Chapter 5

Nil clean graph of rings

5.1 Introduction

In this chapter we have introduced the nil clean graph $G_{N}(R)$ associated with a finite commutative ring R. The properties on girth, diameter, dominating sets etc. of $G_{N}(R)$ have been studied. The set of nil clean elements of a ring R is denoted by $N C(R)$.

5.2 Basic properties

In this section we defined the nil clean graph of a finite commutative ring and discuss its basic properties.

Definition 5.2.1. The nil clean graph of a ring R, denoted by $G_{N}(R)$, is defined by setting R as vertex set and defining two distinct verities x and y to be adjacent if and only if $x+y$ is a nil clean element in R. Here we are not considering loops at a point (vertex) in the graph.

[^0]For illustration below is the nil clean graph of $G F(25)$, where $G F(25)$ is the finite field with 25 elements.

$$
\begin{aligned}
G F(25) & \cong \mathbb{Z}_{5}[x] /\left\langle x^{2}+x+1\right\rangle \\
& =\left\{a x+b+\left\langle x^{2}+x+1\right\rangle: a, b \in \mathbb{Z}_{5}\right\}
\end{aligned}
$$

Let us define $\alpha:=x+\left\langle x^{2}+x+1\right\rangle$. Then we have

$$
\begin{aligned}
G F(25)=\{ & \overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4} \\
& \alpha, 1+\alpha, 2+\alpha, 3+\alpha, 4+\alpha \\
& 2 \alpha, 1+2 \alpha, 2+2 \alpha, 3+2 \alpha, 4+2 \alpha \\
& 3 \alpha, 1+3 \alpha, 2+3 \alpha, 3+3 \alpha, 4+3 \alpha \\
& 4 \alpha, 1+4 \alpha, 2+4 \alpha, 3+4 \alpha, 4+4 \alpha\} .
\end{aligned}
$$

Observe that $N C(G F(25))=\{\overline{0}, \overline{1}\}$.

Figure 5.1: Nil clean graph of $G F(25)$

In graph theory, a complete graph is a simple undirected graph (with no loops and no multiple edges between two given vertices) in which every pair of distinct vertices is connected by a unique edge.

So by this definition the following theorem follows.

Theorem 5.2.2. The nil clean graph $G_{N}(R)$ is a complete graph if and only if R is a nil clean ring.

Proof. Let $G_{N}(R)$ be a complete nil clean graph of a ring R. For $r \in R, r$ is adjacent to 0 , so $r=r+0$ is nil clean. Hence R is nil clean. The converse is clear from the definition of the nil clean graph.

Two graphs G_{1} and G_{2} are said to be isomorphic if there exists an isomorphism from G_{1} to G_{2}, i.e., a bijective mapping $f: V\left(G_{1}\right) \rightarrow V\left(G_{2}\right)$, such that two vertices u_{1} and v_{1} are adjacent in G_{1} if and only if the vertices $f\left(u_{1}\right)$ and $f\left(v_{1}\right)$ are adjacent in G_{2} [16]. For rings R and S if $R \cong S$ it is easy to see that $G_{N}(R) \cong G_{N}(S)$.

Lemma 5.2.3. Let R be a ring and idempotents lift modulo $\operatorname{Nil}(R)$. If $x+\operatorname{Nil}(R)$ and $y+\operatorname{Nil}(R)$ are adjacent in $G_{N}(R / \operatorname{Nil}(R))$ then every element of $x+\operatorname{Nil}(R)$ is adjacent to every element of $y+\operatorname{Nil}(R)$ in the nil clean graph $G_{N}(R)$.

Proof. Let $x+\operatorname{Nil}(R)$ and $y+\operatorname{Nil}(R)$ be adjacent in $G_{N}(R / \operatorname{Nil}(R))$. Then

$$
(x+\operatorname{Nil}(R))+(y+\operatorname{Nil}(R))=e+\operatorname{Nil}(R)
$$

where e is an idempotent in R, as idempotents lift modulo $\operatorname{Nil}(R)$. Thus we have $x+y=e+n$, for some $n \in \operatorname{Nil}(R)$ and hence x and y are adjacent in $G_{N}(R)$. Now for $a \in x+\operatorname{Nil}(R)$ and $b \in y+\operatorname{Nil}(R)$, we have $a=x+n_{1}$ and $b=y+n_{2}$, for some $n_{1}, n_{2} \in \operatorname{Nil}(R)$. Therefore $a+b=e+\left(n-n_{1}-n_{2}\right)$. Hence, a and b are adjacent in $G_{N}(R)$.

Let G be a graph. For $x \in V(G)$, the degree of x, denoted by $\operatorname{deg}(x)$, is defined to be the number of edges of G for which x is an end point. The neighbor set of $x \in V(G)$, is defined to be $N_{G}(x):=\{y \in V(G) \mid y$ is adjacent to $x\}$. Let $N_{G}[x]=$ $N_{G}(x) \cup\{x\}$.

Lemma 5.2.4. Let $G_{N}(R)$ be the nil clean graph of a ring R and let $x \in R$.
(i) If $2 x$ is nil clean, then $\operatorname{deg}(x)=|N C(R)|-1$.
(ii) If $2 x$ is not nil clean, then $\operatorname{deg}(x)=|N C(R)|$.

Proof. Let $x \in R$. Observe that $x+R=R$. So for every $y \in N C(R)$, there exists a unique element $x_{y} \in R$, such that $x+x_{y}=y$. Thus we have

$$
\operatorname{deg}(x) \leq|N C(R)|
$$

Now if $2 x \in N C(R)$, define

$$
f: N C(R) \rightarrow N_{G_{N}(R)}[x]
$$

by

$$
f(y)=x_{y} .
$$

It is easy to see that f is a bijection and therefore

$$
\operatorname{deg}(x)=\left|N_{G_{N}(R)}(x)\right|=\left|N_{G_{N}(R)}[x]\right|-1=|N C(R)|-1
$$

If $2 x \notin N C(R)$, define

$$
f: N C(R) \rightarrow N_{G_{N}(R)}(x)
$$

by

$$
f(y)=x_{y}
$$

Then f is a bijection and therefore

$$
\operatorname{deg}(x)=\left|N_{G_{N}(R)}(x)\right|=|N C(R)|
$$

A graph G is said to be connected if for any two distinct vertices of G, there is a path in G connecting them.

Theorem 5.2.5. For a ring R, the following hold:
(i) $G_{N}(R)$ need not be connected.
(ii) Let $R=\mathbb{Z}_{n}$. For $\bar{a} \in \mathbb{Z}_{n}$ there is a path from \bar{a} to $\overline{0}$.
(iii) $G_{N}\left(\mathbb{Z}_{n}\right)$ is connected.
(iv) Let $R=\mathbb{Z}_{n}$. For $A \in M_{n}\left(\mathbb{Z}_{n}\right)$ there is a path from A to 0 , where 0 is the zero matrix of $M_{n}\left(\mathbb{Z}_{n}\right)$.
(v) $G_{N}\left(M_{n}\left(\mathbb{Z}_{n}\right)\right)$ is connected.

Proof. (i) is clear by the graph $G_{N}(G F(25))$, figure 5.1. For (ii) and (iii) if n is odd replacing p by n in the figure 5.5 , we get a Hamiltonian path in $G_{N}\left(\mathbb{Z}_{n}\right)$; if n is even the following is a Hamiltonian path in $G_{N}\left(\mathbb{Z}_{n}\right)$.

Figure 5.2: Hamiltonian path in $G_{N}\left(\mathbb{Z}_{n}\right)$, when n is an even natural number.

Now for the proof of $(i v)$, let $A=\left[a_{i j}\right] \in M_{n}\left(\mathbb{Z}_{n}\right)$, now we define

$$
A_{1}=\left[a 1_{i j}\right]=\left\{\begin{array}{lc}
-a_{i j}, & i \geq j \\
0, & \text { otherwise }
\end{array}\right.
$$

Observe that $A_{1}+A$ is nilpotent, hence nil clean. Thus there exists an edge between A and A_{1}. Again define

$$
A_{2}=\left[a 2_{i j}\right]= \begin{cases}a_{i j}, & i=j \\ 0, & \text { otherwise }\end{cases}
$$

Then we have an edge between A_{1} and A_{2} in $G_{N}\left(M_{n}\left(\mathbb{Z}_{n}\right)\right)$. For each element $a_{i i}$ of A_{2}, by (ii) we have a path

$$
\left\{a_{i i}, b_{i 1}, b_{i 2}, b_{i 3}, \ldots, b_{i k_{i}}=\overline{0}\right\}
$$

of length $k_{i} \in \mathbb{N}$ to $\overline{0}$. Now let

$$
K=\max \left\{k_{i}: 1 \leq i\right\}
$$

and we can construct a path of length K from A_{2} to 0 , as follows. For $1 \leq i \leq k$, define

$$
B_{i}=\left[b 1_{j l}\right]= \begin{cases}b_{j i}, & \text { if } b 1_{i j} \text { appears in some above paths; } \\ 0, & \text { otherwise }\end{cases}
$$

Thus

$$
\left\{A, A_{1}, A_{2}, B_{1}, B_{2}, \ldots, B_{K}=0\right\}
$$

is a path from A to 0 in $G_{N}\left(M_{n}\left(\mathbb{Z}_{n}\right)\right)$. Lastly (v) follows from (iv).
The following result is a corollary of the Wedderburn's Theorem [32].

Lemma 5.2.6. A ring R is a finite commutative reduced ring with no non trivial idempotents if and only if R is a finite field.

Proof. (\Rightarrow) Let $0 \neq x \in R$. Observe the set $A=\left\{x^{k}: k \in \mathbb{N}\right\}$ is a finite set. Therefore there exist $m>l$ such that $x^{l}=x^{m}$. Note that

$$
\begin{aligned}
x^{l} & =x^{m} \\
& =x^{m-l+l} \\
& =x^{m-l} \cdot x^{l} \\
& =x^{m-l} \cdot x^{m} \\
& =x^{2 m-l+l-l} \\
& =x^{2(m-l)+l} \\
& =\vdots \\
& =x^{k(m-l)+l} .
\end{aligned}
$$

Where k is a natural number. Now we have

$$
\begin{aligned}
{\left[x^{l(m-l)}\right]^{2} } & =x^{l(m-l)} \cdot x^{l(m-l)} \\
& =x^{l(m-l)+l(m-l)+l-l} \\
& =x^{l(m-l)+l} \cdot x^{l(m-l)-l} \\
& =x^{l} \cdot x^{l(m-l)-l} \\
& =x^{l(m-l)},
\end{aligned}
$$

that is $x^{l(m-l)}$ is an idempotent. Thus $x^{l(m-l)}=1$, which gives that x is a unit, therefore R is a finite field. (\Leftarrow) Obvious.

5.3 Invariants of a nil clean graph

In this section, we prove some results related to several invariants of a nil clean graph. Following subsection is for girth of $G_{N}(R)$.

5.3.1 Girth of $G_{N}(R)$

For a graph G, the girth of G is the length of the shortest cycle in G.

Theorem 5.3.1. The following hold for the nil clean graph $G_{N}(R)$ of R :
(i) If R is not a field, then the girth of $G_{N}(R)$ is equal to 3 .
(ii) Suppose that R is a field.
(a) The girth of $G_{N}(R)$ is $2 p$ if $R \cong G F\left(p^{k}\right)$ (field of order p^{k}), where p is a odd prime and $k>1$.
(b) The girth of $G_{N}(R)$ is infinite, in fact $G_{N}(R)$ is a path, otherwise.

Proof. (i) Let R have at least one non-trivial idempotent or non trivial nilpotent. If $e \in R$ is a nontrivial idempotent, then we have

Figure 5.3: A cycle of length 3 in $G_{N}(R)$ for an idempotent e
so the girth of $G_{N}(R)$ is 3 . Again if R contains a nontrivial nilpotent $n \in R$, then we have the cycle

Figure 5.4: A cycle of length 3 in $G_{N}(R)$ for a nilpotent e
so the girth is 3. By Lemma 5.2.6 rings without non trivial idempotents and nilpotents are field. This proves (i).
(ii) The set of nil clean elements of a finite field is $\{0,1\}$, so the nil clean graph of \mathbb{F}_{p}, where p is a prime, is

Figure 5.5: Nil clean graph of \mathbb{Z}_{p}

From the graph, it is clear that the grith of $G_{N}\left(\mathbb{F}_{p}\right)$ is infinite, which proves (b). It is easy to observe that the nil clean graph of $G F\left(p^{k}\right)$ for $p>2$, is a disconnected
graph consisting of a path of length p and $\left(\frac{p^{k-1}-1}{2}\right) 2 p-$ cycles. For the proof, let

$$
G F\left(p^{k}\right)=Z_{p}[X] /\langle f(x)\rangle,
$$

where $f(x)$ is an irreducible polynomial of degree k over \mathbb{Z}_{p}. Let $A \subseteq G F\left(p^{k}\right)$, such that A consists of all linear combinations of $x, x^{2}, \ldots, x^{k-1}$ with coefficients from \mathbb{Z}_{p} such that if $g(x)+\langle f(x)\rangle \in A$ then $-g(x)+\langle f(x)\rangle \notin A$. Clearly, A can be written as

$$
A=\left\{g_{i}(x)+\langle f(x)\rangle \left\lvert\, 1 \leq i \leq\left(\frac{p^{k-1}-1}{2}\right)\right.\right\} .
$$

Let $\overline{g_{i}(x)}=g_{i}(x)+\langle f(x)\rangle$ for $1 \leq i \leq\left(\frac{p^{k-1}-1}{2}\right)$. So (a) follows from
Figure 5.6.

Figure 5.6: Nil clean graph of $G F\left(p^{k}\right)$

Here, $A=-\overline{g_{\frac{p^{k-1}-1}{2}}^{2}(x)}+\overline{1}, B=-\overline{g_{\frac{p^{k-1}-1}{2}}^{2}(x)}+\overline{p-1}, C=\overline{-g_{\frac{p^{k-1}-1}{2}}(x)}+\overline{2}$,

$$
\begin{aligned}
& D=\overline{-g_{\frac{p^{k-1}-1}{2}}(x)}+\overline{\frac{p-1}{2}}, E=-\overline{g_{\frac{p^{k-1}-1}{2}}(x)}+\frac{\overline{p+1}}{2} \\
& A^{\prime}=\overline{g_{\frac{p^{k-1}-1}{2}}(x)}+\overline{1}, B^{\prime}=-\overline{g_{\frac{p^{k-1}-1}{2}}^{2}(x)}+\overline{p-1}, C^{\prime}=\overline{g_{\frac{p^{k-1}-1}{2}}^{2}(x)}+\overline{2}, \\
& D^{\prime}=\overline{g_{\frac{p^{k-1}-1}{2}}(x)}+\frac{\overline{p-1}}{2}, E^{\prime}=-\overline{g_{\frac{p^{k-1}-1}{}}^{2}(x)}+\overline{\frac{p+1}{2}} .
\end{aligned}
$$

Corollary 5.3.2. $G_{N}(R)$ is not cyclic.

A graph G is said to be bipartite if its vertex set can be partitioned into two disjoint subsets V_{1} and V_{2}, such that $V(G)=V_{1} \cup V_{2}$ and every edge in G has the form $e=(x, y) \in E(G)$, where $x \in V_{1}$ and $y \in V_{2}$. Note that no two vertices both in V_{1} or both in V_{2} are adjacent.

Theorem 5.3.3. $G_{N}(R)$ is bipartite if and only if R is a field.
Proof. Let $G_{N}(R)$ be bipartite. Therefore the girth is of $G_{N}(R)$ is not an odd number. Hence by Theorem 5.3.1. R must be a field. Now if R is a field, it is clear from the nil clean graph of R that $G_{N}(R)$ is bipartite.

5.3.2 Dominating set

Let G be a graph. A subset $S \subseteq V(G)$ is said to be a dominating set for G if for each $x \in V(G), x \in S$ or there exists $y \in S$ such that x is adjacent to y. We show that for a finite commutative weak nil clean ring, the dominating number is 2 , where the dominating number is the carnality of the smallest dominating set.

Theorem 5.3.4. Let R be a weak nil clean ring such that R has no non trivial idempotents. Then $\{1,2\}$ is a dominating set for $G_{N}(R)$.

Proof. Let $a \in R$. For some $n \in \operatorname{Nil}(R), a$ is in one of following forms

$$
a=\left\{\begin{array}{c}
n+0 \\
n+1 \\
n-1
\end{array}\right.
$$

Now if $a=n$, then $n+1 \in \mathrm{NC}(R)$ implies a is adjacent to 1 .
If $a=n-1$, then $n-1+1=n \in \mathrm{NC}(R)$ implies a is adjacent to 1 .
If $a=n+1$ and $2=n_{1}$ for some nilpotent $n_{1} \in R$, then a is adjacent to 2 .
If $a=n+1$ and $2=n_{1}-1$ for some nilpotent $n_{1} \in R$, then a is adjacent to 2 .
If $a=n+1$ and $2=n_{1}+1$ for some nilpotent $n_{1} \in R$, then $a+2=(n+1)+\left(n_{1}+1\right)=$ $\left(n+n_{1}\right)+2=n+n_{1}+\left(n_{1}+1\right)=\left(n+2 n_{1}\right)+1$ is nil clean. Hence a is adjacent to 2. Thus $\{1,2\}$ is a dominating set for $G_{N}(R)$.

Theorem 5.3.5. Let $R=A \times B$, such that A is nil clean and B is weak nil clean with no non trivial idempotents. Then $\left\{\left(1_{A}, 1_{B}\right),\left(2_{A}, 2_{B}\right)\right\}$ is a dominating set for $G_{N}(R)$.

Proof. Let $(a, b) \in R$, where $a \in A$ and $b \in B$. For $n_{1} \in \operatorname{Nil}(A), n_{2} \in \operatorname{Nil}(B)$ and $0 \neq e \in \operatorname{Idem}(A),(a, b)$ has one of the following forms

$$
(a, b)= \begin{cases}\left(n_{1}, n_{2}\right)+\left(e, 1_{B}\right) & ; \\ \left(n_{1}, n_{2}\right)+(e, 0) & ; \\ \left(n_{1}, n_{2}\right)-\left(e, 1_{B}\right) & ; \\ \left(n_{1}, n_{2}\right)+(0,0)\end{cases}
$$

If $(a, b)=\left(n_{1}, n_{2}\right)+\left(e, 1_{B}\right)$, we have

$$
(a, b)+\left(2_{A}, 2_{B}\right)=\left(n_{1}+e+2_{A}, n_{2}+1_{B}+2_{B}\right) .
$$

Since A is nil clean,

$$
n_{1}+e+2_{A}=n_{1}^{\prime}+f \text { for some } n_{1}^{\prime} \in \operatorname{Nil}(A) \text { and } f \in \operatorname{Idem}(A)
$$

As B is weak nil clean, we have

$$
2_{B}=n_{2}^{\prime}, \text { or } n_{2}^{\prime}-1_{B}, \text { for some } n_{2}^{\prime} \in \operatorname{Nil}(B)
$$

If $2_{B}=n_{2}^{\prime}$, we have

$$
(a, b)+\left(2_{A}, 2_{B}\right)=\left(n_{1}^{\prime}, n_{2}+n_{2}^{\prime}\right)+\left(f, 1_{B}\right),
$$

which is a nil clean expression; hence (a, b) is adjacent to $\left(2_{A}, 2_{B}\right)$. If $2_{B}=n_{2}^{\prime}-1_{B}$, we have

$$
(a, b)+\left(2_{A}, 2_{B}\right)=\left(n_{1}^{\prime}, n_{2}+n_{2}^{\prime}\right)+(f, 0),
$$

so (a, b) is adjacent to $\left(2_{A}, 2_{B}\right)$. In other three cases it is easy to see that $(a, b)+$ $\left(1_{A}, 1_{B}\right)$ is nil clean hence (a, b) is adjacent to $\left(1_{A}, 1_{B}\right)$. Therefore $\left\{\left(1_{A}, 1_{B}\right),\left(2_{A}, 2_{B}\right)\right\}$ is a dominating set for $G_{N}(R)$.

Theorem 5.3.6. Let R be a weak nil clean ring. The $\{1,2\}$ is a dominating set for $G_{N}(R)$.

Proof. If R has no non trivial idempotents, then by Theorem 5.3.4 we are done. If R has a non trivial idempotent, say e, then $R=e R \oplus(1-e) R$. By Theorem 2.3 of [9], either $e R$ or $(1-e) R$ is a nil clean ring. Without lost of generality suppose that $e R$ is a nil clean ring and $(1-e) R$ is a weak nil clean ring. Now if $(1-e) R$ has no non trivial idempotents, then we have the result by Theorem 5.3.5. Otherwise, repeating as above we get a direct sum decomposition of R where only one summand is weak nil clean. As R is a finite ring, after repeating above finite number of times we will have a direct sum decomposition of R, where idempotents of weak nil clean summand of R is trivial. Then again by Theorem $\mathbf{5 . 3 . 5}$ we have the result.

5.3.3 Chromatic index

An edge colouring of a graph G is a map $C: E(G) \rightarrow S$, where S is a set of colours such that for all $e, f \in E(G)$, if e and f are adjacent, then $C(e) \neq C(f)$. The chromatic index of a graph, denoted by $\chi^{\prime}(G)$; is defined as the minimum number of colours needed for a proper colouring of G. Let Δ be the maximum vertex degree of G. Vizings theorem [24] gives $\Delta \leq \chi^{\prime}(G) \leq \Delta+1$. Vizings theorem divides the graphs into two classes according to their chromatic index; graphs satisfying $\chi^{\prime}(G)=\Delta$ are called graphs of class 1 , and those with $\chi^{\prime}(G)=\Delta+1$ are graphs of class 2.

We show that $G_{N}(R)$ is of class 1 .

Theorem 5.3.7. Let R be a finite commutative ring. Then the nil clean graph of R is of class 1 .

Proof. We colour the edge $a b$ by the colour $a+b$. By this colouring, every two distinct edges $a b$ and $a c$ have different colours and

$$
C=\left\{a+b \mid a b \text { is an edge in } G_{N}(R)\right\}
$$

is the set of colours. Therefore the nil clean graph has a $|C|$-edge colouring and so

$$
\chi^{\prime}\left(G_{N}(R)\right) \leq|C| .
$$

But $C \subset N C(R)$ and

$$
\chi^{\prime}\left(G_{N}(R)\right) \leq|C| \leq|N C(R)| .
$$

By Lemma 5.2.4, $\triangle \leq|N C(R)|$, and so by Vizing's theorem, we have

$$
\chi^{\prime}\left(G_{N}(R)\right) \geq \Delta=\mid N C(R \mid .
$$

Therefore we have

$$
\chi^{\prime}\left(G_{N}(R)\right)=\mid N C(R \mid=\Delta,
$$

i.e., $G_{N}(R)$ is of class 1.

5.3.4 Diameter

For a graph G, the number of edges on the shortest path between vertices x and y is called the distance between x and y and is denoted by $d(x, y)$. If there is no path between x and y then we say $d(x, y)=\infty$. The diameter of a graph $\operatorname{diam}(G)$ is the maximum of distances of each pair of distinct vertices in G.

The following are some results related to diameter of the nil clean graph of a ring.

Lemma 5.3.8. R is a nil clean ring if and only if $\operatorname{diam}\left(G_{N}(R)\right)=1$.

Theorem 5.3.9. Let R be a non nil clean, weak nil clean ring with no non trivial idempotents. Then $\operatorname{diam}\left(G_{N}(R)\right)=2$.

Proof. Let $a, b \in R$ and let $n_{1}, n_{2} \in \operatorname{Nil}(R)$. Since R is a weak nil clean ring with no non trivial idempotents, so for any $r \in R$ there exists $n \in \operatorname{Nil}(R)$ such that r is in one of following forms

$$
r=\left\{\begin{array}{l}
n+0 \\
n+1 \\
n-1
\end{array}\right.
$$

If $a=n_{1}+1$ and $b=n_{2}-1$ or n_{2}, then $a+b$ is nil clean. Thus $a b$ is an edge in $G_{N}(R)$, so $d(a, b)=1$.

If $a=n_{1}+1$ and $b=n_{2}+1$, we have the path

$$
a-(-1)-b
$$

in $G_{N}(R)$, so $d(a, b) \leq 2$.
If $a=n_{1}-1$ and $b=n_{2}-1$ or n_{2}. Then, as above, there is a path of length 2 from a to b through 1 . So in this case also $d(a, b) \leq 2$. Finally if $a=n_{1}$ and $b=n_{2}$, then $d(a, b)=2$. Thus from above we conclude that

$$
\operatorname{diam}\left(G_{N}(R)\right) \leq 2
$$

Now as R is a non nil clean, weak nil clean ring, we have at least one $x \in R$, such that $x=n-1$ but $x \neq n+1$, i.e., x is not nil clean. Thus we have $d(0, x) \geq 2$, so

$$
\operatorname{diam}\left(G_{N}(R)\right) \geq 2
$$

Hence the result follows.

Theorem 5.3.10. Let $R=A \times B$, such that A is nil clean and B weak nil clean with no non trivial idempotents. Then $\operatorname{diam}\left(G_{N}(R)\right)=2$.

Proof. We have $\operatorname{Idem}(R)=\left\{\left(e, 0_{B}\right),\left(e, 1_{B}\right) \mid e \in \operatorname{Idem}(A)\right\}$. Now let $\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right) \in$ R. In case $\left(a_{1}, b_{1}\right)+\left(a_{2}, b_{2}\right)$ is nil clean then $d\left(\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right)\right)=1$ in $G_{N}(R)$. If
$\left(a_{1}, b_{1}\right)+\left(a_{2}, b_{2}\right)$ is not nil clean, then $b_{1}+b_{2}$ is not nil clean. So we have following cases:

Case I:

If $b_{1}=n_{1}+1$ and $b_{2}=n_{2}+1$, we have the path

$$
\left(a_{1}, b_{1}\right)-(0,-1)-\left(a_{2}, b_{2}\right)
$$

in $G_{N}(R)$, thus $d\left(\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right)\right) \leq 2$.
Case II:
If $b_{1}=n_{1}-1$ and $b_{2}=n_{2}-1$, we have the path

$$
\left(a_{1}, b_{1}\right)-(0,1)-\left(a_{2}, b_{2}\right)
$$

in $G_{N}(R)$, thus $d\left(\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right)\right) \leq 2$.

Case III:

If $b_{1}=n_{1}-1$ and $b_{2}=n_{2}$, we have the path

$$
\left(a_{1}, b_{1}\right)-(0,1)-\left(a_{2}, b_{2}\right)
$$

in $G_{N}(R)$, thus $d\left(\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right)\right) \leq 2$.

Case IV:

If $b_{1}=n_{1}$ and $b_{2}=n_{2}-1$, by Case III and symmetry we have $d\left(\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right)\right) \leq$ 2.

Therefore combining above Cases, we have

$$
\operatorname{diam}(R) \leq 2
$$

But, R not nil clean implies

$$
\operatorname{diam}(R) \geq 2
$$

Thus $\operatorname{diam}(R)=2$.

Theorem 5.3.11. If R is weak nil clean but not nil clean then $\operatorname{diam}\left(G_{N}(R)\right)=2$.

Proof. If R has no non trivial idempotents, then by Theorem 5.3.10 we are done. If R has a non trivial idempotent say e, then $R=e R \oplus(1-e) R$. So by Theorem 2.3 of [9] we have one of $e R$ or $(1-e) R$ must be a nil clean ring. Without lost of generality suppose that $e R$ is a nil clean ring and $(1-e) R$ is a weak nil clean ring. Now if $(1-e) R$ has no non trivial idempotents, then we have the result by Theorem 5.3.10. Otherwise repeating as above we get a direct sum decomposition of R where only one summand is weak nil clean. As R is a finite ring, so after repeating above to the weak nil clean summand of R for finite number of times, we will have a direct sum decomposition of R, where idempotents of weak nil clean summand of R are trivial. Thus again by Theorem 5.3.10, we have the result.

Theorem 5.3.12. Let n be a positive integer. The following hold for \mathbb{Z}_{n} :
(i) If $n=2^{k}$, for some integer $k \geq 1$, then $\operatorname{diam}\left(G_{N}\left(\mathbb{Z}_{n}\right)\right)=1$.
(ii) If $n=2^{k} 3^{l}$, for some integer $k \geq 0$ and $l \geq 1$, then $\operatorname{diam}\left(G_{N}\left(\mathbb{Z}_{n}\right)\right)=2$.
(iii) For a prime p, $\operatorname{diam}\left(G_{N}\left(\mathbb{Z}_{p}\right)\right)=p-1$.
(iv) If $n=2 p$, where p is an odd prime, then $\operatorname{diam}\left(G_{N}\left(\mathbb{Z}_{2 p}\right)\right)=p-1$.
(v) If $n=3 p$, where p is an odd prime, then $\operatorname{diam}\left(G_{N}\left(\mathbb{Z}_{3 p}\right)\right)=p-1$.

Proof. (i) and (ii) follow from Lemma 5.3.8 and Theorem 5.3.11 respectively. (iii) follows from $G_{N}\left(\mathbb{Z}_{p}\right)$ in Figure 5.5, (iv) follows from graph $G_{N}\left(\mathbb{Z}_{2 p}\right)$ in Figure 5.7 and (v) follows from graphs in Figure 5.9 and Figure 5.8.

Figure 5.7: Nil clean graph of $\mathbb{Z}_{2 p}$

Figure 5.8: Nil clean graph of $\mathbb{Z}_{3 p}$ where $p \equiv 1(\bmod 3)$

Figure 5.9: Nil clean graph of $\mathbb{Z}_{3 p}$ where $p \equiv 2(\bmod 3)$

[^0]: ${ }^{2}$ The contents of this chapter have been accepted for publication in Algebra Colloquium (2017)

