Chapter 2

Nil clean index of rings

2.1 Introduction

As mentioned in the introductory chapter, in this chapter we have introduced the notion of nil clean index of a ring and characterized arbitrary rings with nil clean index 1 and 2. Also a few results for rings with indices 3 and 4 are listed.

For an element $a \in R$, if $a-e \in \operatorname{Nil}(R)$ for some $e^{2}=e \in R$, then $a=e+(a-e)$ is called a nil clean expression of a in R and a is called a nil clean element. The ring R is called nil clean if each of its elements is nil clean. A ring R is uniquely nil clean if every element of R has a unique nil clean expression in R. For an element a of R, we denote

$$
\eta(a)=\left\{e \in R \mid e^{2}=e \text { and } a-e \in \operatorname{Nil}(R)\right\}
$$

and the nil clean index of R, denoted by $\operatorname{Nin}(R)$ is defined as

$$
\operatorname{Nin}(R)=\sup \{|\eta(a)|: a \in R\}
$$

where $|\eta(a)|$ denotes the cardinality of the set $\eta(a)$. Thus R is uniquely nil clean if and only if R is a nil clean ring of nil clean index 1 .

[^0]
2.2 Elementary properties

Some basic properties related to nil clean index are presented here as a preparation for the study on nil clean index of a ring.

Lemma 2.2.1. Let R be a ring and let $e, a, b \in R$. Then the following hold:
(i) If $e \in R$ is a central idempotent or a central nilpotent element, then $|\eta(e)|=1$, so $\operatorname{Nin}(R) \geq 1$.
(ii) $e \in \eta(a)$ iff $1-e \in \eta(1-a)$ and so $|\eta(a)|=|\eta(1-a)|$.
(iii) If $f: R \rightarrow R$ is a homomorphism, then $e \in \eta(a)$ implies $f(e) \in \eta(f(a))$ and for the converse f must be a monomorphism.
(iv) If R has at most n idempotents or at most n nilpotent elements, then $\operatorname{Nin}(R) \leq n$.

Proof. (i) Let e be a central idempotent. So we have $e=e+0$, a nil clean expression of e. If possible let $e=a+n$ be another nil clean expression of e in R, where $a \in$ $\operatorname{idem}(R), n \in \operatorname{nil}(R)$ and $n^{k}=0$ for some positive integer k. Then $(e-a)^{2 k-1}=0$, which gives

$$
\begin{aligned}
& \quad e^{2 k-1}-\binom{2 k-1}{1} e^{2 k-2} a+\cdots+\binom{2 k-1}{2 k-2}(-1)^{2 k-2} e a^{2 k-2}+(-1)^{2 k-1} a^{2 k-1}=0, \\
& \text { so }\left(e+(-1)^{2 k-1} a\right)-\left\{\binom{2 k-1}{1}-\binom{2 k-1}{2}+\cdots+(-1)^{(2 k-3)}\binom{2 k-1}{2 k-2}\right\} e a=0 .
\end{aligned}
$$

Using elementary result of binomial coefficients, we get

$$
(e-a)-\left(1+(-1)^{2 k-3}\right) e a=0
$$

Hence $e=a$, i.e, $|\eta(e)|=1$.
(ii)

$$
\begin{array}{ll}
& e \in \eta(a), \\
\Leftrightarrow & a-e \text { is nilpotent }, \\
\Leftrightarrow & e-a \text { is nilpotent, } \\
\Leftrightarrow & (1-a)-(1-e) \text { is nilpotent, } \\
\Leftrightarrow & 1-e \in \eta(1-a),
\end{array}
$$

so we get $|\eta(a)|=|\eta(1-a)|$.
(iii) is straightforward and (iv) is clear from the definition of nil clean index.

Lemma 2.2.2. If S is a subring of a ring R, where S and R may or may not share the same identity, then $\operatorname{Nin}(S) \leq \operatorname{Nin}(R)$.

Proof. Since S is a subring of R, all the idempotents and nilpotent elements of S are also idempotents and nilpotent elements of R. Let $a \in S$ and $e \in \eta_{S}(a)$ i.e., $e^{2}=$ $e \in S$ and $a-e \in \operatorname{nil}(S)$. Obviously this implies e is an idempotent in R and $a-e \in \operatorname{nil}(R)$, i.e., $e \in \eta_{R}(a)$. Therefore we have

$$
\begin{array}{ll}
& \eta_{S}(a) \subseteq \eta_{R}(a) \text { for all } a \in S \\
\Rightarrow \quad & \left|\eta_{S}(a)\right| \leq\left|\eta_{R}(a)\right| \text { for all } a \in S, \\
\Rightarrow \quad & \sup _{a \in S}\left|\eta_{S}(a)\right| \leq \sup _{a \in S}\left|\eta_{R}(a)\right| \leq \sup _{a \in R}\left|\eta_{R}(a)\right| .
\end{array}
$$

So we get $\operatorname{Nin}(S) \leq \operatorname{Nin}(R)$.

Lemma 2.2.3. Let $R=S \times T$ be the direct product of two rings S and T. Then $\operatorname{Nin}(R)=\operatorname{Nin}(S) \operatorname{Nin}(T)$.

Proof. Since S and T are subrings of R, so

$$
\operatorname{Nin}(S) \leq \operatorname{Nin}(R) \text { and } \operatorname{Nin}(T) \leq \operatorname{Nin}(R)
$$

If $\operatorname{Nin}(S)=\infty$ or $\operatorname{Nin}(T)=\infty$, then $\operatorname{Nin}(R)=\infty$ and hence, $\operatorname{Nin}(R)=\operatorname{Nin}(S) \operatorname{Nin}(T)$ holds. Now let

$$
\operatorname{Nin}(S)=n<\infty \text { and } \operatorname{Nin}(T)=m<\infty
$$

As $n, m \geq 1$ and there exist elements $s \in S$ and $t \in T$, such that

$$
\left|\eta_{S}(s)\right|=n \text { and }\left|\eta_{T}(t)\right|=m .
$$

Thus $s=e_{i}+n_{i}$, for $i=1,2, \ldots, n$ and $t=f_{j}+m_{j}$ for $j=1,2, \ldots, m$, where e_{i} 's, f_{j} 's are distinct idempotents and n_{i} 's, m_{j} 's are distinct nilpotent elements of S and T respectively. Therefore $(s, t) \in R$, can be expressed as

$$
(s, t)=\left(e_{i}, f_{j}\right)+\left(n_{i}, m_{j}\right)
$$

which are $m n$ distinct nil clean expressions of $(s, t) \in R$. Hence

$$
\operatorname{Nin}(R) \geq m n
$$

If possible let $\operatorname{Nin}(R)>n m$, say $n m+1$, then there exists an element $(a, b) \in R$, such that it has at least $n m+1$ nil clean expressions in R. That is

$$
(a, b)=\left(g_{i}, h_{i}\right)+\left(c_{i}, d_{i}\right)
$$

where $i=1,2, \ldots, m n+1, \quad\left(g_{i}, h_{i}\right)^{2}=\left(g_{i}, h_{i}\right)$ and $\left(c_{i}, d_{i}\right) \in \operatorname{nil}(R)$. So $a=g_{i}+c_{i}$ and $b=h_{i}+d_{i}$ are nil clean expressions for a and b respectively. Let

$$
K=\left\{\left(g_{i}, h_{i}\right) \mid i=1, \quad 2, \quad 3, \ldots, m n, \quad m n+1\right\} .
$$

Now we have

$$
\begin{array}{cc}
& |K|=n m+1 \\
\Rightarrow & \left|\left\{g_{i}\right\}\right| .\left|\left\{h_{i}\right\}\right|=n m+1 \\
\Rightarrow \quad & \left|\left\{g_{i}\right\}\right|>n \text { or }\left|\left\{h_{i}\right\}\right|>m,
\end{array}
$$

which gives $\operatorname{Nin}(S)>n$ or $\operatorname{Nin}(T)>m$, which is absurd.

Lemma 2.2.4. Let I be an ideal of R with $I \subseteq \operatorname{nil}(R)$ and let $n \geq 1$ be an integer. Then the following hold:
(i) $\operatorname{Nin}(R / I)=\operatorname{Nin}(R)$.
(ii) If $\operatorname{Nin}(R) \leq n$, then every idempotent of R / I can be lifted to at most n idempotents of R.

Proof. (i) Let $a \in R$. Then any idempotent $x+I \in \eta(a+I)$ is lifted to an idempotent e_{x} of R. Now from

$$
(a+I)-(x+I) \in \operatorname{nil}(R / I)
$$

we get

$$
(a+I)-\left(e_{x}+I\right) \in \operatorname{nil}(R / I)
$$

which means there exists some positive integer k, such that

$$
\begin{aligned}
& \left(a-e_{x}\right)^{k}+I=I \\
& \Rightarrow \quad a-e_{x} \in \operatorname{nil}(R) \\
& \text { i.e., } \quad e_{x} \in \eta(a) \text {. }
\end{aligned}
$$

So the mapping $\eta(a) \rightarrow \eta(a+I)$ is onto, i.e.,

$$
|\eta(a)| \geq|\eta(a+I)| \text { for all } a \in R
$$

Conversely, if $e \in \eta(a)$ then $a-e \in \operatorname{nil}(R)$; so there exists some positive integer k, such that

$$
(a-e)^{k}=0 \in I
$$

This implies

$$
(a-e)^{k}+I=I
$$

and so

$$
(a-I)-(e+I) \in \operatorname{nil}(R / I)
$$

which gives

$$
e+I \in \eta(a+I)
$$

Therefore the mapping

$$
\eta(a+I) \rightarrow \eta(a) \text { is onto. }
$$

i.e., $|\eta(a+I)| \geq|\eta(a)|$, for all $a \in R$. Hence

$$
|\eta(a)|=|\eta(a+I)|, \text { for all } a \in R,
$$

which implies

$$
\sup _{a \in R}|\eta(a)|=\sup _{(a+I) \in R / I}|\eta(a+I)|,
$$

consequently

$$
\operatorname{Nin}(R)=\operatorname{Nin}(R / I)
$$

(ii) Let $a \in R$ such that $a^{2}-a \in I$. If $a-e \in I \subseteq \operatorname{nil}(R)$, for some $e^{2}=e \in R$, then $e \in \eta(a)$. But $|\eta(a)| \leq \operatorname{Nin}(R) \leq n$. So there are at most n such elements.

Lemma 2.2.5. Let $R=\left(\begin{array}{cc}A & M \\ 0 & B\end{array}\right)$, where A and B are rings, ${ }_{A} M_{B}$ is a bimodule. Let $\operatorname{Nin}(A)=n$ and $\operatorname{Nin}(B)=m$. Then
(i) $\operatorname{Nin}(R) \geq|M|$.
(ii) If $(M,+) \cong C_{p^{k}}$, where p is a prime and $k \geq 1$, then $\operatorname{Nin}(R) \geq n+\left[\frac{n}{2}\right)(|M|-1)$, where $\left[\frac{n}{2}\right)$ denotes the least integer greater than or equal to $\frac{n}{2}$.
(iii) Either $\operatorname{Nin}(R) \geq n m+|M|-1$ or $\operatorname{Nin}(R) \geq 2 n m$.

Proof. (i) Let $\alpha=\left(\begin{array}{cc}1_{A} & 0 \\ 0 & 0\end{array}\right)$. Then we have

$$
\left\{\left.\left(\begin{array}{cc}
1_{A} & w \\
0 & 0
\end{array}\right) \right\rvert\, w \in M\right\} \subseteq \eta(\alpha)
$$

as

$$
\left(\begin{array}{cc}
1_{A} & w \\
0 & 0
\end{array}\right)-\left(\begin{array}{cc}
1_{A} & 0 \\
0 & 0
\end{array}\right)=\left(\begin{array}{cc}
0 & w \\
0 & 0
\end{array}\right) \text { is nilpotent. }
$$

So we have

$$
\operatorname{Nin}(R) \geq|\eta(\alpha)| \geq|M|
$$

(ii) Let $q=p^{k}$ and $a=e_{i}+n_{i}, \quad i=1,2, \ldots n$ be n distinct nil clean expressions of a in A. For any $e=e^{2} \in A$

$$
(M,+)=e M \oplus(1-e) M
$$

Since $(M,+) \cong C_{p^{k}}$, so $(M,+)$ is indecomposable and hence

$$
M=e M \text { or }=(1-e) M
$$

Assume that

$$
\left(1-e_{1}\right) M=\cdots=\left(1-e_{s}\right) M=M \text { and } e_{s+1} M=\cdots=e_{n} M=M
$$

If $s \geq(n-s)$ (i.e., $s \geq\left[\frac{n}{2}\right)$), then for $\alpha=\left(\begin{array}{cc}1_{A}-a & 0 \\ 0 & 0\end{array}\right)$, we have $\eta(\alpha) \supseteq\left\{\left(\begin{array}{cc}1_{A}-e_{i} & 0 \\ 0 & 0\end{array}\right),\left(\begin{array}{cc}1_{A}-e_{j} & w \\ 0 & 0\end{array}\right): 1 \leq i \leq n, 1 \leq j \leq s, 0 \neq w \in M\right\}$,
so

$$
|\eta(\alpha)| \geq n+s(q-1)
$$

If $s<(n-s)$ (i.e., $\left.n-s \geq\left[\frac{n}{2}\right)\right)$, for $\beta=\left(\begin{array}{cc}a & 0 \\ 0 & 0\end{array}\right)$

$$
\eta(\beta) \supseteq\left\{\left(\begin{array}{cc}
e_{i} & 0 \\
0 & 0
\end{array}\right),\left(\begin{array}{cc}
e_{j} & w \\
0 & 0
\end{array}\right): 1 \leq i \leq n, s+1 \leq j \leq n, 0 \neq w \in M\right\}
$$

therefore

$$
|\eta(\beta)| \geq n+(n-s)(q-1)
$$

Hence

$$
\operatorname{Nin}(R) \geq n+\left[\frac{n}{2}\right)(q-1)
$$

(iii) Let $a=e_{i}+n_{i}, \quad i=1,2, \ldots n$ and $b=f_{j}+m_{j}, \quad j=1,2, \ldots m$ be distinct nil clean expressions of a and b in A and B respectively.

Case I:

If $e_{i_{0}} M\left(1-f_{j_{0}}\right)+\left(1-e_{i_{0}}\right) M f_{j_{0}}=0$ for some i_{0} and j_{0}. Then $e_{i_{0}} w=w f_{i_{0}}$ for all $w \in M$. Thus for $\alpha=\left(\begin{array}{cc}1_{A}-a & 0 \\ 0 & b\end{array}\right)$
$\eta(\alpha) \supseteq\left\{\left(\begin{array}{cc}1_{A}-e_{i} & 0 \\ 0 & f_{j}\end{array}\right),\left(\begin{array}{cc}1_{A}-e_{i_{0}} & w \\ 0 & f_{j_{0}}\end{array}\right) ; 1 \leq i \leq n, 1 \leq j \leq m ; 0 \neq w \in M\right\}$,
so we have $|\eta(\alpha)| \geq m n+|M|-1$.

Case II:

If $e_{i} M\left(1-f_{j}\right)+\left(1-e_{i}\right) M f_{j} \neq 0$ for all i and j. Take

$$
\begin{aligned}
& \quad 0 \neq w_{i j} \in e_{i} M\left(1-f_{j}\right)+\left(1-e_{i}\right) M f_{j} \text { for each pair }(i, j) \\
& \text { For } \alpha=\left(\begin{array}{cc}
a & 0 \\
0 & b
\end{array}\right) \text {, we have } \\
& \eta(\alpha) \supseteq\left\{\left(\begin{array}{cc}
e_{i} & 0 \\
0 & f_{j}
\end{array}\right),\left(\begin{array}{cc}
e_{i} & w_{i j} \\
0 & f_{j}
\end{array}\right) ; 1 \leq i \leq n, 1 \leq j \leq m ; 0 \neq w_{i j} \in M\right\},
\end{aligned}
$$

thus $|\eta(\alpha)| \geq 2 m n$.
Cases I and II imply, either

$$
\operatorname{Nin}(R) \geq n m+|M|-1 \text { or } \operatorname{Nin}(R) \geq 2 n m .
$$

Lemma 2.2.6. Let $R=\left(\begin{array}{cc}A & M \\ 0 & B\end{array}\right)$, where A and B are rings, ${ }_{A} M_{B}$ is a bimodule with $(M,+) \cong C_{2^{r}}$. Then $\operatorname{Nin}(R)=2^{r} \operatorname{Nin}(A) \operatorname{Nin}(B)$.

Proof. Let $k=\operatorname{Nin}(A)$ and $l=\operatorname{Nin}(B)$. For $e_{i} \in \operatorname{Idem}(A), f_{j} \in \operatorname{Idem}(B), n_{i} \in$ $\operatorname{Nil}(A)$ and $m_{j} \in \operatorname{Nil}(B)$, let $a=e_{i}+n_{i}, \quad i=1,2, \ldots k$ and $b=f_{j}+m_{j}, \quad j=1,2, \ldots l$ be distinct nil clean expressions of $a \in A$ and $b \in B$ respectively. Write $M=$ $\left\{0, x, 2 x, \ldots,\left(2^{r}-1\right) x\right\}$, for any $e=e^{2} \in A$, either $M=e M$ or $M=\left(1_{A}-e\right) M$; so $e x \in\{0, x\}$. Suppose $e_{1} x \neq e_{2} x$, say $e_{1} x=0$ and $e_{2} x=x$. Then

$$
a x=n_{1} x=x+n_{2} x=\left(1+n_{2}\right) x
$$

Because $a x \in M, \quad a x=i x$ for some $2 \leq i \leq 2^{k}$. So

$$
\begin{aligned}
& n_{1} x=i x \\
\Rightarrow \quad & 0=i^{p} x\left[\text { Since } n^{p}=0 \text { for some } p \in \mathbb{N}\right],
\end{aligned}
$$

which gives i is even, so let $i=2 j$. Now

$$
\begin{aligned}
& \left(1+n_{2}\right) x=(2 j) x \\
\Rightarrow \quad & \left(1+n_{2}\right)^{r} x=(2 j)^{r} x=j^{r}\left(2^{r}\right) x=0, \\
\Rightarrow \quad & x=0[\text { as } n+1 \in \mathrm{U}(A)],
\end{aligned}
$$

a contradiction, as $x \neq 0$. So $e_{1} x=e_{2} x=\cdots=e_{k} x$. Similarly $x f_{1}=x f_{2}=\cdots=$ $x f_{l}$.

Case I:

If $e_{i} x=0$ and $x f_{j}=0$, for $\alpha=\left(\begin{array}{cc}1_{A}-a & 0 \\ 0 & b\end{array}\right)$ we have

$$
\alpha=\left(\begin{array}{cc}
1_{A}-e_{i} & w \\
0 & f_{j}
\end{array}\right)+\left(\begin{array}{cc}
-n_{i} & -w \\
0 & m_{j}
\end{array}\right),
$$

$i=1,2, \ldots, k, j=1,2, \ldots, l$ and $\forall w \in M$, therefore in this case

$$
\operatorname{Nin}(R) \geq|\eta(\alpha)| \geq 2^{r} k l .
$$

Case II:

If $e_{i} x=x, \quad x f_{j}=x$, for $\beta=\left(\begin{array}{cc}1_{A}-a & 0 \\ 0 & b\end{array}\right)$, we have

$$
\beta=\left(\begin{array}{cc}
1_{A}-e_{i} & w \\
0 & f_{j}
\end{array}\right)+\left(\begin{array}{cc}
-n_{i} & -w \\
0 & m_{j}
\end{array}\right),
$$

$i=1,2, \ldots, k, j=1,2, \ldots, l$, and $\forall w \in M$, therefore in this case also

$$
\operatorname{Nin}(R) \geq|\eta(\alpha)| \geq 2^{r} k l
$$

Case III:
If $e_{i} x=x, \quad x f_{j}=0$, for $\gamma=\left(\begin{array}{ll}a & 0 \\ 0 & b\end{array}\right)$ we have

$$
\gamma=\left(\begin{array}{cc}
e_{i} & w \\
0 & f_{j}
\end{array}\right)+\left(\begin{array}{cc}
n_{i} & -w \\
0 & m_{j}
\end{array}\right)
$$

$i=1,2, \ldots, k, j=1,2, \ldots, l$ and $\forall w \in M$, therefore in this case $\operatorname{Nin}(R) \geq|\eta(\alpha)| \geq$ $2^{r} k l$.

Case IV:

If $e_{i} x=0, \quad x f_{j}=x$, for $\delta=\left(\begin{array}{ll}a & 0 \\ 0 & b\end{array}\right)$, we have

$$
\delta=\left(\begin{array}{cc}
e_{i} & w \\
0 & f_{j}
\end{array}\right)+\left(\begin{array}{cc}
n_{i} & -w \\
0 & m_{j}
\end{array}\right)
$$

$i=1,2, \ldots, k, j=1,2, \ldots, l$ and $\forall w \in M$, therefore in this case also

$$
\operatorname{Nin}(R) \geq|\eta(\alpha)| \geq 2^{r} k l .
$$

On the other hand for $\alpha=\left(\begin{array}{cc}c & z \\ 0 & d\end{array}\right) \in R$, we have

$$
\eta(\alpha)=\left\{\left(\begin{array}{cc}
e & w \\
0 & f
\end{array}\right) \in R, \quad e \in \eta(c), \quad f \in \eta(d), \quad w=e w+w e\right\}
$$

So, $|\eta(\alpha)| \leq|M||\eta(c)||\eta(d)| \leq 2^{r} k l$ and therefore

$$
\operatorname{Nin}(R) \leq 2^{r} k l .
$$

Hence $\operatorname{Nin}(R)=2^{r} k l=2^{r} \operatorname{Nin}(A) \operatorname{Nin}(B)$.

Lemma 2.2.7. Let A and B be rings and ${ }_{A} M_{B}$ a nontrivial bimodule. If $R=$ $\left(\begin{array}{cc}A & M \\ 0 & B\end{array}\right)$ is a formal triangular matrix ring, then $\operatorname{Nin}(A)<\operatorname{Nin}(R)$ and $\operatorname{Nin}(B)<$ $\operatorname{Nin}(R)$.

Proof. Let $k=\operatorname{Nin}(A)$, for $n_{i} \in \operatorname{Nil}(R), e_{i} \in \operatorname{Idem}(R) ;$ let $a=e_{i}+n_{i} \quad(i=$ $1,2, \ldots, k)$ be k distinct nil clean expressions of a in A. If $e_{1} M=0$, then

$$
\begin{aligned}
& \left(\begin{array}{cc}
1_{A}-a & 0 \\
0 & 0
\end{array}\right)=\left(\begin{array}{cc}
1_{A}-e_{i} & 0 \\
0 & 0
\end{array}\right)+\left(\begin{array}{cc}
-n_{i} & 0 \\
0 & 0
\end{array}\right) \\
& \\
& =\left(\begin{array}{cc}
1_{A}-e_{1} & x \\
0 & 0
\end{array}\right)+\left(\begin{array}{cc}
-n_{1} & -x \\
0 & 0
\end{array}\right) \quad \forall 0 \neq x \in M \\
& \text { are at least } k+1 \text { distinct nil clean expressions of }\left(\begin{array}{cc}
1_{A}-a & 0 \\
0 & 0
\end{array}\right) \text { in } R .
\end{aligned}
$$ If $e_{1} M \neq 0$, then $e_{1} x \neq 0$ for some $x \in M$. So we have

$$
\begin{aligned}
\left(\begin{array}{ll}
a & 0 \\
0 & 0
\end{array}\right) & =\left(\begin{array}{ll}
e_{i} & 0 \\
0 & 0
\end{array}\right)+\left(\begin{array}{cc}
n_{i} & 0 \\
0 & 0
\end{array}\right) \\
& =\left(\begin{array}{cc}
e_{1} & e_{1} x \\
0 & 0
\end{array}\right)+\left(\begin{array}{cc}
n_{1} & -e_{1} x \\
0 & 0
\end{array}\right) \quad \forall 0 \neq x \in M
\end{aligned}
$$

are at least $k+1$ distinct nil clean expressions of $\left(\begin{array}{ll}a & 0 \\ 0 & 0\end{array}\right)$ in R.
So in any case

$$
\operatorname{Nin}(R) \geq k+1>k=\operatorname{Nin}(A)
$$

Similarly

$$
\operatorname{Nin}(R)>\operatorname{Nin}(B)
$$

Lemma 2.2.8. Let R be a ring with unity. Then $\operatorname{In}(R) \geq \operatorname{Nin}(R)$, where $\operatorname{In}(R)$ is the clean index of R.

Proof. Let $\operatorname{Nin}(R)=k$. Then there is an element $a \in R$, such that it has k nil clean expressions in R, i.e.,

$$
a=e_{i}+n_{i}, \text { for } i=1,2, \cdots, k
$$

where $e_{i} \in \operatorname{idem}(R)$ and $n_{i} \in \operatorname{nil}(R)$. From this we get,

$$
a-1=e_{i}+\left(n_{i}-1\right)
$$

are k clean expression for $(a-1) \in R$, and therefore $\operatorname{In}(R) \geq k$.

2.3 Rings of nil clean index 1

Lemma 2.3.1. $\operatorname{Nin}(R)=1$, if and only if R is abelian and for any $0 \neq e^{2}=e \in$ $R, e \neq n+m$ for $n, m \in \operatorname{nil}(R)$.

Proof. Let $e^{2}=e \in R$. Then for any $r \in R$, we have

$$
e+0=[e+e r(1-e)]+[-e r(1-e)]
$$

where

$$
\begin{gathered}
(e+e r(1-e))^{2}=e+e r(1-e) \in \operatorname{Idem}(R) \\
(-e r(1-e))^{2}=e r(1-e) e r(1-e)=0 \text { i.e., }-\operatorname{er}(1-e) \in \operatorname{nil}(R)
\end{gathered}
$$

Since $\operatorname{Nin}(R)=1$, so

$$
e=e+e r(1-e) \text { gives } e r=e r e
$$

Similarly $r e=e r e$, hence $e r=r e$, thus R is abelian. For last part, if $e=n+m$ for some $n, m \in \operatorname{nil}(R)$ then

$$
e+(-m)=0+n
$$

since $\operatorname{Nin}(R)=1$, this is not possible.
Conversely, suppose R is abelian and no nonzero idempotent of R can be written as a sum of two nilpotent elements. We know that $\operatorname{Nin}(S) \geq 1$ for any ring S. Assume that $a \in R$ has two nil clean expressions

$$
\begin{equation*}
a=e_{1}+n_{1}=e_{2}+n_{2} \tag{2.3.1}
\end{equation*}
$$

where $e_{1}, e_{2} \in \operatorname{idem}(R)$ and $n_{1}, n_{2} \in \operatorname{nil}(R)$. If $e_{1}=e_{2}$ we have nothing to prove. So let $e_{1} \neq e_{2}$. Now multiplying equation (2.3.1) by $\left(1-e_{1}\right)$ we get,

$$
\begin{align*}
e_{1}\left(1-e_{1}\right)+n_{1}\left(1-e_{1}\right) & =e_{2}\left(1-e_{1}\right)+n_{2}\left(1-e_{2}\right) \\
e_{2}\left(1-e_{1}\right) & =n_{1}\left(1-e_{1}\right)-n_{2}\left(1-e_{2}\right) \tag{2.3.2}
\end{align*}
$$

Since R is abelian, therefore

$$
e_{2}\left(1-e_{1}\right) \in \operatorname{Idem}(R) \text { and } n_{1}\left(1-e_{1}\right), n_{2}\left(1-e_{2}\right) \operatorname{Nil}(R)
$$

So (2.3.2) gives a contradiction if $e_{2}\left(1-e_{1}\right) \neq 0 . e_{2}\left(1-e_{1}\right)=0$, i.e., $e_{2}-e_{1} e_{2}$. Similarly, $e_{1}-e_{1} e_{2}$. Hence $e_{1}=e_{2}$. This shows $|\eta(a)| \leq 1$ for all $a \in R$, hence $\operatorname{Nin}(R)=1$.

Theorem 2.3.2. $\operatorname{Nin}(R)=1$ if and only if R is an abelian ring.

Proof. (\Rightarrow) This is by Lemma 2.3.1.
(\Leftarrow) Let R be an abelian ring and e a non zero idempotent of R. We claim that e can not be written as sum of two nilpotent elements. Suppose $e=a+b$ where $a, b \in \operatorname{Nil}(R)$ and for positive integers $n<m, a^{n}=0=b^{m}$. Then $(e-a)^{m}=0$, using binomial theorem we get

$$
e^{m}-\binom{m}{1} a e^{(m-1)}+\binom{m}{2} a^{2} e^{(m-2)}-\cdots+(-1)^{(n-1)}\binom{m}{n-1} a^{(n-1)} e^{(m-n+1)}=0
$$

which gives

$$
\begin{aligned}
& e\left[1-\binom{m}{1} a+\binom{m}{2} a^{2}-\cdots+(-1)^{(n-1)}\binom{m}{n-1} a^{(n-1)}\right. \\
& \left.\quad+(-1)^{n}\binom{m}{n} a^{n}+(-1)^{(n+1)}\binom{m}{n+1} a^{(n+1)}+\cdots+(-1)^{m} a^{m}\right]=0 .
\end{aligned}
$$

This implies

$$
e(1-a)^{m}=0
$$

therefore we get, $e=0$ [since $1-a \in \mathrm{U}(R)]$.
Similarly, if $n>m$, then $(e-b)^{n}=0$ and so $e=0$, a contradiction. Hence, no nonzero idempotent can be written as sum of two nilpotent elements and therefore $\operatorname{Nin}(R)=1$.

Above theorem gives the following observations:
(i) A ring R with $\operatorname{Nin}(R)=1$ is always Dedekind finite, but the converse is not true by Example 2.5.2.
(ii) Rings with trivial idempotents have nil clean index one and consequently the local rings are of nil clean index one. If $\operatorname{Nin}(R)=1$, then it is easy to see that idempotents of $R[[x]]$ are idempotents of R, and for any

$$
\alpha=\alpha_{0}+\alpha_{1} x+\cdots \in R[[x]],
$$

we have

$$
\eta_{R[[x]]}(\alpha) \subseteq \eta_{R}\left(\alpha_{0}\right)
$$

This gives

$$
\operatorname{Nin}(R[x])=\operatorname{Nin}(R[[x]])=1
$$

But if $\operatorname{Nin}(R)>1$ then, there is some noncentral idempotent $e \in R$, such that $e r \neq r e$ for some $r \in R$. So either

$$
e r(1-e) \neq 0 \text { or }(1-e) r e \neq 0
$$

Let $\operatorname{er}(1-e) \neq 0$. Then we have

$$
\begin{aligned}
a & :=e+\operatorname{er}(1-e) \\
& =\left[e+\operatorname{er}(1-e) x^{i}\right]+\left[\operatorname{er}(1-e)\left(1-x^{i}\right)\right]
\end{aligned}
$$

where i is a positive integer, are infinitely many nil clean expressions of a in $R[x]$, which implies

$$
\operatorname{Nin}(R[x])=\infty
$$

Now we have the following theorem.

Theorem 2.3.3. $\operatorname{Nin}(R[[x]])$ is finite iff $\operatorname{Nin}(R)=1$.

Proof. If $\operatorname{Nin}(R)=1$, then it is easy to see that idempotents of $R[[x]]$ are idempotents of R. For any $\alpha=\alpha_{0}+\alpha_{1} x+\cdots \in R[[x]]$, it is easy to see that $\eta_{R[[x]]}(\alpha) \subseteq$ $\eta_{R}\left(\alpha_{0}\right)$. This gives $\operatorname{Nin}(R[x])=\operatorname{Nin}(R[[x]])=1$. But if $\operatorname{Nin}(R)>1$ then, there is some noncentral idempotent $e \in R$, such that er $\neq r e$ for some $r \in R$. So either $\operatorname{er}(1-e) \neq 0$ or $(1-e) r e \neq 0$. Let $\operatorname{er}(1-e) \neq 0$. Then we have $a:=e+\operatorname{er}(1-e)=\left[e+e r(1-e) x^{i}\right]+\left[\operatorname{er}(1-e)\left(1-x^{i}\right)\right]$ where i is a positive integer, are infinitely many nil clean expressions of a in $R[x]$ which implies $\operatorname{Nin}(R[x])=\infty$.

Corollary 2.3.4. $\operatorname{Nin}(R[[x]])$ is 1 or infinite.

2.4 Rings of nil clean index 2

In this section, we characterize rings of nil clean index 2. From the discussion above we see that such rings must be non abelian.
Theorem 2.4.1. $\operatorname{Nin}(R)=2$ if and only if $R=\left(\begin{array}{cc}A & M \\ 0 & B\end{array}\right)$, where $\operatorname{Nin}(A)=$ $\operatorname{Nin}(B)=1$ and ${ }_{A} M_{B}$ is a bimodule with $|M|=2$.

Proof. (\Leftarrow) For $\alpha_{0}=\left(\begin{array}{cc}0 & 0 \\ 0 & 1_{B}\end{array}\right) \in R$, we have

$$
\left\{\left(\begin{array}{cc}
0 & \omega \\
0 & 1_{B}
\end{array}\right) ; \omega \in M\right\} \subseteq \eta\left(\alpha_{0}\right) .
$$

Therefore

$$
\operatorname{Nin}(R) \geq\left|\eta\left(\alpha_{0}\right)\right| \geq|M|=2
$$

For any $\alpha=\left(\begin{array}{ll}a & x \\ 0 & b\end{array}\right) \in R$

$$
\eta(\alpha)=\left\{\left(\begin{array}{cc}
e & w \\
0 & f
\end{array}\right) ; e \in \eta(a), f \in \eta(b), w=e w+w f\right\}
$$

Because $|M|=2, \quad|\eta(a)| \leq 1, \quad|\eta(b)| \leq 1$, it follows that $|\eta(\alpha)| \leq 2$. Hence $\operatorname{Nin}(R)=2$.
(\Rightarrow) Suppose R is non abelian and let $e^{2}=e \in R$ be a non central idempotent. If neither $e R(1-e)$ nor $(1-e) R e$ is zero, then take $0 \neq x \in e R(1-e)$ and $0 \neq y \in$ $(1-e) R e$. Then

$$
\begin{aligned}
e & =e+0 \\
& =(e+x)-x \\
& =(e+y)-y
\end{aligned}
$$

are three distinct nil clean expressions of e in R. So without loss of generality, we can assume that

$$
e R(1-e) \neq 0 \text { but }(1-e) R e=0
$$

The Peirce decomposition of R gives

$$
R=\left(\begin{array}{cc}
e R e & e R(1-e) \\
0 & (1-e) R(1-e)
\end{array}\right)
$$

As above $2=\operatorname{Nin}(R) \geq|e R(1-e)|$; so $|e R(1-e)|=2$. Write

$$
e R(1-e)=\{0, x\}
$$

If possible let $a=e_{1}+n_{1}=e_{2}+n_{2}$ be two distinct nil clean expressions of a in e Re. If $e_{1} x=x$, then

$$
\begin{aligned}
\left(\begin{array}{ll}
a & 0 \\
0 & 0
\end{array}\right) & =\left(\begin{array}{ll}
e_{1} & 0 \\
0 & 0
\end{array}\right)+\left(\begin{array}{ll}
n_{1} & 0 \\
0 & 0
\end{array}\right) \\
& =\left(\begin{array}{ll}
e_{2} & 0 \\
0 & 0
\end{array}\right)+\left(\begin{array}{cc}
n_{2} & 0 \\
0 & 0
\end{array}\right) \\
& =\left(\begin{array}{ll}
e_{1} & x \\
0 & 0
\end{array}\right)+\left(\begin{array}{cc}
n_{1} & x \\
0 & 0
\end{array}\right)
\end{aligned}
$$

are three distinct nil clean expressions of $\left(\begin{array}{cc}a & 0 \\ 0 & 0\end{array}\right) \in R$. If $e_{1} x=0$, then

$$
\begin{aligned}
\left(\begin{array}{ll}
a & 0 \\
0 & 1_{B}
\end{array}\right) & =\left(\begin{array}{ll}
e_{1} & 0 \\
0 & 1_{B}
\end{array}\right)+\left(\begin{array}{cc}
n_{1} & 0 \\
0 & 0
\end{array}\right) \\
& =\left(\begin{array}{ll}
e_{2} & 0 \\
0 & 1_{B}
\end{array}\right)+\left(\begin{array}{cc}
n_{2} & 0 \\
0 & 0
\end{array}\right) \\
& =\left(\begin{array}{cc}
e_{1} & x \\
0 & 1_{B}
\end{array}\right)+\left(\begin{array}{cc}
n_{1} & x \\
0 & 1_{B}
\end{array}\right)
\end{aligned}
$$

are three distinct nil clean expressions of $\left(\begin{array}{cc}a & 0 \\ 0 & 1_{B}\end{array}\right)$ in R. This contradiction shows that $\operatorname{Nin}(e R e)=1$. Similarly, $\operatorname{Nin}((1-e) R(1-e))=1$.

2.5 Rings of nil clean index 3

The next proposition gives a sufficient condition for rings to have nil clean index 3 .
Theorem 2.5.1. If $R=\left(\begin{array}{cc}A & M \\ 0 & B\end{array}\right)$, where $\operatorname{Nin}(A)=\operatorname{Nin}(B)=1$ and $A_{A} M_{B}$ is a bimodule with $|M|=3$, then $\operatorname{Nin}(R)=3$.

Proof. This is similar to the proof of the implication " (\Leftarrow) " of Proposition 2.4.1.

The condition of Proposition 2.5.1 is a sufficient condition, but not necessary, as shown by the following example.
Example 2.5.2. $R=\left(\begin{array}{ll}\mathbb{Z}_{2} & \mathbb{Z}_{2} \\ \mathbb{Z}_{2} & \mathbb{Z}_{2}\end{array}\right)$ is a ring of nil clean index 3.
We see that, $\operatorname{nil}(R)=\left\{\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right),\left(\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right)\right\}$. Using
Lemma 3.2.1, we get $\operatorname{Nin}(R) \leq 4$. Also

$$
\eta\left(\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)\right)=\left\{\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
1 & 0 \\
1 & 0
\end{array}\right)\right\}
$$

thus $\operatorname{Nin}(R) \geq 3$. Similarly verifying for each element we see that $\operatorname{Nin}(R)=3$. But it is not of the form $\left(\begin{array}{cc}A & M \\ 0 & B\end{array}\right)$.

Next we have the following proposition for matrix ring.

Proposition 2.5.3. Let S be a ring with unity and let $n \geq 2$ be an integer. Then
(i) $\operatorname{Nin}\left(M_{n}(S)\right) \geq 3$.
(ii) $\operatorname{Nin}\left(M_{n}(S)\right)=3$ iff $n=2$ and $S \cong \mathbb{Z}_{2}$.

Proof. Let $E_{i j} \in M_{n}(S)$ such that (i, j) th entry is 1 and rest of the entries are 0 . So for $A=E_{11}$,

$$
\eta(A) \supseteq\left\{E_{11}+\sum_{i=2}^{n} r_{i} E_{1 i}, E_{11}+\sum_{i=2}^{n} s_{i} E_{i 1} \mid \forall r_{i}, s_{i} \in S \quad(2 \leq i \leq n)\right\}
$$

So we have

$$
\operatorname{Nin}(R) \geq\left|\eta_{R}(a)\right| \geq 2|S|^{n-1}-1
$$

(i) If $|S| \geq 3$ or $n \geq 3$, then

$$
\operatorname{Nin}(R) \geq \min \left\{2.3^{2-1}-1,2.3^{3-1}-1\right\}=5
$$

By Example 2.5.2, $\operatorname{Nin}\left(M_{2}\left(\mathbb{Z}_{2}\right)\right)=3$, so in general $\operatorname{Nin}(R) \geq 3$.
(ii) If $\operatorname{Nin}(R)=3$, the above argument shows

$$
\begin{aligned}
3=\operatorname{Nin}(R) & \geq 2|S|^{n-1}-1 \\
\Rightarrow \quad 2 & \geq|S|^{n-1}
\end{aligned}
$$

So we must have $n=2$ and $|S|=2$. Therefore $S \cong \mathbb{Z}_{2}$. The converse part is obviously true as $\operatorname{Nin}\left(M_{2}\left(\mathbb{Z}_{2}\right)\right)=3$.

Theorem 2.5.4. Let R be a ring. If $\operatorname{Nin}(R)=3$ then one of the following holds:
(i) $R=\left(\begin{array}{cc}A & M \\ 0 & B\end{array}\right)$, where A and B are rings with $\operatorname{Nin}(A)=\operatorname{Nin}(B)=1$ and ${ }_{A} M_{B}$ is a bimodule with $|M|=3$.
(ii) $R=\left(\begin{array}{cc}A & M \\ N & B\end{array}\right)$, where A and B are rings with $\operatorname{Nin}(A)=\operatorname{Nin}(B)=1$ and ${ }_{A} M_{B}, \quad{ }_{B} N_{A}$ are bimodules with $|M|=|N|=2$.

Proof. Let $\operatorname{Nin}(R)=3$. Then R is non abelian. Let $e \in R$ be a noncentral idempotent. Set

$$
A=e R e, B=(1-e) R(1-e), M=e R(1-e), N=(1-e) R e
$$

Since e is noncentral, M and N are not both zero, so we have two cases

Case I:

Let $M \neq 0, N=0$ or $M=0, N \neq 0$. Without loss of generality let $M \neq 0, N=0$.
Then $R=\left(\begin{array}{cc}A & M \\ 0 & B\end{array}\right)$. Clearly by Lemma 2.2.5,

$$
2 \leq|M| \leq \operatorname{Nin}(R)=3
$$

Also by Lemma 2.2.7, we have

$$
\operatorname{Nin}(A)<\operatorname{Nin}(R) \text { and } \operatorname{Nin}(B)<\operatorname{Nin}(R)
$$

By Lemma 2.2.6, if $|M|=2$ then

$$
3=\operatorname{Nin}(R)=2 \operatorname{Nin}(A) \operatorname{Nin}(B)
$$

which is a contradiction. So $|M|=3$. Now by Lemma 2.2.5, we see that

$$
\begin{array}{rlrl}
3= & \operatorname{Nin}(R) \geq \operatorname{Nin}(A) \operatorname{Nin}(B)+|M|-1 & & \text { or } \operatorname{Nin}(R) \geq 2 \operatorname{Nin}(A) \operatorname{Nin}(B) \\
& \Rightarrow \quad \operatorname{Nin}(A) \operatorname{Nin}(B) \leq 1 & & \text { or } \operatorname{Nin}(A) \operatorname{Nin}(B) \leq \frac{3}{2} \\
& \Rightarrow \quad \operatorname{Nin}(A) \operatorname{Nin}(B)=1 ; \text { that is, } \operatorname{Nin}(A)=\operatorname{Nin}(B)=1 .
\end{array}
$$

So we get (i).

Case II:

Let $N \neq 0$ and $M \neq 0$. So $|N| \geq 2$ and $|M| \geq 2$. Now

$$
\eta(e) \supseteq\{e+w, e+z ; w \in M, 0 \neq z \in N\} .
$$

Thus

$$
\begin{gathered}
3=\operatorname{Nin}(R) \geq|\eta(e)| \geq|M|+|N|-1 \\
\Rightarrow \quad 4 \leq|M|+|N| \leq 4 \quad \Rightarrow|M|=|N|=2
\end{gathered}
$$

Again $C=\left(\begin{array}{cc}A & M \\ 0 & B\end{array}\right) \subseteq R$, so $\operatorname{Nin}(C) \leq \operatorname{Nin}(R)=3$.
But $\operatorname{Nin}(C)=2 \operatorname{Nin}(A) \operatorname{Nin}(B) \leq 3 \Rightarrow \operatorname{Nin}(A)=\operatorname{Nin}(B)=1$, proving $(i i)$.
Note: Ring homomorphisms in general do not preserve the nil clean index. For example, if we consider a ring R of nil clean index 2 , then R cannot be abelian, so $\operatorname{Nin}(R[[x]])$ can not be finite. But R is a homomorphic image of $R[[x]]$. However in case of $\operatorname{Nin}(R)=1$, we have the following result.

Theorem 2.5.5. The homomorphic image of a ring R with $\operatorname{Nin}(R)=1$ is again a ring with $\operatorname{Nin}(R)=1$, provided idempotents of R can be lifted modulo the kernel of the homomorphism.

Proof. Straightforward.

2.6 Formal triangular ring with nil clean index 4

Theorem 2.6.1. Let $R=\left(\begin{array}{cc}A & M \\ 0 & B\end{array}\right)$, where A and B are rings, $A_{A} M_{B}$ is a non trivial bimodule. Then $\operatorname{Nin}(R)=4$ if and only if one of the following holds:
(i) $(M,+) \cong C_{2}$ and $\operatorname{Nin}(A) \operatorname{Nin}(B)=2$.
(ii) $(M,+) \cong C_{4}$ and $\operatorname{Nin}(A)=\operatorname{Nin}(B)=1$.
(iii) $(M,+) \cong C_{2} \oplus C_{2}$ plus one of the following
(a) $\operatorname{Nin}(A)=\operatorname{Nin}(B)=1$.
(b) $\operatorname{Nin}(A)=1, \quad B=\left(\begin{array}{ll}S & W \\ 0 & T\end{array}\right)$, where $\operatorname{Nin}(S)=\operatorname{Nin}(T)=1$ and $|W|=2$, and $e M\left(1_{B}-f\right)+\left(1_{A}-e\right) M f \neq 0$, for all $e^{2}=e \in A$ and $f \in \eta(b)$, where $b \in B$ with $|\eta(b)|=2$.
(c) $\operatorname{Nin}(B)=1, \quad A=\left(\begin{array}{cc}S & W \\ 0 & T\end{array}\right)$, where $\operatorname{Nin}(S)=\operatorname{Nin}(T)=1$ and $|W|=2$, and $e M\left(1_{B}-f\right)+\left(1_{A}-e\right) M f \neq 0$, for all $e^{2}=e \in B$ and $f \in \eta(a)$, where $a \in A$ with $|\eta(a)|=2$.

Proof. (\Leftarrow) If (i) holds then by Lemma 2.2.6, we get $\operatorname{Nin}(R)=4$.
If (ii) holds then $\operatorname{Nin}(R) \geq|M|=4$. Now, for any $\alpha=\left(\begin{array}{cc}a & x \\ 0 & b\end{array}\right) \in R$,

$$
\eta(\alpha)=\left\{\left(\begin{array}{cc}
e & w \\
0 & f
\end{array}\right) \in R: e \in \eta(a), f \in \eta(b), w=e w+f w\right\}
$$

Because $|M|=4,|\eta(a)| \leq 1$ and $|\eta(b)| \leq 1$, it follows that $|\eta(\alpha)| \leq 4$. Hence $\operatorname{Nin}(R)=$ 4. Let (iii) (a) hold. Then $\operatorname{Nin}(R) \geq|M|=4$. Now, for any $\alpha=\left(\begin{array}{cc}a & x \\ 0 & b\end{array}\right) \in R$,

$$
\eta(\alpha)=\left\{\left(\begin{array}{cc}
e & w \\
0 & f
\end{array}\right) \in R: e \in \eta(a), f \in \eta(b), w=e w+f w\right\}
$$

Because $|M|=4,|\eta(a)| \leq 1$ and $|\eta(b)| \leq 1$, it follows that $|\eta(\alpha)| \leq 4$. Hence $\operatorname{Nin}(R)=$ 4.

Suppose (iii) (c) hold. Then clearly $\operatorname{Nin}(R) \geq|M|=4$. Let $\alpha=\left(\begin{array}{cc}a & w \\ 0 & b\end{array}\right) \in R$. We show that $|\eta(\alpha)| \leq 4$ and hence $\operatorname{Nin}(R)=4$ holds. Since $\operatorname{Nin}(B)=1$, we can assume that $\eta(b)=\left\{f_{0}\right\}$. Then as above we have

$$
\eta(\alpha)=\left\{\left(\begin{array}{cc}
e & z \\
0 & f_{0}
\end{array}\right) \in R: e \in \eta(a), z=e z+z f_{0}\right\}
$$

If $|\eta(a)| \leq 1$, then $|\eta(\alpha)| \leq|\eta(a)| \cdot|M| \leq 4$. So we can assume that $|\eta(a)|=2$. Write $\eta(a)=\left\{e_{1}, e_{2}\right\}$. Thus $\eta(\alpha)=T_{1} \bigcup T_{2}$, where

$$
T_{i}=\left\{\left(\begin{array}{cc}
e_{i} & z \\
0 & f_{0}
\end{array}\right) \in R:\left(1_{A}-e_{i}\right) z=z f_{0}\right\} \quad(i=1,2)
$$

Since

$$
\eta\left(1_{A}-a\right)=\left\{1_{A}-e_{1}, 1_{A}-e_{2}\right\}
$$

the assumption $(i i i)(c)$ shows that

$$
\left\{z \in M:\left(1_{A}-e_{i}\right) z=z f_{0}\right\}
$$

is a proper subgroup of $(M,+)$; so $\left|T_{i}\right| \leq 2$ for $i=1,2$. Hence

$$
|\eta(\alpha)| \leq\left|T_{1}\right|+\left|T_{2}\right| \leq 4
$$

(\Rightarrow) Suppose $\operatorname{Nin}(R)=4$. Then $2 \leq|M| \leq \operatorname{Nin}(R)=4$. If $|M|=2$ then $\operatorname{Nin}(A) \operatorname{Nin}(B)=$ 2 by Lemma 2.2.6, so (i) holds.
Suppose $|M|=3$. By Lemma 2.2.5, we have

$$
\operatorname{Nin}(A)+|M| \leq \operatorname{Nin}(R)
$$

showing $\operatorname{Nin}(A) \leq 2$. Similarly, $\operatorname{Nin}(B) \leq 2$. But $\operatorname{Nin}(A)=2=\operatorname{Nin}(B)$ will give

$$
\operatorname{Nin}(R) \geq 6 \text { by Lemma } 2.2 .5
$$

and $\operatorname{Nin}(A)=\operatorname{Nin}(B)=1$ will give

$$
\operatorname{Nin}(R)=3 \text { by Theorem 2.5.1. }
$$

Hence the only possibility is $\operatorname{Nin}(A) \operatorname{Nin}(B)=2$, so without loss of generality we assume that $\operatorname{Nin}(A)=2$ and $\operatorname{Nin}(B)=1$. Write

$$
M=\{0, x, 2 x\} .
$$

Now by Theorem 2.4.1, we have

$$
A=\left(\begin{array}{cc}
T & N \\
0 & S
\end{array}\right)
$$

where $T \& S$ are rings, ${ }_{T} N_{S}$ is bimodule with $\operatorname{Nin}(T)=\operatorname{Nin}(S)=1$ and $|N|=2$. Note that for $e \in \operatorname{Idem}(A)$, $e x \in\{0, x\}$. Indeed, if $e x=2 x$, we have

$$
2 x=e x=e(e x)=e(2 x)=e(x+x)=e x+e x=2 x+2 x=4 x=x
$$

which is not possible.
Now let $a=\left(\begin{array}{cc}1_{T} & 0 \\ 0 & 0\end{array}\right) \in A$, such that

$$
\begin{aligned}
a= & \left(\begin{array}{cc}
1_{T} & 0 \\
0 & 0
\end{array}\right)+\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right) \\
& =\left(\begin{array}{cc}
1_{T} & y \\
0 & 0
\end{array}\right)+\left(\begin{array}{cc}
0 & -y \\
0 & 0
\end{array}\right) .
\end{aligned}
$$

Let us denote, $e_{1}=\left(\begin{array}{cc}1_{T} & 0 \\ 0 & 0\end{array}\right), e_{2}=\left(\begin{array}{cc}1_{T} & y \\ 0 & 0\end{array}\right), n_{1}=\left(\begin{array}{cc}0 & 0 \\ 0 & 0\end{array}\right)$ and
$n_{2}=\left(\begin{array}{cc}0 & -y \\ 0 & 0\end{array}\right)$. Clearly $e_{1}, e_{2} \in \operatorname{Idem}(A) \& n_{1}, n_{2} \in \operatorname{Nil}(A)$. Now we have following cases:

Case I:

Let $e_{1} x=e_{2} x=0$. Then we have an element $\beta=\left(\begin{array}{cc}1_{A}-a & 0 \\ 0 & 0\end{array}\right) \in R$ such that

$$
\begin{aligned}
\beta & =\left(\begin{array}{cc}
1_{A}-e_{1} & z \\
0 & 0
\end{array}\right)+\left(\begin{array}{cc}
-n_{1} & -x \\
0 & 0
\end{array}\right) & & \forall z \in M \\
& =\left(\begin{array}{cc}
1_{A}-e_{2} & z \\
0 & 0
\end{array}\right)+\left(\begin{array}{cc}
-n_{2} & -x \\
0 & 0
\end{array}\right) & & \forall z \in M
\end{aligned}
$$

are six nil clean expressions for β, which implies $|\eta(\beta)| \geq 6$. That is $\operatorname{Nin}(R) \geq 6$, which is not possible.

Case II:

Let $e_{1} x=e_{2} x=x$. Then we have an element
$\alpha=\left(\begin{array}{ll}a & 0 \\ 0 & 0\end{array}\right) \in R$ such that

$$
\begin{aligned}
\alpha & =\left(\begin{array}{cc}
e_{1} & z \\
0 & 0
\end{array}\right)+\left(\begin{array}{cc}
n_{1} & -x \\
0 & 0
\end{array}\right) & & \forall z \in M \\
& =\left(\begin{array}{cc}
e_{2} & z \\
0 & 0
\end{array}\right)+\left(\begin{array}{cc}
n_{2} & -x \\
0 & 0
\end{array}\right) & & \forall z \in M
\end{aligned}
$$

are six nil clean expressions for α, which implies $|\eta(\alpha)| \geq 6$. That is $\operatorname{Nin}(R) \geq 6$, which is also not possible.

Case III:

Let $e_{1} x=x$ and $e_{2} x=0$. Then we have $\left(e_{1}-e_{2}\right) x=x$. Let $j=e_{1}-e_{2}$. Then clearly $j \in \operatorname{Nil}(A)$ and we have

$$
\begin{aligned}
& j x=x, \\
\Rightarrow \quad & \left(1_{A}-j\right) x=0, \\
\Rightarrow \quad & x=0, \quad(\text { as } 1-j \in \mathrm{U}(A)) .
\end{aligned}
$$

This is a contradiction.

Case IV:

Let $e_{1} x=0$ and $e_{2} x=x$. Then as in Case III, we get a contradiction. Hence if $M \cong C_{3}, \operatorname{Nin}(R)$ is never 4. Suppose $|M|=4$. If

$$
(M,+) \cong C_{4}
$$

then $\operatorname{Nin}(A) \operatorname{Nin}(B)=1$ by Lemma 2.2.6, so (ii) holds. If

$$
(M,+) \cong C_{2} \oplus C_{2},
$$

then since $\operatorname{Nin}(R)=4$, by Lemma 2.2.5, we have $\operatorname{Nin}(A) \operatorname{Nin}(B) \leq 2$. Now if $\operatorname{Nin}(A) \operatorname{Nin}(B)=1$ then $($ iii $)(a)$ holds. If $\operatorname{Nin}(A) \operatorname{Nin}(B)=2$, without loss of generality we can assume $\operatorname{Nin}(A)=2$ and $\operatorname{Nin}(B)=1$. So by Theorem 2.4.1, we have

$$
A=\left(\begin{array}{cc}
S & W \\
0 & T
\end{array}\right)
$$

where $\operatorname{Nin}(S)=\operatorname{Nin}(T)=1$, and $|W|=2$. To complete the proof, suppose on contrary that

$$
e M\left(1_{B}-f\right)+\left(1_{A}-e\right) M f=0
$$

for some $f^{2}=f \in B$ and $e \in \eta(a)$, where $a \in A$ with $|\eta(a)|=2$. Then $e w=w f$ for all $w \in M$. It is easy to check that $\eta(a)=\{e, e+j\}$ where $j=\left(\begin{array}{cc}0 & w_{0} \\ 0 & 0\end{array}\right) \in A$ with $0 \neq w_{0} \in W$. Thus, for $\gamma:=\left(\begin{array}{cc}1_{A}-e & 0 \\ 0 & f\end{array}\right)$,

$$
\eta(\gamma) \supseteq\left\{\left(\begin{array}{cc}
1_{A}-e & 0 \\
0 & f
\end{array}\right),\left(\begin{array}{cc}
1_{A}-(e+j) & 0 \\
0 & f
\end{array}\right),\left(\begin{array}{cc}
1_{A}-e & w \\
0 & f
\end{array}\right): w \in M\right\}
$$

so $|\eta(\gamma)| \geq 5$, a contradiction. Hence (iii)(c) holds. Similarly (iii)(b) can be proved.

[^0]: ${ }^{1}$ The contents of this chapter have been published in International Electronic Journal of Algebra (2014).

