Chapter 3

Weak clean index of a ring

3.1 Introduction

In this chapter we have introduced and studied weak clean index of arbitrary rings and characterized all rings with weak clean index 1,2 and 3 .

Definition 3.1.1. For any element a of R, we define

$$
\chi(a)=\left\{e \in R \mid e^{2}=e \text { and } a-e \in \mathrm{U}(R) \text { or } a+e \in \mathrm{U}(R)\right\}
$$

The weak clean index of R denoted by $\operatorname{Win}(R)$ is defined as

$$
\sup \{|\chi(a)|: a \in R\}
$$

where $|\chi(a)|$ denotes the cardinality of the set $\chi(a)$.

3.2 Basic properties

Some basic properties related to weak clean index are presented here as a preparation for the chapter.
Lemma 3.2.1. Let R be a ring and $e, a, b \in R$., Then the following hold:
(i) For a central nilpotent $n \in R,|\chi(n)|=1$. Whereas for a central idempotent $e \in R,|\chi(e)| \geq 1$. Thus $\operatorname{Win}(R) \geq 1$, for any ring R.
(ii) If $a-b \in \mathrm{~J}(R)$ then $|\chi(a)|=|\chi(b)|$.
(iii) If $e \in \chi(a)$ then $1-e \in \chi(1-a)$ or $1-e \in \chi(1+a)$. The converse holds if $2 \in \mathrm{~J}(R)$.
(iv) Let σ be an automorphism or anti-automorphism of R. Then $e \in \chi(a)$ iff $\sigma(e) \in \chi(\sigma(a))$; so $|\chi(a)|=|\chi(\sigma(a))|$. In particular $|\chi(a)|=\left|\chi\left(u^{\prime} u^{-1}\right)\right|$, where u is a unit of R.
(v) If a ring R has at most n units or at most n idempotents, then $\operatorname{Win}(R) \leq n$. In particular, if R is a local ring then $\operatorname{Win}(R) \leq 2$.
(vi) If R is local, then $\operatorname{Win}(R)=1$ iff $R / \mathrm{J}(R) \cong \mathbb{Z}_{2}$.
(vii) Let R be a clean ring with $2 \in \mathrm{U}(R)$. Then $\operatorname{Win}(R)=\left|\chi\left(2^{-1}\right)\right|$, or in other words $\operatorname{Idem}(R)=\chi\left(2^{-1}\right)$.

Proof. (i) Let a be a central nilpotent such that $a^{n}=0$ for some $n \in \mathbb{N}$. Then

$$
a=(a+1)-1
$$

is a weak clean expression, hence

$$
1 \in \chi(a) \text { thus }|\chi(a)| \geq 1
$$

If possible let $e(\neq 1) \in \chi(a)$, then there exists a $u \in \mathrm{U}(R)$ such that

$$
a=u+e \text { or } u-e .
$$

If $a=u-e$, by using binomial expansion and the fact that $a^{n}=0$ we have

$$
\begin{aligned}
0 & =(u-e)^{n} \\
& =u^{n}-\binom{n}{1} e u^{n-1}+\binom{n}{2} e u^{n-2}-\cdots+(-1)^{n-1} e u+(-1)^{n} e .
\end{aligned}
$$

This implies

$$
u^{n} \in e R,
$$

contradicting the fact that $e \neq 1$. Next, if $a=u+e$, similarly we get a contradiction. Let e be a central idempotent. Then

$$
e=1-(1-e)
$$

is a weak clean expression for e. Thus $|\chi(e)| \geq 1$. For example, $\overline{4} \in \operatorname{Idem}\left(\mathbb{Z}_{6}\right)$,

$$
\chi(\overline{4})=\{\overline{1}, \overline{3}\}
$$

as

$$
\overline{4}=\overline{1}+\overline{3}=\overline{5}-\overline{1}
$$

where $\overline{3}, \overline{1} \in \operatorname{Idem}\left(\mathbb{Z}_{6}\right)$. This example shows that for central idempotent $e,|\chi(e)|$ need not be equal to one.
(ii) let $w=a-b \in \mathrm{~J}(R)$. If $e \in \chi(a)$, we have

$$
a+e \in \mathrm{U}(R) \text { or } a-e \in \mathrm{U}(R)
$$

Case I:

If

$$
\begin{aligned}
& u=a+e \in U(R), \text { then } \\
& u=b+w+e \\
\Rightarrow \quad & b+e=u-w \in \mathrm{U}(R) \\
\Rightarrow \quad & e \in \chi(b) .
\end{aligned}
$$

Case II:

If $v=a-e \in \mathrm{U}(R)$, similarly we get $b-e=v-w \in \mathrm{U}(R)$, so $e \in \chi(b)$. Therefore

$$
\chi(a) \subseteq \chi(b)
$$

By symmetry

$$
\chi(b) \subseteq \chi(a)
$$

hence $\chi(a)=\chi(b)$.
(iii) Let $e \in \chi(a)$. Then we have

$$
a+e \in \mathrm{U}(R) \text { or } a-e \in \mathrm{U}(R)
$$

If $a-e \in \mathrm{U}(R)$, then we have

$$
(1-a)-(1-e)=e-a \in \mathrm{U}(R)
$$

so $1-e \in \chi(1-a)$. Similarly if $a+e \in \mathrm{U}(R)$, then we have

$$
(1+a)-(1-e)=a+e \in \mathrm{U}(R)
$$

Therefore $1-e \in \chi(1+a)$.
Conversely, if $(1-e) \in \chi(1-a)$, we have

$$
(1-a)-(1-e)=u \in \mathrm{U}(R) \text { or }(a-1)+(1-e)=v \in \mathrm{U}(R)
$$

that is, $a-e=-u$ or $a-e=v$, so in this case $e \in \chi(a)$. If $(1-e) \in \chi(1+a)$,

$$
(1+a)-(1-e)=u \in \mathrm{U}(R) \text { or }(a+1)+(1-e)=v \in \mathrm{U}(R)
$$

implying, $a+e=u$ or $a-e=v-2 \in \mathrm{U}(R)$, as $2 \in \mathrm{~J}(R)$. Hence we get $e \in \chi(a)$.
(iv) and (v) are straightforward.
(vi) R is a local ring, so we have $\operatorname{Win}(R) \leq 2$, as $\operatorname{Idem}(R)=\{0,1\}$. Let

$$
R / \mathrm{J}(R) \cong \mathbb{Z}_{2}
$$

Then, R is uniquely clean[18]. If possible let $\operatorname{Win}(R)=2$, that is, there exists an element $a \in R$ such that $\{0,1\}=\chi(a)$. So $a \in \mathrm{U}(R)$ and $a-1 \in \mathrm{U}(R)$ or $a+1 \in \mathrm{U}(R)$. If

$$
a \in \mathrm{U}(R) \text { and } u=a-1 \in \mathrm{U}(R)
$$

then we have two clean expressions for a, which is a contradiction. Similarly if

$$
a \in \mathrm{U}(R) \text { and } u=a+1 \in \mathrm{U}(R)
$$

then we have, two clean expressions for u, which is a contradiction, hence $\operatorname{Win}(R)=$ 1. Conversely, let $\operatorname{Win}(R)=1$. Then $\operatorname{In}(R)=1$ as $\operatorname{In}(R) \leq \operatorname{Win}(R)$. Hence the result follows by Theorem 2.1 of [18].
(vii) Let $e \in \operatorname{Idem}(R)$ and let $2 \in \mathrm{U}(R)$. Now we have $\left(2^{-1}-e\right) \in \mathrm{U}(R)$, as $2(1-2 e)$ is the inverse of $2^{-1}-e$. Therefore $\operatorname{Idem}(R) \subseteq \chi\left(2^{-1}\right)$, so $\operatorname{Win}(R)=\left|\chi\left(2^{-1}\right)\right|$. In a ring $R, q \in R$ is called quasi-regular element, if there is a $p \in R$, such that

$$
q+p+q p=0=p+q+p q
$$

The set of all all quasi-regular elements of R is denoted by $Q(R)$.

Lemma 3.2.2. If S is a subring of a ring R, where R and S may not share same identity, then $\operatorname{Win}(S) \leq \operatorname{Win}(R)$.

Proof. For $a \in R$, let

$$
J(a)=J_{1}(a) \cup J_{2}(a),
$$

where

$$
\begin{aligned}
& J_{1}(a)=\left\{q \in Q(R):(a-q)^{2}=a-q\right\} \text { and } \\
& J_{2}(a)=\left\{q \in Q(R):(q-a)^{2}=q-a\right\}
\end{aligned}
$$

Claim:

$$
\operatorname{Win}(R)=\sup \{|J(b)|: b \in R\}
$$

Note that

$$
\mathrm{U}(R)=\{1+q: q \in Q(R)\}
$$

For any $a \in R$,

$$
\chi(a)=\left\{(a-1)-j: j \in J_{1}(a-1)\right\} \cup\left\{j-(a-1): j \in \mathrm{~J}_{2}(a-1)\right\} .
$$

Therefore $|\chi(a)|=|J(a-1)|$. Thus

$$
\operatorname{Win}(R)=\sup \{|J(b)|: b \in R\}
$$

Because $Q(S) \subseteq Q(R)$ it follows that $\operatorname{Win}(S) \leq \operatorname{Win}(R)$.
Proof of $|\chi(a)|=|J(a-1)|$:
We have $e \in \chi(a)$

$$
\begin{aligned}
& \Leftrightarrow \quad a-e=u \text { or } a+e=u, \text { for some } u \in \mathrm{U}(R) \\
& \Leftrightarrow \quad a-u=e \text { or } u-a=e, \text { for some } u \in \mathrm{U}(R) \\
& \Leftrightarrow \quad a-1-q=e \text { or } 1+q-a=e, \text { for some } q=1+u \text { as } \mathrm{U}(R)=1+Q(R) \\
& \Leftrightarrow \quad(a-1)-q=e \text { or } q-(a-1)=e \\
& \Leftrightarrow \quad e \in J_{1}(a-1) \text { or } e \in J_{2}(a-1) .
\end{aligned}
$$

Theorem 3.2.3. Let $k \geq 1$ be an integer. Then the following are equivalent for a ring R :
(i) $\operatorname{Win}(R[[x]])=k$.
(ii) $\operatorname{Win}(R[x])=k$.
(iii) R is abelian and $\operatorname{Win}(R)=k$.

Proof. By Lemma 3.2.2, we have

$$
\operatorname{Win}(R) \leq \operatorname{Win}(R[x]) \leq \operatorname{Win}(R[[x]])
$$

Suppose that R is not abelian and e is a non-central idempotent of R. Let er $\neq r e$ for some $r \in R$. So either

$$
e r(1-e) \neq 0 \text { or }(1-e) r e \neq 0
$$

Without loss of generality we may assume that $\operatorname{er}(1-e) \neq 0$. For $i=1,2,3, \ldots$

$$
\begin{aligned}
a & :=(1+\operatorname{er}(1-e))-e \\
& =\left(1+\operatorname{er}(1-e)\left(1+x^{i}\right)\right)-\left(e+\operatorname{er}(1-e) x^{i}\right)
\end{aligned}
$$

where $\left(1+e r(1-e)\left(1+x^{i}\right)\right) \in \mathrm{U}(R[x])$, as

$$
\left(1+e r(1-e)\left(1+x^{i}\right)\right)\left(1-\operatorname{er}(1-e)\left(1+x^{i}\right)\right)=1-\left(1+\operatorname{er}(1-e)\left(1+x^{i}\right)\right)^{2}=1
$$

and $e+\operatorname{er}(1-e) x^{i} \in \operatorname{Idem}(R[x])$. Thus there are infinitely many distinct weak clean expressions of a in $R[x]$. Now suppose R is abelian. It is easy to see that idempotents of $R[[x]]$ are all in R, and for any

$$
\alpha=a_{0}+a_{1} x+a_{2} x^{2}+\cdots \in R[[x]]
$$

where $a_{0}, a_{1}, a_{2}, \ldots \in R$,

$$
\chi_{R[[x]]}(\alpha) \subseteq \chi_{R}\left(a_{0}\right)
$$

Thus $|\chi(\alpha)| \leq\left|\chi\left(a_{0}\right)\right|$, so $\operatorname{Win}(R[[x]]) \leq \operatorname{Win}(R)$. Hence the result follows.

3.3 Rings with weak clean index 1,2 and 3

Theorem 3.3.1. $\operatorname{Win}(R)=1$ iff R is abelian and for any $0 \neq e^{2}=e \in R, e \neq u+v$ for all $u, v \in \mathrm{U}(R)$.
$\operatorname{Proof}(\Rightarrow)$ Let $e^{2}=e \in R$. For any $0 \neq r \in R$,

$$
1-e=[1+\operatorname{er}(1-e)]-[e+\operatorname{er}(1-e)]
$$

are two weak clean expressions of $1-e$; so $e=[e+e r(1-e)]$. That is re $=$ ere. Similarly, we have er $=e r e$. So R is abelian. Suppose that $0 \neq e^{2}=e \in R, e=u+v$ for some $u, v \in \mathrm{U}(R)$. Then $v=v+0=-u+e$ are two weak clean expressions of v, implying $|\chi(v)| \geq 2$, a contradiction.
(\Leftarrow) Let $a \in R$ has two weak clean expressions,

$$
\begin{aligned}
& a=u_{1}+e_{1} \text { or } u_{1}-e_{1} \text { and } \\
& a=u_{2}+e_{2} \text { or } u_{2}-e_{2}
\end{aligned}
$$

for $e_{1}, e_{2} \in \operatorname{Idem}(R), e_{1} \neq e_{2}$ and $u_{1}, u_{2} \in \mathrm{U}(R)$.

Case I:

If $a=u_{1}+e_{1}=u_{2}+e_{2}$, we have

$$
e_{1}-e_{2}=u_{2}-u_{1} .
$$

Define $f:=e_{1}\left(1-e_{2}\right)$. Then $f=f^{2} \in \operatorname{Idem}(R)$. Now

$$
\begin{aligned}
f & =\left[e_{2}+\left(u_{2}-u_{1}\right)\right]\left(1-e_{2}\right) \\
& =u_{2}\left(1-e_{2}\right)-u_{1}\left(1-e_{2}\right) \\
& =\left[u_{2}\left(1-e_{2}\right)+e_{2}\right]-\left[u_{1}\left(1-e_{2}\right)+e_{2}\right] .
\end{aligned}
$$

As $u_{2}\left(1-e_{2}\right)+e_{2}, u_{1}\left(1-e_{2}\right)+e_{2} \in \mathrm{U}(R)$, we have, $f=0$. Hence $e_{1}=e_{1} e_{2}$. By symmetry, we have $e_{2}=e_{1} e_{2}$. Hence $e_{1}=e_{2}$, a contradiction. So $\chi(a) \leq 1$.

Case II:

If $a=u_{1}+e_{1}=u_{2}-e_{2}$, then

$$
e_{1}+e_{2}=u_{2}-u_{1}
$$

Define $f:=e_{1}\left(1-e_{2}\right)$. Then $f=f^{2}$ and

$$
\begin{aligned}
f & =\left[-e_{2}+\left(u_{2}-u_{1}\right)\right]\left(1-e_{2}\right) \\
& =u_{2}\left(1-e_{2}\right)-u_{1}\left(1-e_{2}\right) \\
& =\left[u_{2}\left(1-e_{2}\right)+e_{2}\right]-\left[u_{1}\left(1-e_{2}\right)+e_{2}\right] .
\end{aligned}
$$

As $u_{2}\left(1-e_{2}\right)+e_{2}, u_{1}\left(1-e_{2}\right)+e_{2}$ are units in R, we have $f=0$, so $e_{1}=e_{1} e_{2}$. By symmetry, $e_{2}=e_{1} e_{2}$. Hence $e_{1}=e_{2}$, a contradiction. So $\chi(a) \leq 1$.

Case III:

If $a=u_{1}-e_{1}=u_{2}-e_{2}$, we have

$$
e_{1}-e_{2}=u_{1}-u_{2}
$$

Define $f:=e_{1}\left(1-e_{2}\right)$. Then $f=f^{2} \in \operatorname{Idem}(R)$ and

$$
\begin{aligned}
f & =\left[e_{2}+\left(u_{1}-u_{2}\right)\right]\left(1-e_{2}\right) \\
& =u_{1}\left(1-e_{2}\right)-u_{2}\left(1-e_{2}\right) \\
& =\left[u_{1}\left(1-e_{2}\right)+e_{2}\right]-\left[u_{2}\left(1-e_{2}\right)+e_{2}\right] .
\end{aligned}
$$

Since R is abelian, $u_{2}\left(1-e_{2}\right)+e_{2}, u_{1}\left(1-e_{2}\right)+e_{2} \in \mathrm{U}(R)$. This is again a contradiction. As in above case $\chi(a) \leq 1$. Thus combining above cases we conclude that $\operatorname{Win}(R)=$ 1.

Lemma 3.3.2. Let $R=A \times B$ be a direct product of rings A and B, such that $\operatorname{Win}(A)=1$. Then $\operatorname{Win}(R)=\operatorname{Win}(B)$.

Proof. Since A, B are subrings of R, so by Lemma 3.2.2,

$$
\operatorname{Win}(B) \leq \operatorname{Win}(R)
$$

If $\operatorname{Win}(B)=\infty$, then $\operatorname{Win}(R)=\infty$, thus we have $\operatorname{Win}(R)=\operatorname{Win}(B)$. So let

$$
\operatorname{Win}(B)=k<\infty
$$

where k is a positive integer. So there is a $b \in B$, such that $|\chi(b)|=k$. Now for $(0, b) \in R,|\chi(0, b)|=k$, hence $\operatorname{Win}(R) \geq k$. Suppose that $\operatorname{Win}(R)>k$. Then there
exists $(a, b) \in R$ that has at least $k+1$ weak clean expressions in R. Let g be an integer such that $1 \leq g \leq k$ and let

$$
(a, b)= \begin{cases}\left(u_{i}, v_{i}\right)+\left(e_{i}, f_{i}\right), & \mathrm{i}=1,2,3, \ldots, \mathrm{~g} \\ \left(u_{j}, v_{j}\right)-\left(e_{j}, f_{j}\right), & \mathrm{j}=\mathrm{g}+1, \mathrm{~g}+2, \ldots, \mathrm{k}, \mathrm{k}+1\end{cases}
$$

are $k+1$ distinct weak clean expressions for (a, b), such that no two (e, f) 's are equal. Now,

$$
\begin{aligned}
a & =u_{i}+e_{i} \quad(i=1,2,3, \ldots, g,) \\
& =u_{j}-e_{j}, \quad(j=g+1, g+2, \ldots, k+1)
\end{aligned}
$$

are weak clean expressions of a in S. Since $|\chi(a)| \leq 1$, all $e_{i}^{\prime} s$ and $e_{j}^{\prime} s$ are equal. So

$$
\begin{aligned}
k+1 & =|\chi((a, b))| \\
& =\left|\left\{\left(e_{i}, f_{i}\right),\left(e_{j}, f_{j}\right) \mid i=1,2,3, \ldots, g ; j=g+1, g+2, \ldots, k+1\right\}\right| \\
& =\left|\left\{e_{i}, e_{j} \mid i=1,2,3, \ldots, g,\right\}\right| \times\left|\left\{f_{i}, f_{j} \mid j=g+1, g+2, \ldots, k\right\}\right| \\
& =|\chi(a)| \times|\chi(b)| \\
& =|\chi(b)|
\end{aligned}
$$

which is a contradiction. This proves the result.
Definition 3.3.3. Lee and Zhou [30], called a ring R, a elemental ring. If idempotents of R are trivial and $1=u+v$, for some $u, v \in \mathrm{U}(R)$.

Theorem 3.3.4. For a ring R, $\operatorname{Win}(R)=2$ iff one of the following holds:
(i) R is elemental.
(ii) $R=A \times B$, where A is elemental ring and $\operatorname{Win}(B)=1$.
(iii) $R=\left(\begin{array}{cc}A & M \\ 0 & B\end{array}\right)$, where $\operatorname{Win}(A)=\operatorname{Win}(B)=1$ and ${ }_{A} M_{B}$ is a bimodule with $|M|=2$.
$\operatorname{Proof}(\Leftarrow)$ If (i) holds then by the definition of elemental ring, we have $1=u+v$ for some $u, v \in \mathrm{U}(R)$. Therefore by Theorem 3.3.1, $\operatorname{Win}(R)>1$. Also by
Lemma 3.2.2(v), $\operatorname{Win}(R) \leq|\operatorname{Idem}(R)|=2$. So $\operatorname{Win}(R)=2$.

If (ii) holds then $\operatorname{Win}(R)=2$ by (i) and Lemma 3.3.2.
If (iii) holds, for $\alpha_{0}=\left(\begin{array}{cc}0 & 0 \\ 0 & 1\end{array}\right)$, we have

$$
\left\{\left(\begin{array}{cc}
1 & w \\
0 & 0
\end{array}\right): w \in M\right\} \subseteq \chi\left(\alpha_{0}\right) .
$$

So,

$$
\operatorname{Win}(R) \geq\left|\chi\left(\alpha_{0}\right)\right| \geq|M|=2
$$

For any $\alpha=\left(\begin{array}{ll}a & x \\ 0 & b\end{array}\right) \in R$,

$$
|\chi(\alpha)|=\left|\left\{\left(\begin{array}{cc}
e & w \\
0 & f
\end{array}\right) \in R: e \in \chi(a), f \in \chi(b), w=e w+w f\right\}\right|
$$

As $|M|=2,|\chi(a)| \leq 1$ and $|\chi(b)| \leq 1$, it follows $|\chi(\alpha)| \leq 2$. Hence $\operatorname{Win}(R)=2$.
(\Rightarrow) Suppose R is abelian. As $\operatorname{Win}(R) \neq 1$, there exists $(0 \neq) e=e^{2} \in R$ such that

$$
e=u+v, \text { where } u, v \in \mathrm{U}(R) .
$$

So we have $e=e u+e v$, where $e u, e v \in \mathrm{U}(e R)$. Hence

$$
\operatorname{Win}(e R) \geq 2
$$

But $\operatorname{Win}(e R) \leq \operatorname{Win}(R)=2$ by Lemma 3.2.2. So $\operatorname{Win}(e R)=2$. Now $R=A \times B$, where $A=e R$ and $B=(1-e) R$, so it follows that $\operatorname{Win}(B)=1$. If A has a non trivial idempotent f then

$$
A=f A+(e-f) A
$$

where

$$
f=f u+f v \text { and } e-f=(e-f) u+(e-f) v
$$

Now $f u, f v \in \mathrm{U}(f A)$ and $(e-f) u,(e-f) v \in \mathrm{U}((e-f) A)$, so by Theorem 5 of [30] we have

$$
\operatorname{In}(f A) \geq 2 \text { and } \operatorname{In}((1-f) A) \geq 2
$$

so

$$
\operatorname{In}(A) \geq 2 \times 2=4
$$

As $\operatorname{In}(R) \leq \operatorname{Win}(R)$, this is a contradiction. Thus (i) holds if $e=1$ and (ii) holds if $e \neq 1$. Suppose R is not abelian and let $e^{2}=e \in R$ be a non central idempotent. If

$$
e R(1-e) \neq 0 \text { and }(1-e) R e \neq 0
$$

then for

$$
0 \neq x \in e R(1-e) \text { and } 0 \neq y \in(1-e) R e
$$

we have

$$
\begin{aligned}
1-e & =(1+x)-(x+e) \\
& =(1+y)-(y+e) .
\end{aligned}
$$

Therefore $|\chi(1-e)| \geq 3$, which is a contradiction. So without loss of generality we can assume that

$$
e R(1-e) \neq 0 \text { and }(1-e) R e=0
$$

The Peirce decomposition of R gives

$$
R=\left(\begin{array}{cc}
e R e & e R(1-e) \\
0 & (1-e) R(1-e)
\end{array}\right)
$$

As above $2=\operatorname{Win}(R) \geq|e R(1-e)|$; so $|e R(1-e)|=2$. Write

$$
e R(1-e)=\{0, x\}
$$

Suppose $\operatorname{Win}(e R e)=2$. Then there exists $a \in R$ such that $|\chi(a)|=2$. Thus we have the following cases.

Case I:

Let $a=u_{1}+e_{1}=u_{2}+e_{2}$, where $u_{1}, u_{2} \in \mathrm{U}(e R e)$ and $e_{1}, e_{2} \in \operatorname{Idem}(e R e)$. If $e_{1} x=0$, we have for $A=\left(\begin{array}{ll}a & 0 \\ 0 & 0\end{array}\right) \in R$,

$$
\begin{aligned}
A & =\left(\begin{array}{cc}
u_{1} & 0 \\
0 & -1
\end{array}\right)+\left(\begin{array}{cc}
e_{1} & 0 \\
0 & 1
\end{array}\right) \\
& =\left(\begin{array}{cc}
u_{2} & 0 \\
0 & -1
\end{array}\right)+\left(\begin{array}{ll}
e_{2} & 0 \\
0 & 1
\end{array}\right) \\
& =\left(\begin{array}{cc}
u_{1} & x \\
0 & -1
\end{array}\right)+\left(\begin{array}{cc}
e_{1} & x \\
0 & 1
\end{array}\right)
\end{aligned}
$$

are three distinct weak clean expressions of A in R, which implies $|\chi(A)| \geq 3$, a contradiction. If $e_{1} x=x$, then for $B=\left(\begin{array}{ll}a & 0 \\ 0 & 1\end{array}\right)$,

$$
\begin{aligned}
B & =\left(\begin{array}{cc}
u_{1} & 0 \\
0 & 1
\end{array}\right)+\left(\begin{array}{cc}
e_{1} & 0 \\
0 & 0
\end{array}\right) \\
& =\left(\begin{array}{cc}
u_{2} & 0 \\
0 & 1
\end{array}\right)+\left(\begin{array}{ll}
e_{2} & 0 \\
0 & 0
\end{array}\right) \\
& =\left(\begin{array}{cc}
u_{1} & x \\
0 & 1
\end{array}\right)+\left(\begin{array}{cc}
e_{1} & x \\
0 & 0
\end{array}\right)
\end{aligned}
$$

are three distinct weak clean expressions of B in R, which implies $|\chi(B)| \geq 3$, a contradiction.

Case II:

Let $a=u_{1}-e_{1}=u_{2}+e_{2}$, where $u_{1}, u_{2} \in \mathrm{U}(e R e)$ and $e_{1}, e_{2} \in \operatorname{Idem}(e R e)$. So if $e_{1} x=0$, we have for $A=\left(\begin{array}{ll}a & 0 \\ 0 & 0\end{array}\right) \in R$

$$
\begin{aligned}
A & =\left(\begin{array}{cc}
u_{1} & 0 \\
0 & 1
\end{array}\right)-\left(\begin{array}{cc}
e_{1} & 0 \\
0 & 1
\end{array}\right) \\
& =\left(\begin{array}{cc}
u_{2} & 0 \\
0 & -1
\end{array}\right)+\left(\begin{array}{cc}
e_{2} & 0 \\
0 & 1
\end{array}\right) \\
& =\left(\begin{array}{cc}
u_{1} & x \\
0 & 1
\end{array}\right)-\left(\begin{array}{cc}
e_{1} & x \\
0 & 1
\end{array}\right)
\end{aligned}
$$

are three distinct weak clean expressions of A in R, which implies $|\chi(A)| \geq 3$, a contradiction.
If $e_{1} x=x$ then for $B=\left(\begin{array}{ll}a & 0 \\ 0 & 1\end{array}\right)$, we have

$$
\begin{aligned}
B & =\left(\begin{array}{cc}
u_{1} & 0 \\
0 & 1
\end{array}\right)-\left(\begin{array}{cc}
e_{1} & 0 \\
0 & 0
\end{array}\right) \\
& =\left(\begin{array}{cc}
u_{2} & 0 \\
0 & 1
\end{array}\right)+\left(\begin{array}{cc}
e_{2} & 0 \\
0 & 0
\end{array}\right) \\
& =\left(\begin{array}{cc}
u_{1} & x \\
0 & 1
\end{array}\right)-\left(\begin{array}{cc}
e_{1} & x \\
0 & 0
\end{array}\right)
\end{aligned}
$$

are three distinct weak clean expressions of B in R, which implies $|\chi(B)| \geq 3$, again a contradiction.

Case III:

Let $a=u_{1}-e_{1}=u_{2}-e_{2}$, where $u_{1}, u_{2} \in \mathrm{U}(e R e)$ and $e_{1}, e_{2} \in \operatorname{Idem}(e R e)$. Then we get a contradiction similar to Case I.
This shows that $\operatorname{Win}(e R e)=1$. Similarly $\operatorname{Win}((1-e) R(1-e))=1$.

Theorem 3.3.5. $\operatorname{Win}(R)=3$ iff $R=\left(\begin{array}{cc}A & M \\ 0 & B\end{array}\right)$ where $\operatorname{Win}(A)=\operatorname{Win}(B)=1$ and ${ }_{A} M_{B}$ is a bimodule with $|M|=3$.

Proof. (\Leftarrow) For $\alpha_{0}=\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)$, we have

$$
\left\{\left(\begin{array}{ll}
1 & w \\
0 & 0
\end{array}\right): w \in M\right\} \subseteq \chi\left(\alpha_{0}\right)
$$

So,

$$
\operatorname{Win}(R) \geq\left|\chi\left(\alpha_{0}\right)\right| \geq|M|=3
$$

For any $\alpha=\left(\begin{array}{ll}a & x \\ 0 & b\end{array}\right) \in R$,

$$
|\chi(\alpha)|=\left|\left\{\left(\begin{array}{cc}
e & w \\
0 & f
\end{array}\right) \in R: e \in \chi(a), f \in \chi(b), w=e w+w f\right\}\right|
$$

As $|M|=3,|\chi(a)| \leq 1$ and $|\chi(b)| \leq 1$ it follows $|\chi(\alpha)| \leq 3$, hence $\operatorname{Win}(R)=3$.
(\Rightarrow) Suppose $\operatorname{Win}(R)=3$. From the proof of Theorem 3.3.4, we see that an abelian ring not satisfying condition (i) and (ii), contains a subring whose weak clean index is greater than 4 . Therefore R must be non abelian.
Let e be a non central idempotent in the ring R. Then the Peirce decomposition of R gives

$$
R=\left(\begin{array}{cc}
e R e & e R(1-e) \\
(1-e) R e & (1-e) R(1-e)
\end{array}\right)
$$

Let $A=e R e, B=(1-e) R(1-e), M=e R(1-e), N=(1-e) R e$. Suppose $|M| \neq 0$ and $|N| \neq 0$. As

$$
\chi(1-e) \supseteq\{e-x, e-y: x \in M, 0 \neq y \in N\}
$$

it follows that

$$
3=\operatorname{Win}(R) \geq|\chi(1-e)|>|M|+|N|-1
$$

Therefore $|M|=|N|=2$. Write

$$
M=\{0, x\} \text { and } N=\{0, y\}
$$

Note that

$$
2 x=0=2 y .
$$

If $x y x=0$, then $(x+y+x y+y x)^{4}=0$ and

$$
\chi(1-e) \supseteq\{e, e-x, e-y, e+x+y+x y+y x\}
$$

so $\operatorname{Win}(R) \geq 4$, a contradiction.
If $y x y=0$, then $(x+y+x y+y x)^{4}=0$ and

$$
\chi(2-e) \supseteq\{1-e, 1-e+x, 1-e+y, 1-e+x+y+x y+y x\}
$$

therefore $\operatorname{Win}(R) \geq 4$, a contradiction. Hence $x y x \neq 0$ and $y x y \neq 0$. It follows that

$$
x y x=x \text { and } y x y=0 .
$$

Let $f=x y$ and $g=y x$. Clearly f, g are idempotents. So we have

$$
R \supseteq L:=\left(\begin{array}{cc}
f R f & M \\
N & g R g
\end{array}\right)
$$

By Lemma 3.2.2, $\operatorname{Win}(L) \leq 3$, but for $\alpha=\left(\begin{array}{ll}0 & x \\ y & g\end{array}\right)$ we have

$$
\begin{aligned}
\alpha & =\left(\begin{array}{ll}
0 & x \\
y & 0
\end{array}\right)+\left(\begin{array}{ll}
0 & 0 \\
0 & g
\end{array}\right) \\
& =\left(\begin{array}{ll}
0 & x \\
y & g
\end{array}\right)+\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right) \\
& =\left(\begin{array}{ll}
f & x \\
y & 0
\end{array}\right)+\left(\begin{array}{ll}
f & 0 \\
0 & g
\end{array}\right) \\
& =\left(\begin{array}{ll}
f & 0 \\
y & g
\end{array}\right)+\left(\begin{array}{ll}
f & x \\
0 & 0
\end{array}\right) \\
& =\left(\begin{array}{ll}
f & x \\
0 & g
\end{array}\right)+\left(\begin{array}{ll}
f & 0 \\
y & 0
\end{array}\right) .
\end{aligned}
$$

That is $|\chi(\alpha)| \geq 5$ in L, which is a contradiction. So either $|M|=0$ or $|N|=0$.

Without loss of generality we may assume that $|N|=0$. So

$$
R=\left(\begin{array}{cc}
A & M \\
0 & B
\end{array}\right)
$$

Clearly

$$
2 \leq|M| \leq 3=\operatorname{Win}(R)
$$

By Lemma 3.2.2, $\operatorname{Win}(A) \leq 3$. To prove that $|M|=3$, on contrary let $M=\{0, x\}$. Assume $\operatorname{Win}(A)=2$. Then there exists at least one $a \in A$ such that $|\chi(a)| \geq 2$.

Case I:

Let $a=u_{1}+e_{1}=u_{2}-e_{2}$ be two distinct weak clean expressions of a in A, where $u_{1}, u_{2} \in \mathrm{U}(A)$ and $e_{1}, e_{2} \in \operatorname{Idem}(A)$. Then $e_{1} x=u_{2} x-u_{1} x-e_{2} x=-e_{2} x+$ $x-x=-e_{2} x=e_{2} x$. If $e_{1} x=0$, then for $\alpha=\left(\begin{array}{ll}a & 0 \\ 0 & 0\end{array}\right)$, we have $\chi(\alpha) \supseteq$ $\left\{\left(\begin{array}{cc}e_{i} & w \\ 0 & 1\end{array}\right): i=1,2 ; w \in M\right\}$, showing that $\operatorname{Win}(R) \geq 4$, which is not possible. If $e_{1} x=x$, then for $\alpha=\left(\begin{array}{cc}a & 0 \\ 0 & 1\end{array}\right)$, we have $\chi(\alpha) \supseteq\left\{\left(\begin{array}{cc}e_{i} & w \\ 0 & 0\end{array}\right): i=1,2 ; w \in M\right\}$, showing that $\operatorname{Win}(R) \geq 4$, which is a contradiction.

Similarly in Case II letting $a=u_{1}+e_{1}=u_{2}+e_{2}$ be two distinct weak clean expressions and in Case III letting $a=u_{1}-e_{1}=u_{2}-e_{2}$ be two distinct weak clean expressions of a in A, where $u_{1}, u_{2} \in \mathrm{U}(A)$ and $e_{1}, e_{2} \in \operatorname{Idem}(A)$, we get contradictions. Therefore $\operatorname{Win}(A)=1$, similarly $\operatorname{Win}(B)=1$. Now by Theorem 3.3.4, we have $\operatorname{Win}(R)=2$, a contradiction, hence $|M|=3$.

Now it remains to show that $\operatorname{Win}(A)=\operatorname{Win}(B)=1$. For $e^{2}=e \in A$, we have

$$
M=e M \oplus(1-e) M
$$

Without loss of generality, let $|e M| \neq 0$. On contrary let us assume $\operatorname{Win}(A)>1$. So we have $a \in A$ such that $|\chi(a)| \geq 2$, i.e., we have at least two distinct weak clean expressions of a in A.

Case I:

If $a=u_{1}+e_{1}=u_{2}-e_{2}$, where $u_{1}, u_{2} \in \mathrm{U}(A)$ and $e_{1}, e_{2} \in \operatorname{Idem}(A)$ such that $e_{1} \neq e_{2}$. Let $M=e_{1} M$. Then for $w \in M$ and for $\alpha=\left(\begin{array}{ll}a & 0 \\ 0 & 1\end{array}\right)$, we have

$$
\begin{aligned}
\alpha & =\left(\begin{array}{cc}
u_{2} & 0 \\
0 & 1
\end{array}\right)-\left(\begin{array}{cc}
e_{2} & 0 \\
0 & 1
\end{array}\right) \\
& =\left(\begin{array}{cc}
u_{1} & -w \\
0 & 1
\end{array}\right)+\left(\begin{array}{cc}
e_{1} & w \\
0 & 0
\end{array}\right),
\end{aligned}
$$

implying $\chi(\alpha) \geq 4$, a contradiction. If $e_{1} M=0$, for $\alpha=\left(\begin{array}{ll}a & 0 \\ 0 & 0\end{array}\right)$ we have

$$
\begin{aligned}
\alpha & =\left(\begin{array}{cc}
u_{2} & 0 \\
0 & -1
\end{array}\right)-\left(\begin{array}{cc}
e_{2} & 0 \\
0 & 1
\end{array}\right) \\
& =\left(\begin{array}{cc}
u_{1} & -w \\
0 & 1
\end{array}\right)+\left(\begin{array}{cc}
e_{1} & w \\
0 & 1
\end{array}\right),
\end{aligned}
$$

implies $\chi(\alpha) \geq 4$, thus a contradiction.
Similarly in Case II, letting $a=u_{1}+e_{1}=u_{2}+e_{2}$ be two distinct weak clean expressions and in Case III, letting $a=u_{1}-e_{1}=u_{2}-e_{2}$ be two distinct weak clean expressions of a in A, where $u_{1}, u_{2} \in \mathrm{U}(A)$ and $e_{1}, e_{2} \in \operatorname{Idem}(A)$, we get contradictions. Therefore we have $\operatorname{Win}(A)=1$. Similarly $\operatorname{Win}(B)=1$.

