1
2
)(g1(x) +

p+1
2
)

b b b b b b b b b

−g1(x) (g1(x) + 1)(−g1(x) + p− 1)(g1(x) + 2) (g1(x) +
p−1
2
)(−g1(x) +

p+1
2
)

b b b b b b b b bg2(x) (−g2(x) + 1)(g2(x) + p− 1)(−g2(x) + 2) (−g2(x) +
p−1
2
)(g2(x) +

p+1
2
)

b b b b b b b b b

−g2(x) (g2(x) + 1)(−g2(x) + p− 1)(g2(x) + 2) (g2(x) +
p−1
2
)(−g2(x) +

p+1
2
)

b b b b b b b b b
g pk−1

−1

2

(x) A B C D E

b b b b b b b b b

−g pk−1
−1

2

(x) A′ B′ C ′ D′ E ′

Figure 5.6: Nil clean graph ofGF (pk)

Here, A = −g pk−1
−1

2

(x) + 1, B = −g pk−1
−1

2

(x) + p− 1, C = −g pk−1
−1

2

(x) + 2,

D = −g pk−1
−1

2

(x) + p−1
2
, E = −g pk−1

−1

2

(x) + p+1
2
,

A′ = g pk−1
−1

2

(x) + 1̄, B′ = −g pk−1
−1

2

(x) + p− 1, C ′ = g pk−1
−1

2

(x) + 2,

D′ = g pk−1
−1

2

(x) + p−1
2
, E ′ = −g pk−1

−1

2

(x) + p+1
2
. �

Corollary 5.3.2. GN(R) is not cyclic.
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A graph G is said to be bipartite if its vertex set can be partitioned into two disjoint

subsets V1 and V2, such that V (G) = V1 ∪ V2 and every edge in G has the form

e = (x, y) ∈ E(G), where x ∈ V1 and y ∈ V2. Note that no two vertices both in V1

or both in V2 are adjacent.

Theorem 5.3.3. GN (R) is bipartite if and only if R is a field.

Proof. Let GN(R) be bipartite. Therefore the girth is of GN(R) is not an odd

number. Hence by Theorem 5.3.1. R must be a field. Now if R is a field, it is

clear from the nil clean graph of R that GN(R) is bipartite. �

5.3.2 Dominating set

Let G be a graph. A subset S ⊆ V (G) is said to be a dominating set for G if for

each x ∈ V (G), x ∈ S or there exists y ∈ S such that x is adjacent to y. We show

that for a finite commutative weak nil clean ring, the dominating number is 2, where

the dominating number is the carnality of the smallest dominating set.

Theorem 5.3.4. Let R be a weak nil clean ring such that R has no non trivial

idempotents. Then {1, 2} is a dominating set for GN (R).

Proof. Let a ∈ R. For some n ∈ Nil(R), a is in one of following forms

a =















n+ 0 ;

n+ 1 ;

n− 1 .

Now if a = n, then n + 1 ∈ NC(R) implies a is adjacent to 1.

If a = n− 1, then n− 1 + 1 = n ∈ NC(R) implies a is adjacent to 1.

If a = n + 1 and 2 = n1 for some nilpotent n1 ∈ R, then a is adjacent to 2.

If a = n + 1 and 2 = n1 − 1 for some nilpotent n1 ∈ R, then a is adjacent to 2.

If a = n+1 and 2 = n1+1 for some nilpotent n1 ∈ R, then a+2 = (n+1)+(n1+1) =

(n+ n1) + 2 = n+ n1 + (n1 + 1) = (n+ 2n1) + 1 is nil clean. Hence a is adjacent to

2. Thus {1, 2} is a dominating set for GN(R). �
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Theorem 5.3.5. Let R = A× B, such that A is nil clean and B is weak nil clean

with no non trivial idempotents. Then {(1A, 1B), (2A, 2B)} is a dominating set for

GN(R).

Proof. Let (a, b) ∈ R, where a ∈ A and b ∈ B. For n1 ∈ Nil(A), n2 ∈ Nil(B) and

0 6= e ∈ Idem(A), (a, b) has one of the following forms

(a, b) =



























(n1, n2) + (e, 1B) ;

(n1, n2) + (e, 0) ;

(n1, n2)− (e, 1B) ;

(n1, n2) + (0, 0) .

If (a, b) = (n1, n2) + (e, 1B), we have

(a, b) + (2A, 2B) = (n1 + e+ 2A, n2 + 1B + 2B).

Since A is nil clean,

n1 + e+ 2A = n′

1 + f for some n′

1 ∈ Nil(A) and f ∈ Idem(A).

As B is weak nil clean, we have

2B = n′

2, or n
′

2 − 1B, for some n′

2 ∈ Nil(B).

If 2B = n′

2, we have

(a, b) + (2A, 2B) = (n′

1, n2 + n′

2) + (f, 1B),

which is a nil clean expression; hence (a, b) is adjacent to (2A, 2B).

If 2B = n′

2 − 1B, we have

(a, b) + (2A, 2B) = (n′

1, n2 + n′

2) + (f, 0),

so (a, b) is adjacent to (2A, 2B). In other three cases it is easy to see that (a, b) +

(1A, 1B) is nil clean hence (a, b) is adjacent to (1A, 1B). Therefore {(1A, 1B), (2A, 2B)}

is a dominating set for GN(R). �
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Theorem 5.3.6. Let R be a weak nil clean ring. The {1, 2} is a dominating set for

GN(R).

Proof. If R has no non trivial idempotents, then by Theorem 5.3.4 we are done.

If R has a non trivial idempotent, say e, then R = eR⊕ (1−e)R. By Theorem 2.3

of [9], either eR or (1 − e)R is a nil clean ring. Without lost of generality suppose

that eR is a nil clean ring and (1− e)R is a weak nil clean ring. Now if (1− e)R has

no non trivial idempotents, then we have the result by Theorem 5.3.5. Otherwise,

repeating as above we get a direct sum decomposition of R where only one summand

is weak nil clean. As R is a finite ring, after repeating above finite number of times

we will have a direct sum decomposition of R, where idempotents of weak nil clean

summand of R is trivial. Then again by Theorem 5.3.5 we have the result. �

5.3.3 Chromatic index

An edge colouring of a graph G is a map C : E(G) → S, where S is a set of colours

such that for all e, f ∈ E(G), if e and f are adjacent, then C(e) 6= C(f). The

chromatic index of a graph, denoted by χ′(G); is defined as the minimum number of

colours needed for a proper colouring of G. Let △ be the maximum vertex degree of

G. Vizings theorem [24] gives △≤ χ′(G) ≤△ +1. Vizings theorem divides the graphs

into two classes according to their chromatic index; graphs satisfying χ′(G) =△ are

called graphs of class 1, and those with χ′(G) =△ +1 are graphs of class 2.

We show that GN(R) is of class 1.
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Theorem 5.3.7. Let R be a finite commutative ring. Then the nil clean graph of

R is of class 1.

Proof. We colour the edge ab by the colour a + b. By this colouring, every two

distinct edges ab and ac have different colours and

C = {a+ b|ab is an edge in GN(R)}

is the set of colours. Therefore the nil clean graph has a |C|-edge colouring and so

χ′(GN (R)) ≤ |C|.

But C ⊂ NC(R) and

χ′(GN(R)) ≤ |C|≤ |NC(R)|.

By Lemma 5.2.4, △≤ |NC(R)|, and so by Vizing’s theorem, we have

χ′(GN(R)) ≥△= |NC(R|.

Therefore we have

χ′(GN(R)) = |NC(R|=△,

i.e., GN (R) is of class 1. �

5.3.4 Diameter

For a graph G, the number of edges on the shortest path between vertices x and y

is called the distance between x and y and is denoted by d(x, y). If there is no path

between x and y then we say d(x, y) = ∞. The diameter of a graph diam(G) is the

maximum of distances of each pair of distinct vertices in G.

The following are some results related to diameter of the nil clean graph of a

ring.

Lemma 5.3.8. R is a nil clean ring if and only if diam(GN (R)) = 1.



77

Theorem 5.3.9. Let R be a non nil clean, weak nil clean ring with no non trivial

idempotents. Then diam(GN (R)) = 2.

Proof. Let a, b ∈ R and let n1, n2 ∈ Nil(R). Since R is a weak nil clean ring with

no non trivial idempotents, so for any r ∈ R there exists n ∈ Nil(R) such that r is

in one of following forms

r =















n + 0 ,

n + 1 ,

n− 1 .

If a = n1 + 1 and b = n2 − 1 or n2, then a + b is nil clean. Thus ab is an edge in

GN(R), so d(a, b) = 1.

If a = n1 + 1 and b = n2 + 1, we have the path

a (−1) b

in GN(R), so d(a, b) ≤ 2.

If a = n1 − 1 and b = n2 − 1 or n2. Then, as above, there is a path of length 2 from

a to b through 1. So in this case also d(a, b) ≤ 2. Finally if a = n1 and b = n2, then

d(a, b) = 2. Thus from above we conclude that

diam(GN(R)) ≤ 2.

Now as R is a non nil clean, weak nil clean ring, we have at least one x ∈ R, such

that x = n− 1 but x 6= n+ 1, i.e., x is not nil clean. Thus we have d(0, x) ≥ 2, so

diam(GN(R)) ≥ 2.

Hence the result follows. �

Theorem 5.3.10. Let R = A × B, such that A is nil clean and B weak nil clean

with no non trivial idempotents. Then diam(GN (R)) = 2.

Proof.We have Idem(R) = {(e, 0B), (e, 1B)|e ∈ Idem(A)}. Now let (a1, b1), (a2, b2) ∈

R. In case (a1, b1) + (a2, b2) is nil clean then d((a1, b1), (a2, b2)) = 1 in GN(R). If
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(a1, b1) + (a2, b2) is not nil clean, then b1 + b2 is not nil clean. So we have following

cases:

Case I:

If b1 = n1 + 1 and b2 = n2 + 1, we have the path

(a1, b1) (0,−1) (a2, b2)

in GN(R), thus d((a1, b1), (a2, b2)) ≤ 2.

Case II:

If b1 = n1 − 1 and b2 = n2 − 1, we have the path

(a1, b1) (0, 1) (a2, b2)

in GN(R), thus d((a1, b1), (a2, b2)) ≤ 2.

Case III:

If b1 = n1 − 1 and b2 = n2, we have the path

(a1, b1) (0, 1) (a2, b2)

in GN(R), thus d((a1, b1), (a2, b2)) ≤ 2.

Case IV:

If b1 = n1 and b2 = n2−1, by Case III and symmetry we have d((a1, b1), (a2, b2)) ≤

2.

Therefore combining above Cases, we have

diam(R) ≤ 2.

But, R not nil clean implies

diam(R) ≥ 2.

Thus diam(R) = 2. �
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Theorem 5.3.11. If R is weak nil clean but not nil clean then diam(GN (R)) = 2.

Proof. If R has no non trivial idempotents, then by Theorem 5.3.10 we are done.

If R has a non trivial idempotent say e, then R = eR⊕ (1− e)R. So by Theorem

2.3 of [9] we have one of eR or (1 − e)R must be a nil clean ring. Without lost of

generality suppose that eR is a nil clean ring and (1− e)R is a weak nil clean ring.

Now if (1−e)R has no non trivial idempotents, then we have the result by Theorem

5.3.10. Otherwise repeating as above we get a direct sum decomposition of R where

only one summand is weak nil clean. As R is a finite ring, so after repeating above

to the weak nil clean summand of R for finite number of times, we will have a direct

sum decomposition of R, where idempotents of weak nil clean summand of R are

trivial. Thus again by Theorem 5.3.10, we have the result. �

Theorem 5.3.12. Let n be a positive integer. The following hold for Zn:

(i) If n = 2k, for some integer k ≥ 1, then diam(GN (Zn)) = 1.

(ii) If n = 2k3l, for some integer k ≥ 0 and l ≥ 1, then diam(GN (Zn)) = 2.

(iii) For a prime p, diam(GN(Zp)) = p− 1.

(iv) If n = 2p, where p is an odd prime, then diam(GN(Z2p)) = p− 1.

(v) If n = 3p, where p is an odd prime, then diam(GN(Z3p)) = p− 1.
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Proof. (i) and (ii) follow from Lemma 5.3.8 and Theorem 5.3.11 respectively.

(iii) follows from GN(Zp) in Figure 5.5, (iv) follows from graph GN(Z2p) in Figure

5.7 and (v) follows from graphs in Figure 5.9 and Figure 5.8.

b b b b b b b b b b b
p p+ 1 p− 1 p+ 2 p− 2

p+3
2

3p
2

p+1
2

b b b b b b b b b b b

0 1 2p− 1 2 2p− 2 3p+3
2

p−1
2

3p+1
2

Figure 5.7: Nil clean graph of Z2p
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b b b b b b b b b b b b b b b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

−p−1
2

p−1
2

−p−3
2

0

1

−1

2

a b c d e f g h i j

a = p+1
2
, b = −p+1

2
, c = p+3

2
, d = −p+3

2
, e = p+5

2
,

j = p, i = −p− 1, h = p− 1, g = −p + 2, f = p− 2
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Figure 5.8: Nil clean graph of Z3p where p ≡ 1(mod3)
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Figure 5.9: Nil clean graph of Z3p where p ≡ 2(mod3)


