Chapter 2

Nil clean index of rings

2.1 Introduction

As mentioned in the introductory chapter, in this chapter we have introduced the notion of nil clean index of a ring and characterized arbitrary rings with nil clean index 1 and 2. Also a few results for rings with indices 3 and 4 are listed.

For an element $a \in R$, if $a - e \in \text{Nil}(R)$ for some $e^2 = e \in R$, then a = e + (a - e) is called a nil clean expression of a in R and a is called a nil clean element. The ring R is called nil clean if each of its elements is nil clean. A ring R is uniquely nil clean if every element of R has a unique nil clean expression in R. For an element a of R, we denote

$$\eta(a) = \{e \in R \mid e^2 = e \text{ and } a - e \in \text{Nil}(R)\}$$

and the nil clean index of R, denoted by Nin(R) is defined as

$$Nin(R) = \sup\{|\eta(a)| : a \in R\}$$

where $|\eta(a)|$ denotes the cardinality of the set $\eta(a)$. Thus R is uniquely nil clean if and only if R is a nil clean ring of nil clean index 1.

¹The contents of this chapter have been published in *International Electronic Journal of Algebra* (2014).

2.2 Elementary properties

Some basic properties related to nil clean index are presented here as a preparation for the study on nil clean index of a ring.

Lemma 2.2.1. Let R be a ring and let $e, a, b \in R$. Then the following hold:

- (i) If $e \in R$ is a central idempotent or a central nilpotent element, then $|\eta(e)| = 1$, so $Nin(R) \ge 1$.
- (ii) $e \in \eta(a)$ iff $1 e \in \eta(1 a)$ and so $|\eta(a)| = |\eta(1 a)|$.
- (iii) If $f: R \to R$ is a homomorphism, then $e \in \eta(a)$ implies $f(e) \in \eta(f(a))$ and for the converse f must be a monomorphism.
- (iv) If R has at most n idempotents or at most n nilpotent elements, then $Nin(R) \leq n$.

Proof. (i) Let e be a central idempotent. So we have e = e + 0, a nil clean expression of e. If possible let e = a + n be another nil clean expression of e in R, where $a \in idem(R)$, $n \in nil(R)$ and $n^k = 0$ for some positive integer k. Then $(e - a)^{2k-1} = 0$, which gives

$$e^{2k-1} - \binom{2k-1}{1} e^{2k-2} a + \dots + \binom{2k-1}{2k-2} (-1)^{2k-2} e a^{2k-2} + (-1)^{2k-1} a^{2k-1} = 0,$$

so $(e + (-1)^{2k-1} a) - \left\{ \binom{2k-1}{1} - \binom{2k-1}{2} + \dots + (-1)^{(2k-3)} \binom{2k-1}{2k-2} \right\} e a = 0.$

Using elementary result of binomial coefficients, we get

$$(e-a) - (1 + (-1)^{2k-3})ea = 0.$$

Hence e = a, i.e, $|\eta(e)| = 1$.

$$e \in \eta(a),$$

$$\Leftrightarrow \qquad a - e \text{ is nilpotent},$$

$$\Leftrightarrow \qquad e - a \text{ is nilpotent},$$

$$\Leftrightarrow \qquad (1 - a) - (1 - e) \text{ is nilpotent},$$

$$\Leftrightarrow \qquad 1 - e \in \eta(1 - a),$$

so we get $| \eta(a) | = | \eta(1-a) |$.

(iii) is straightforward and (iv) is clear from the definition of nil clean index. \Box

Lemma 2.2.2. If S is a subring of a ring R, where S and R may or may not share the same identity, then $Nin(S) \leq Nin(R)$.

Proof. Since S is a subring of R, all the idempotents and nilpotent elements of S are also idempotents and nilpotent elements of R. Let $a \in S$ and $e \in \eta_S(a)$ i.e., $e^2 = e \in S$ and $a - e \in \text{nil}(S)$. Obviously this implies e is an idempotent in R and $a - e \in \text{nil}(R)$, i.e., $e \in \eta_R(a)$. Therefore we have

$$\eta_{S}(a) \subseteq \eta_{R}(a) \text{ for all } a \in S,$$

$$\Rightarrow |\eta_{S}(a)| \leq |\eta_{R}(a)| \text{ for all } a \in S,$$

$$\Rightarrow \sup_{a \in S} |\eta_{S}(a)| \leq \sup_{a \in S} |\eta_{R}(a)| \leq \sup_{a \in R} |\eta_{R}(a)|.$$

So we get $Nin(S) \leq Nin(R)$.

Lemma 2.2.3. Let $R = S \times T$ be the direct product of two rings S and T. Then Nin(R) = Nin(S)Nin(T).

Proof. Since S and T are subrings of R, so

$$Nin(S) \le Nin(R)$$
 and $Nin(T) \le Nin(R)$.

If $\operatorname{Nin}(S) = \infty$ or $\operatorname{Nin}(T) = \infty$, then $\operatorname{Nin}(R) = \infty$ and hence, $\operatorname{Nin}(R) = \operatorname{Nin}(S)\operatorname{Nin}(T)$ holds. Now let

$$Nin(S) = n < \infty \text{ and } Nin(T) = m < \infty.$$

As $n, m \ge 1$ and there exist elements $s \in S$ and $t \in T$, such that

$$|\eta_S(s)| = n$$
 and $|\eta_T(t)| = m$.

Thus $s = e_i + n_i$, for i = 1, 2, ..., n and $t = f_j + m_j$ for j = 1, 2, ..., m, where e_i 's, f_j 's are distinct idempotents and n_i 's, m_j 's are distinct nilpotent elements of S and T respectively. Therefore $(s, t) \in R$, can be expressed as

$$(s,t) = (e_i, f_j) + (n_i, m_j),$$

which are mn distinct nil clean expressions of $(s,t) \in R$. Hence

$$Nin(R) \ge mn$$
.

If possible let Nin(R) > nm, say nm + 1, then there exists an element $(a, b) \in R$, such that it has at least nm + 1 nil clean expressions in R. That is

$$(a,b) = (g_i, h_i) + (c_i, d_i),$$

where $i = 1, 2, \ldots, mn + 1$, $(g_i, h_i)^2 = (g_i, h_i)$ and $(c_i, d_i) \in \text{nil}(R)$. So $a = g_i + c_i$ and $b = h_i + d_i$ are nil clean expressions for a and b respectively. Let

$$K = \{(g_i, h_i) \mid i = 1, 2, 3, \dots, mn, mn + 1\}.$$

Now we have

$$|K| = nm + 1$$

$$\Rightarrow |\{g_i\}| \cdot |\{h_i\}| = nm + 1$$

$$\Rightarrow |\{g_i\}| > n \text{ or } |\{h_i\}| > m,$$

which gives Nin(S) > n or Nin(T) > m, which is absurd.

Lemma 2.2.4. Let I be an ideal of R with $I \subseteq nil(R)$ and let $n \ge 1$ be an integer. Then the following hold:

- (i) Nin(R/I) = Nin(R).
- (ii) If $Nin(R) \leq n$, then every idempotent of R/I can be lifted to at most n idempotents of R.

Proof. (i) Let $a \in R$. Then any idempotent $x+I \in \eta(a+I)$ is lifted to an idempotent e_x of R. Now from

$$(a+I) - (x+I) \in nil(R/I),$$

we get

$$(a+I) - (e_x + I) \in \operatorname{nil}(R/I),$$

which means there exists some positive integer k, such that

$$(a - e_x)^k + I = I$$

$$\Rightarrow \qquad a - e_x \in \operatorname{nil}(R)$$
 i.e.,
$$e_x \in \eta(a).$$

So the mapping $\eta(a) \to \eta(a+I)$ is onto, i.e.,

$$|\eta(a)| \ge |\eta(a+I)|$$
 for all $a \in R$.

Conversely, if $e \in \eta(a)$ then $a - e \in \text{nil}(R)$; so there exists some positive integer k, such that

$$(a-e)^k = 0 \in I.$$

This implies

$$(a-e)^k + I = I$$

and so

$$(a-I) - (e+I) \in nil(R/I)$$

which gives

$$e + I \in \eta(a + I)$$
.

Therefore the mapping

$$\eta(a+I) \to \eta(a)$$
 is onto.

i.e., $|\eta(a+I)| \ge |\eta(a)|$, for all $a \in R$. Hence

$$\mid \eta(a) \mid = \mid \eta(a+I) \mid$$
, for all $a \in R$,

which implies

$$\sup_{a \in R} \mid \eta(a) \mid = \sup_{(a+I) \in R/I} \mid \eta(a+I) \mid,$$

consequently

$$Nin(R) = Nin(R/I).$$

(ii) Let $a \in R$ such that $a^2 - a \in I$. If $a - e \in I \subseteq \operatorname{nil}(R)$, for some $e^2 = e \in R$, then $e \in \eta(a)$. But $|\eta(a)| \leq \operatorname{Nin}(R) \leq n$. So there are at most n such elements. \square

Lemma 2.2.5. Let $R = \begin{pmatrix} A & M \\ 0 & B \end{pmatrix}$, where A and B are rings, ${}_{A}M_{B}$ is a bimodule. Let Nin(A) = n and Nin(B) = m. Then

- (i) $Nin(R) \ge |M|$.
- (ii) If $(M, +) \cong C_{p^k}$, where p is a prime and $k \geq 1$, then $Nin(R) \geq n + [\frac{n}{2})(|M| 1)$, where $[\frac{n}{2}]$ denotes the least integer greater than or equal to $\frac{n}{2}$.
- (iii) Either $Nin(R) \ge nm + |M| 1$ or $Nin(R) \ge 2nm$.

Proof. (i) Let
$$\alpha=\begin{pmatrix}1_A&0\\0&0\end{pmatrix}$$
. Then we have
$$\left\{\begin{pmatrix}1_A&w\\0&0\end{pmatrix}\mid w\in M\right\}\subseteq\eta(\alpha)$$

as

$$\begin{pmatrix} 1_A & w \\ 0 & 0 \end{pmatrix} - \begin{pmatrix} 1_A & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & w \\ 0 & 0 \end{pmatrix} \text{ is nilpotent.}$$

So we have

$$Nin(R) \ge |\eta(\alpha)| \ge |M|$$
.

(ii) Let $q = p^k$ and $a = e_i + n_i$, i = 1, 2, ..., n be n distinct nil clean expressions of a in A. For any $e = e^2 \in A$

$$(M,+) = eM \oplus (1-e)M.$$

Since $(M, +) \cong C_{p^k}$, so (M, +) is indecomposable and hence

$$M = eM \text{ or } = (1 - e)M.$$

Assume that

$$(1 - e_1)M = \cdots = (1 - e_s)M = M$$
 and $e_{s+1}M = \cdots = e_nM = M$.

If
$$s \ge (n-s)$$
 (i.e., $s \ge \left[\frac{n}{2}\right]$), then for $\alpha = \begin{pmatrix} 1_A - a & 0 \\ 0 & 0 \end{pmatrix}$, we have

$$\eta(\alpha) \supseteq \left\{ \begin{pmatrix} 1_A - e_i & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 1_A - e_j & w \\ 0 & 0 \end{pmatrix} : 1 \le i \le n, 1 \le j \le s, 0 \ne w \in M \right\},$$

SO

$$|\eta(\alpha)| \ge n + s(q-1).$$

If
$$s < (n-s)$$
 (i.e., $n-s \ge \left[\frac{n}{2}\right]$), for $\beta = \begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix}$

$$\eta(\beta) \supseteq \left\{ \begin{pmatrix} e_i & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} e_j & w \\ 0 & 0 \end{pmatrix} : 1 \le i \le n, s+1 \le j \le n, 0 \ne w \in M \right\},$$

therefore

$$|\eta(\beta)| \ge n + (n-s)(q-1).$$

Hence

$$Nin(R) \ge n + \left[\frac{n}{2}\right)(q-1).$$

(iii) Let $a = e_i + n_i$, i = 1, 2, ..., n and $b = f_j + m_j$, j = 1, 2, ..., m be distinct nil clean expressions of a and b in A and B respectively.

Case I:

If $e_{i_0}M(1-f_{j_0}) + (1-e_{i_0})Mf_{j_0} = 0$ for some i_0 and j_0 . Then $e_{i_0}w = wf_{i_0}$ for all $w \in M$. Thus for $\alpha = \begin{pmatrix} 1_A - a & 0 \\ 0 & b \end{pmatrix}$

$$\eta(\alpha) \supseteq \left\{ \begin{pmatrix} 1_A - e_i & 0 \\ 0 & f_j \end{pmatrix}, \begin{pmatrix} 1_A - e_{i_0} & w \\ 0 & f_{j_0} \end{pmatrix}; 1 \le i \le n, 1 \le j \le m; 0 \ne w \in M \right\},$$

so we have $|\eta(\alpha)| \ge mn + |M| - 1$.

Case II:

If $e_i M(1 - f_j) + (1 - e_i) M f_j \neq 0$ for all i and j. Take

$$0 \neq w_{ij} \in e_i M(1 - f_j) + (1 - e_i) M f_j$$
 for each pair (i, j) .

For
$$\alpha = \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}$$
, we have

$$\eta(\alpha) \supseteq \left\{ \begin{pmatrix} e_i & 0 \\ 0 & f_j \end{pmatrix}, \begin{pmatrix} e_i & w_{ij} \\ 0 & f_j \end{pmatrix}; 1 \le i \le n, 1 \le j \le m; 0 \ne w_{ij} \in M \right\},$$

thus $|\eta(\alpha)| \ge 2mn$.

Cases I and II imply, either

$$Nin(R) \ge nm + |M| - 1$$
 or $Nin(R) \ge 2nm$.

Lemma 2.2.6. Let $R = \begin{pmatrix} A & M \\ 0 & B \end{pmatrix}$, where A and B are rings, ${}_{A}M_{B}$ is a bimodule with $(M, +) \cong C_{2^{r}}$. Then $Nin(R) = 2^{r}Nin(A)Nin(B)$.

Proof. Let k = Nin(A) and l = Nin(B). For $e_i \in \text{Idem}(A), f_j \in \text{Idem}(B), n_i \in \text{Nil}(A)$ and $m_j \in \text{Nil}(B)$, let $a = e_i + n_i$, i = 1, 2, ..., k and $b = f_j + m_j$, j = 1, 2, ..., l be distinct nil clean expressions of $a \in A$ and $b \in B$ respectively. Write $M = \{0, x, 2x, ..., (2^r - 1)x\}$, for any $e = e^2 \in A$, either M = eM or $M = (1_A - e)M$; so $ex \in \{0, x\}$. Suppose $e_1x \neq e_2x$, say $e_1x = 0$ and $e_2x = x$. Then

$$ax = n_1 x = x + n_2 x = (1 + n_2)x$$

Because $ax \in M$, ax = ix for some $2 \le i \le 2^k$. So

$$n_1x = ix$$

$$\Rightarrow$$
 0 = $i^p x$ [Since $n^p = 0$ for some $p \in \mathbb{N}$],

which gives i is even, so let i = 2j. Now

$$(1+n_2)x = (2j)x$$

$$\Rightarrow (1+n_2)^r x = (2j)^r x = j^r (2^r)x = 0,$$

$$\Rightarrow x = 0 \text{ [as } n+1 \in \mathrm{U}(A)\text{]},$$

a contradiction, as $x \neq 0$. So $e_1 x = e_2 x = \cdots = e_k x$. Similarly $x f_1 = x f_2 = \cdots = x f_l$.

Case I:

If
$$e_i x = 0$$
 and $x f_j = 0$, for $\alpha = \begin{pmatrix} 1_A - a & 0 \\ 0 & b \end{pmatrix}$ we have
$$\alpha = \begin{pmatrix} 1_A - e_i & w \\ 0 & f_j \end{pmatrix} + \begin{pmatrix} -n_i & -w \\ 0 & m_j \end{pmatrix},$$

 $i=1,2,\ldots,k, j=1,2,\ldots,l$ and $\forall w\in M$, therefore in this case

$$Nin(R) \ge |\eta(\alpha)| \ge 2^r kl$$
.

Case II:

If
$$e_i x = x$$
, $x f_j = x$, for $\beta = \begin{pmatrix} 1_A - a & 0 \\ 0 & b \end{pmatrix}$, we have
$$\beta = \begin{pmatrix} 1_A - e_i & w \\ 0 & f_j \end{pmatrix} + \begin{pmatrix} -n_i & -w \\ 0 & m_j \end{pmatrix},$$

 $i=1,2,\ldots,k, j=1,2,\ldots,l,$ and $\forall w\in M,$ therefore in this case also

$$Nin(R) \ge |\eta(\alpha)| \ge 2^r kl$$
.

Case III:

If
$$e_i x = x$$
, $x f_j = 0$, for $\gamma = \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}$ we have
$$\gamma = \begin{pmatrix} e_i & w \\ 0 & f_j \end{pmatrix} + \begin{pmatrix} n_i & -w \\ 0 & m_j \end{pmatrix},$$

 $i=1,2,\ldots,k, j=1,2,\ldots,l$ and $\forall w\in M$, therefore in this case $\mathrm{Nin}(R)\geq |\eta(\alpha)|\geq 2^rkl$.

Case IV:

If
$$e_i x = 0$$
, $x f_j = x$, for $\delta = \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}$, we have

$$\delta = \left(\begin{array}{cc} e_i & w \\ 0 & f_j \end{array}\right) + \left(\begin{array}{cc} n_i & -w \\ 0 & m_j \end{array}\right)$$

 $i=1,2,\ldots,k, j=1,2,\ldots,l$ and $\forall w\in M$, therefore in this case also

$$Nin(R) \ge |\eta(\alpha)| \ge 2^r kl$$
.

On the other hand for $\alpha = \begin{pmatrix} c & z \\ 0 & d \end{pmatrix} \in R$, we have

$$\eta(\alpha) = \left\{ \begin{pmatrix} e & w \\ 0 & f \end{pmatrix} \in R, \quad e \in \eta(c), \quad f \in \eta(d), \quad w = ew + we \right\}.$$

So, $|\eta(\alpha)| \leq |M| |\eta(c)| |\eta(d)| \leq 2^r kl$ and therefore

$$Nin(R) \le 2^r kl$$
.

Hence $Nin(R) = 2^r kl = 2^r Nin(A) Nin(B)$.

Lemma 2.2.7. Let A and B be rings and ${}_{A}M_{B}$ a nontrivial bimodule. If $R = \begin{pmatrix} A & M \\ 0 & B \end{pmatrix}$ is a formal triangular matrix ring, then Nin(A) < Nin(R) and Nin(B) < Nin(R).

Proof. Let k = Nin(A), for $n_i \in \text{Nil}(R)$, $e_i \in \text{Idem}(R)$; let $a = e_i + n_i$ (i = 1, 2, ..., k) be k distinct nil clean expressions of a in A. If $e_1M = 0$, then

$$\begin{pmatrix} 1_A - a & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 1_A - e_i & 0 \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} -n_i & 0 \\ 0 & 0 \end{pmatrix}$$
$$= \begin{pmatrix} 1_A - e_1 & x \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} -n_1 & -x \\ 0 & 0 \end{pmatrix}$$
$$\forall 0 \neq x \in M$$

are at least k+1 distinct nil clean expressions of $\begin{pmatrix} 1_A - a & 0 \\ 0 & 0 \end{pmatrix}$ in R.

If $e_1M \neq 0$, then $e_1x \neq 0$ for some $x \in M$. So we have

$$\begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} e_i & 0 \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} n_i & 0 \\ 0 & 0 \end{pmatrix}$$
$$= \begin{pmatrix} e_1 & e_1 x \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} n_1 & -e_1 x \\ 0 & 0 \end{pmatrix} \qquad \forall \quad 0 \neq x \in M$$

are at least k+1 distinct nil clean expressions of $\begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix}$ in R.

$$Nin(R) \ge k + 1 > k = Nin(A).$$

Similarly

So in any case

$$Nin(R) > Nin(B)$$
.

Lemma 2.2.8. Let R be a ring with unity. Then $In(R) \ge Nin(R)$, where In(R) is the clean index of R.

Proof. Let Nin(R) = k. Then there is an element $a \in R$, such that it has k nil clean expressions in R, i.e.,

$$a = e_i + n_i$$
, for $i = 1, 2, \dots, k$,

where $e_i \in idem(R)$ and $n_i \in nil(R)$. From this we get,

$$a-1 = e_i + (n_i - 1)$$

are k clean expression for $(a-1) \in R$, and therefore $In(R) \ge k$.

2.3 Rings of nil clean index 1

Lemma 2.3.1. Nin(R) = 1, if and only if R is abelian and for any $0 \neq e^2 = e \in R$, $e \neq n + m$ for $n, m \in nil(R)$.

Proof. Let $e^2 = e \in R$. Then for any $r \in R$, we have

$$e + 0 = [e + er(1 - e)] + [-er(1 - e)],$$

where

$$(e + er(1 - e))^2 = e + er(1 - e) \in Idem(R)$$

$$(-er(1-e))^2 = er(1-e)er(1-e) = 0$$
 i.e., $-er(1-e) \in nil(R)$.

Since Nin(R) = 1, so

$$e = e + er(1 - e)$$
 gives $er = ere$.

Similarly re = ere, hence er = re, thus R is abelian. For last part, if e = n + m for some $n, m \in nil(R)$ then

$$e + (-m) = 0 + n,$$

since Nin(R) = 1, this is not possible.

Conversely, suppose R is abelian and no nonzero idempotent of R can be written as a sum of two nilpotent elements. We know that $Nin(S) \ge 1$ for any ring S. Assume that $a \in R$ has two nil clean expressions

$$a = e_1 + n_1 = e_2 + n_2, (2.3.1)$$

where $e_1, e_2 \in idem(R)$ and $n_1, n_2 \in nil(R)$. If $e_1 = e_2$ we have nothing to prove. So let $e_1 \neq e_2$. Now multiplying equation (2.3.1) by $(1 - e_1)$ we get,

$$e_1(1 - e_1) + n_1(1 - e_1) = e_2(1 - e_1) + n_2(1 - e_2)$$

$$e_2(1 - e_1) = n_1(1 - e_1) - n_2(1 - e_2).$$
(2.3.2)

Since R is abelian, therefore

$$e_2(1-e_1) \in \text{Idem}(R) \text{ and } n_1(1-e_1), n_2(1-e_2) \text{Nil}(R).$$

So (2.3.2) gives a contradiction if $e_2(1-e_1) \neq 0$. $e_2(1-e_1) = 0$, i.e., $e_2-e_1e_2$. Similarly, $e_1-e_1e_2$. Hence $e_1=e_2$. This shows $|\eta(a)| \leq 1$ for all $a \in R$, hence $\operatorname{Nin}(R)=1$.

Theorem 2.3.2. Nin(R) = 1 if and only if R is an abelian ring.

Proof. (\Rightarrow) This is by Lemma 2.3.1.

(\Leftarrow) Let R be an abelian ring and e a non zero idempotent of R. We claim that e can not be written as sum of two nilpotent elements. Suppose e = a + b where $a, b \in \text{Nil}(R)$ and for positive integers n < m, $a^n = 0 = b^m$. Then $(e - a)^m = 0$, using binomial theorem we get

$$e^{m} - {m \choose 1} a e^{(m-1)} + {m \choose 2} a^{2} e^{(m-2)} - \dots + (-1)^{(n-1)} {m \choose n-1} a^{(n-1)} e^{(m-n+1)} = 0$$

which gives

$$e\left[1 - \binom{m}{1}a + \binom{m}{2}a^2 - \dots + (-1)^{(n-1)}\binom{m}{n-1}a^{(n-1)} + (-1)^n\binom{m}{n}a^n + (-1)^{(n+1)}\binom{m}{n+1}a^{(n+1)} + \dots + (-1)^ma^m\right] = 0.$$

This implies

$$e(1-a)^m = 0,$$

therefore we get, e = 0 [since $1 - a \in U(R)$].

Similarly, if n > m, then $(e - b)^n = 0$ and so e = 0, a contradiction. Hence, no nonzero idempotent can be written as sum of two nilpotent elements and therefore Nin(R) = 1.

Above theorem gives the following observations:

- (i) A ring R with Nin(R) = 1 is always Dedekind finite, but the converse is not true by **Example 2.5.2**.
- (ii) Rings with trivial idempotents have nil clean index one and consequently the local rings are of nil clean index one. If Nin(R) = 1, then it is easy to see that idempotents of R[[x]] are idempotents of R, and for any

$$\alpha = \alpha_0 + \alpha_1 x + \dots \in R[[x]],$$

we have

$$\eta_{R[[x]]}(\alpha) \subseteq \eta_R(\alpha_0).$$

This gives

$$Nin(R[x]) = Nin(R[[x]]) = 1.$$

But if Nin(R) > 1 then, there is some noncentral idempotent $e \in R$, such that $er \neq re$ for some $r \in R$. So either

$$er(1-e) \neq 0 \text{ or } (1-e)re \neq 0.$$

Let $er(1-e) \neq 0$. Then we have

$$a := e + er(1 - e)$$

= $[e + er(1 - e)x^{i}] + [er(1 - e)(1 - x^{i})],$

where i is a positive integer, are infinitely many nil clean expressions of a in R[x], which implies

$$Nin(R[x]) = \infty.$$

Now we have the following theorem.

Theorem 2.3.3. Nin(R[[x]]) is finite iff Nin(R) = 1.

Proof. If Nin(R) = 1, then it is easy to see that idempotents of R[[x]] are idempotents of R. For any $\alpha = \alpha_0 + \alpha_1 x + \cdots \in R[[x]]$, it is easy to see that $\eta_{R[[x]]}(\alpha) \subseteq \eta_R(\alpha_0)$. This gives Nin(R[x]) = Nin(R[[x]]) = 1. But if Nin(R) > 1 then, there is some noncentral idempotent $e \in R$, such that $er \neq re$ for some $r \in R$. So either $er(1-e) \neq 0$ or $(1-e)re \neq 0$. Let $er(1-e) \neq 0$. Then we have $a := e + er(1-e) = [e + er(1-e)x^i] + [er(1-e)(1-x^i)]$ where i is a positive integer, are infinitely many nil clean expressions of a in R[x] which implies Nin(R[x]) = ∞ .

Corollary 2.3.4. Nin(R[[x]]) is 1 or infinite.

2.4 Rings of nil clean index 2

In this section, we characterize rings of nil clean index 2. From the discussion above we see that such rings must be non abelian.

Theorem 2.4.1. Nin(R) = 2 if and only if $R = \begin{pmatrix} A & M \\ 0 & B \end{pmatrix}$, where Nin(A) = Nin(B) = 1 and AM_B is a bimodule with |M| = 2.

Proof. (
$$\Leftarrow$$
) For $\alpha_0 = \begin{pmatrix} 0 & 0 \\ 0 & 1_B \end{pmatrix} \in R$, we have
$$\left\{ \begin{pmatrix} 0 & \omega \\ 0 & 1_B \end{pmatrix}; \ \omega \in M \right\} \subseteq \eta(\alpha_0).$$

Therefore

$$\operatorname{Nin}(R) \ge |\eta(\alpha_0)| \ge |M| = 2.$$

For any
$$\alpha = \begin{pmatrix} a & x \\ 0 & b \end{pmatrix} \in R$$

$$\eta(\alpha) = \left\{ \begin{pmatrix} e & w \\ 0 & f \end{pmatrix}; e \in \eta(a), f \in \eta(b), w = ew + wf \right\}.$$

Because $\mid M \mid = 2, \mid \eta(a) \mid \leq 1, \mid \eta(b) \mid \leq 1$, it follows that $\mid \eta(\alpha) \mid \leq 2$. Hence Nin(R) = 2.

(\Rightarrow) Suppose R is non abelian and let $e^2 = e \in R$ be a non central idempotent. If neither eR(1-e) nor (1-e)Re is zero, then take $0 \neq x \in eR(1-e)$ and $0 \neq y \in (1-e)Re$. Then

$$e = e + 0$$
$$= (e + x) - x$$
$$= (e + y) - y$$

are three distinct nil clean expressions of e in R. So without loss of generality, we can assume that

$$eR(1-e) \neq 0$$
 but $(1-e)Re = 0$.

The Peirce decomposition of R gives

$$R = \begin{pmatrix} eRe & eR(1-e) \\ 0 & (1-e)R(1-e) \end{pmatrix}.$$

As above $2 = \operatorname{Nin}(R) \ge |eR(1-e)|$; so |eR(1-e)| = 2. Write

$$eR(1-e) = \{0, x\}.$$

If possible let $a = e_1 + n_1 = e_2 + n_2$ be two distinct nil clean expressions of a in eRe. If $e_1x = x$, then

$$\begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} e_1 & 0 \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} n_1 & 0 \\ 0 & 0 \end{pmatrix}$$
$$= \begin{pmatrix} e_2 & 0 \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} n_2 & 0 \\ 0 & 0 \end{pmatrix}$$
$$= \begin{pmatrix} e_1 & x \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} n_1 & x \\ 0 & 0 \end{pmatrix}$$

are three distinct nil clean expressions of $\begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix} \in R$. If $e_1x = 0$, then

$$\begin{pmatrix} a & 0 \\ 0 & 1_B \end{pmatrix} = \begin{pmatrix} e_1 & 0 \\ 0 & 1_B \end{pmatrix} + \begin{pmatrix} n_1 & 0 \\ 0 & 0 \end{pmatrix}$$
$$= \begin{pmatrix} e_2 & 0 \\ 0 & 1_B \end{pmatrix} + \begin{pmatrix} n_2 & 0 \\ 0 & 0 \end{pmatrix}$$
$$= \begin{pmatrix} e_1 & x \\ 0 & 1_B \end{pmatrix} + \begin{pmatrix} n_1 & x \\ 0 & 1_B \end{pmatrix}$$

are three distinct nil clean expressions of $\begin{pmatrix} a & 0 \\ 0 & 1_B \end{pmatrix}$ in R. This contradiction shows that $\operatorname{Nin}(eRe) = 1$. Similarly, $\operatorname{Nin}((1-e)R(1-e)) = 1$.

2.5 Rings of nil clean index 3

The next proposition gives a sufficient condition for rings to have nil clean index 3.

Theorem 2.5.1. If $R = \begin{pmatrix} A & M \\ 0 & B \end{pmatrix}$, where Nin(A) = Nin(B) = 1 and ${}_{A}M_{B}$ is a bimodule with |M| = 3, then Nin(R) = 3.

Proof. This is similar to the proof of the implication " (\Leftarrow) " of **Proposition 2.4.1**.

The condition of **Proposition 2.5.1** is a sufficient condition, but not necessary, as shown by the following example.

Example 2.5.2. $R = \begin{pmatrix} \mathbb{Z}_2 & \mathbb{Z}_2 \\ \mathbb{Z}_2 & \mathbb{Z}_2 \end{pmatrix}$ is a ring of nil clean index 3.

We see that, $\operatorname{nil}(R) = \left\{ \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \right\}$. Using

Lemma 3.2.1, we get $Nin(R) \le 4$. Also

$$\eta\left(\left(\begin{array}{cc}1&0\\0&0\end{array}\right)\right)=\left\{\left(\begin{array}{cc}1&0\\0&0\end{array}\right),\left(\begin{array}{cc}1&1\\0&0\end{array}\right),\left(\begin{array}{cc}1&0\\1&0\end{array}\right)\right\},$$

thus $Nin(R) \geq 3$. Similarly verifying for each element we see that Nin(R) = 3. But

it is not of the form
$$\begin{pmatrix} A & M \\ 0 & B \end{pmatrix}$$
.

Next we have the following proposition for matrix ring.

Proposition 2.5.3. Let S be a ring with unity and let $n \geq 2$ be an integer. Then

- (i) $Nin(M_n(S)) \geq 3$.
- (ii) $Nin(M_n(S)) = 3$ iff n = 2 and $S \cong \mathbb{Z}_2$.

Proof. Let $E_{ij} \in M_n(S)$ such that (i, j)th entry is 1 and rest of the entries are 0. So for $A = E_{11}$,

$$\eta(A) \supseteq \left\{ E_{11} + \sum_{i=2}^{n} r_i E_{1i}, E_{11} + \sum_{i=2}^{n} s_i E_{i1} | \forall r_i, s_i \in S \ (2 \le i \le n) \right\}.$$

So we have

$$Nin(R) \ge |\eta_R(a)| \ge 2|S|^{n-1} - 1.$$

(i) If $|S| \ge 3$ or $n \ge 3$, then

$$Nin(R) \ge min\{2.3^{2-1} - 1, 2.3^{3-1} - 1\} = 5.$$

By **Example 2.5.2**, $Nin(M_2(\mathbb{Z}_2)) = 3$, so in general $Nin(R) \geq 3$.

(ii) If Nin(R) = 3, the above argument shows

$$3 = \operatorname{Nin}(R) \ge 2|S|^{n-1} - 1$$

$$\Rightarrow \qquad 2 \ge |S|^{n-1}.$$

So we must have n=2 and |S|=2. Therefore $S\cong \mathbb{Z}_2$. The converse part is obviously true as $\operatorname{Nin}(M_2(\mathbb{Z}_2))=3$.

Theorem 2.5.4. Let R be a ring. If Nin(R) = 3 then one of the following holds:

(i)
$$R = \begin{pmatrix} A & M \\ 0 & B \end{pmatrix}$$
, where A and B are rings with $Nin(A) = Nin(B) = 1$ and ${}_{A}M_{B}$ is a bimodule with $|M| = 3$.

(ii)
$$R = \begin{pmatrix} A & M \\ N & B \end{pmatrix}$$
, where A and B are rings with $Nin(A) = Nin(B) = 1$ and ${}_{A}M_{B}$, ${}_{B}N_{A}$ are bimodules with $|M| = |N| = 2$.

Proof. Let Nin(R) = 3. Then R is non abelian. Let $e \in R$ be a noncentral idempotent. Set

$$A = eRe, B = (1 - e)R(1 - e), M = eR(1 - e), N = (1 - e)Re.$$

Since e is noncentral, M and N are not both zero, so we have two cases

Case I:

Let $M \neq 0$, N = 0 or M = 0, $N \neq 0$. Without loss of generality let $M \neq 0$, N = 0.

Then
$$R = \begin{pmatrix} A & M \\ 0 & B \end{pmatrix}$$
. Clearly by **Lemma 2.2.5**,

$$2 \le |M| \le Nin(R) = 3.$$

Also by **Lemma 2.2.7**, we have

$$Nin(A) < Nin(R)$$
 and $Nin(B) < Nin(R)$.

By **Lemma 2.2.6**, if |M| = 2 then

$$3 = Nin(R) = 2Nin(A)Nin(B),$$

which is a contradiction. So |M|=3. Now by **Lemma 2.2.5**, we see that

$$3 = \operatorname{Nin}(R) \ge \operatorname{Nin}(A)\operatorname{Nin}(B) + |M| - 1 \quad \text{or } \operatorname{Nin}(R) \ge 2\operatorname{Nin}(A)\operatorname{Nin}(B)$$

$$\Rightarrow \quad \operatorname{Nin}(A)\operatorname{Nin}(B) \le 1 \quad \text{or } \operatorname{Nin}(A)\operatorname{Nin}(B) \le \frac{3}{2}$$

$$\Rightarrow \quad \operatorname{Nin}(A)\operatorname{Nin}(B) = 1; \text{ that is, } \operatorname{Nin}(A) = \operatorname{Nin}(B) = 1.$$

So we get (i).

Case II:

Let $N \neq 0$ and $M \neq 0$. So $|N| \geq 2$ and $|M| \geq 2$. Now

$$\eta(e) \supseteq \{e + w, e + z; w \in M, 0 \neq z \in N\}.$$

Thus

$$3 = \operatorname{Nin}(R) \ge |\eta(e)| \ge |M| + |N| - 1$$

$$\Rightarrow 4 \le |M| + |N| \le 4 \Rightarrow |M| = |N| = 2.$$
Again $C = \begin{pmatrix} A & M \\ 0 & B \end{pmatrix} \subseteq R$, so $\operatorname{Nin}(C) \le \operatorname{Nin}(R) = 3$.
But $\operatorname{Nin}(C) = 2\operatorname{Nin}(A)\operatorname{Nin}(B) \le 3 \Rightarrow \operatorname{Nin}(A) = \operatorname{Nin}(B) = 1$, proving (ii) .

Note: Ring homomorphisms in general do not preserve the nil clean index. For example, if we consider a ring R of nil clean index 2, then R cannot be abelian, so Nin(R[[x]]) can not be finite. But R is a homomorphic image of R[[x]]. However in case of Nin(R) = 1, we have the following result.

Theorem 2.5.5. The homomorphic image of a ring R with Nin(R) = 1 is again a ring with Nin(R) = 1, provided idempotents of R can be lifted modulo the kernel of the homomorphism.

Proof. Straightforward. \Box

2.6 Formal triangular ring with nil clean index 4

Theorem 2.6.1. Let $R = \begin{pmatrix} A & M \\ 0 & B \end{pmatrix}$, where A and B are rings, ${}_{A}M_{B}$ is a non trivial bimodule. Then Nin(R) = 4 if and only if one of the following holds:

- (i) $(M, +) \cong C_2$ and Nin(A) Nin(B) = 2.
- (ii) $(M, +) \cong C_4$ and Nin(A) = Nin(B) = 1.
- (iii) $(M,+) \cong C_2 \oplus C_2$ plus one of the following
 - (a) Nin(A) = Nin(B) = 1.
 - (b) $\operatorname{Nin}(A) = 1$, $B = \begin{pmatrix} S & W \\ 0 & T \end{pmatrix}$, where $\operatorname{Nin}(S) = \operatorname{Nin}(T) = 1$ and |W| = 2, and $eM(1_B f) + (1_A e)Mf \neq 0$, for all $e^2 = e \in A$ and $f \in \eta(b)$, where $b \in B$ with $|\eta(b)| = 2$.
 - (c) Nin(B) = 1, $A = \begin{pmatrix} S & W \\ 0 & T \end{pmatrix}$, where Nin(S) = Nin(T) = 1 and |W| = 2, and $eM(1_B f) + (1_A e)Mf \neq 0$, for all $e^2 = e \in B$ and $f \in \eta(a)$, where $a \in A$ with $|\eta(a)| = 2$.

Proof. (\Leftarrow) If (i) holds then by **Lemma 2.2.6**, we get Nin(R) = 4.

If (ii) holds then Nin(R) $\geq |M| = 4$. Now, for any $\alpha = \begin{pmatrix} a & x \\ 0 & b \end{pmatrix} \in R$,

$$\eta(\alpha) = \left\{ \begin{pmatrix} e & w \\ 0 & f \end{pmatrix} \in R : e \in \eta(a), f \in \eta(b), w = ew + fw \right\}.$$

Because |M| = 4, $|\eta(a)| \le 1$ and $|\eta(b)| \le 1$, it follows that $|\eta(\alpha)| \le 4$. Hence Nin(R) = 4.

Let (iii) (a) hold. Then Nin(R) $\geq |M| = 4$. Now, for any $\alpha = \begin{pmatrix} a & x \\ 0 & b \end{pmatrix} \in R$,

$$\eta(\alpha) = \left\{ \begin{pmatrix} e & w \\ 0 & f \end{pmatrix} \in R : e \in \eta(a), f \in \eta(b), w = ew + fw \right\}.$$

Because |M|=4, $|\eta(a)| \le 1$ and $|\eta(b)| \le 1$, it follows that $|\eta(\alpha)| \le 4$. Hence Nin(R) = 4.

Suppose (iii) (c) hold. Then clearly $\operatorname{Nin}(R) \geq |M| = 4$. Let $\alpha = \begin{pmatrix} a & w \\ 0 & b \end{pmatrix} \in R$. We show that $|\eta(\alpha)| \leq 4$ and hence $\operatorname{Nin}(R) = 4$ holds. Since $\operatorname{Nin}(B) = 1$, we can assume that $\eta(b) = \{f_0\}$. Then as above we have

$$\eta(\alpha) = \left\{ \begin{pmatrix} e & z \\ 0 & f_0 \end{pmatrix} \in R : e \in \eta(a), z = ez + zf_0 \right\}$$

If $|\eta(a)| \le 1$, then $|\eta(\alpha)| \le |\eta(a)| \cdot |M| \le 4$. So we can assume that $|\eta(a)| = 2$. Write $\eta(a) = \{e_1, e_2\}$. Thus $\eta(\alpha) = T_1 \bigcup T_2$, where

$$T_i = \left\{ \begin{pmatrix} e_i & z \\ 0 & f_0 \end{pmatrix} \in R : (1_A - e_i)z = zf_0 \right\}$$
 $(i = 1, 2).$

Since

$$\eta(1_A - a) = \{1_A - e_1, \ 1_A - e_2\},\$$

the assumption (iii)(c) shows that

$$\{z \in M : (1_A - e_i)z = z f_0\}$$

is a proper subgroup of (M, +); so $|T_i| \le 2$ for i = 1, 2. Hence

$$|\eta(\alpha)| \le |T_1| + |T_2| \le 4.$$

 (\Rightarrow) Suppose Nin(R) = 4. Then $2 \le |M| \le \text{Nin}(R) = 4$. If |M| = 2 then Nin(A) Nin(B) = 2 by **Lemma 2.2.6**, so (i) holds.

Suppose |M|=3. By **Lemma 2.2.5**, we have

$$Nin(A) + |M| \le Nin(R),$$

showing $Nin(A) \leq 2$. Similarly, $Nin(B) \leq 2$. But Nin(A) = 2 = Nin(B) will give

$$Nin(R) \ge 6$$
 by **Lemma 2.2.5**

and Nin(A) = Nin(B) = 1 will give

$$Nin(R) = 3$$
 by **Theorem 2.5.1**.

Hence the only possibility is Nin(A)Nin(B) = 2, so without loss of generality we assume that Nin(A) = 2 and Nin(B) = 1. Write

$$M = \{0, x, 2x\}.$$

Now by **Theorem 2.4.1**, we have

$$A = \left(\begin{array}{cc} T & N \\ 0 & S \end{array}\right),$$

where T & S are rings, ${}_{T}N_{S}$ is bimodule with Nin(T) = Nin(S) = 1 and |N| = 2. Note that for $e \in Idem(A)$, $ex \in \{0, x\}$. Indeed, if ex = 2x, we have

$$2x = ex = e(ex) = e(2x) = e(x+x) = ex + ex = 2x + 2x = 4x = x$$

which is not possible.

Now let
$$a = \begin{pmatrix} 1_T & 0 \\ 0 & 0 \end{pmatrix} \in A$$
, such that

$$a = \begin{pmatrix} 1_T & 0 \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$
$$= \begin{pmatrix} 1_T & y \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & -y \\ 0 & 0 \end{pmatrix}.$$

Let us denote,
$$e_1=\left(\begin{array}{cc} 1_T & 0 \\ 0 & 0 \end{array}\right),\ e_2=\left(\begin{array}{cc} 1_T & y \\ 0 & 0 \end{array}\right),\ n_1=\left(\begin{array}{cc} 0 & 0 \\ 0 & 0 \end{array}\right)$$
 and

 $n_2 = \begin{pmatrix} 0 & -y \\ 0 & 0 \end{pmatrix}$. Clearly $e_1, e_2 \in \text{Idem}(A) \& n_1, n_2 \in \text{Nil}(A)$. Now we have following cases:

Case I:

Let $e_1x = e_2x = 0$. Then we have an element $\beta = \begin{pmatrix} 1_A - a & 0 \\ 0 & 0 \end{pmatrix} \in R$ such that

$$\beta = \begin{pmatrix} 1_A - e_1 & z \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} -n_1 & -x \\ 0 & 0 \end{pmatrix}$$

$$= \begin{pmatrix} 1_A - e_2 & z \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} -n_2 & -x \\ 0 & 0 \end{pmatrix}$$

$$\forall z \in M$$

are six nil clean expressions for β , which implies $|\eta(\beta)| \ge 6$. That is Nin(R) ≥ 6 , which is not possible.

Case II:

Let $e_1x = e_2x = x$. Then we have an element

$$\alpha = \begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix} \in R \text{ such that}$$

$$\alpha = \begin{pmatrix} e_1 & z \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} n_1 & -x \\ 0 & 0 \end{pmatrix} \qquad \forall z \in M$$
$$= \begin{pmatrix} e_2 & z \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} n_2 & -x \\ 0 & 0 \end{pmatrix} \qquad \forall z \in M$$

are six nil clean expressions for α , which implies $|\eta(\alpha)| \ge 6$. That is Nin(R) ≥ 6 , which is also not possible.

Case III:

Let $e_1x = x$ and $e_2x = 0$. Then we have $(e_1 - e_2)x = x$. Let $j = e_1 - e_2$. Then clearly $j \in Nil(A)$ and we have

$$jx = x,$$

 $\Rightarrow (1_A - j)x = 0,$
 $\Rightarrow x = 0, \text{ (as } 1 - j \in U(A)).$

This is a contradiction.

Case IV:

Let $e_1x = 0$ and $e_2x = x$. Then as in **Case III**, we get a contradiction. Hence if $M \cong C_3$, Nin(R) is never 4. Suppose |M| = 4. If

$$(M,+)\cong C_4,$$

then Nin(A) Nin(B) = 1 by **Lemma 2.2.6**, so (ii) holds. If

$$(M,+)\cong C_2\oplus C_2,$$

then since $\operatorname{Nin}(R) = 4$, by **Lemma 2.2.5**, we have $\operatorname{Nin}(A)\operatorname{Nin}(B) \leq 2$. Now if $\operatorname{Nin}(A)\operatorname{Nin}(B) = 1$ then (iii)(a) holds. If $\operatorname{Nin}(A)\operatorname{Nin}(B) = 2$, without loss of generality we can assume $\operatorname{Nin}(A) = 2$ and $\operatorname{Nin}(B) = 1$. So by **Theorem 2.4.1**, we have

$$A = \left(\begin{array}{cc} S & W \\ 0 & T \end{array}\right)$$

where Nin(S) = Nin(T) = 1, and |W| = 2. To complete the proof, suppose on contrary that

$$eM(1_B - f) + (1_A - e)Mf = 0$$

for some $f^2 = f \in B$ and $e \in \eta(a)$, where $a \in A$ with $|\eta(a)| = 2$. Then ew = wf for all $w \in M$. It is easy to check that $\eta(a) = \{e, e+j\}$ where $j = \begin{pmatrix} 0 & w_0 \\ 0 & 0 \end{pmatrix} \in A$ with $0 \neq w_0 \in W$. Thus, for $\gamma := \begin{pmatrix} 1_A - e & 0 \\ 0 & f \end{pmatrix}$,

$$\eta(\gamma) \supseteq \left\{ \begin{pmatrix} 1_A - e & 0 \\ 0 & f \end{pmatrix}, \begin{pmatrix} 1_A - (e+j) & 0 \\ 0 & f \end{pmatrix}, \begin{pmatrix} 1_A - e & w \\ 0 & f \end{pmatrix} : w \in M \right\},$$

so $|\eta(\gamma)| \geq 5$, a contradiction. Hence (iii)(c) holds. Similarly (iii)(b) can be proved.