
Chapter 3

Weak clean index of a ring

3.1 Introduction

In this chapter we have introduced and studied weak clean index of arbitrary rings

and characterized all rings with weak clean index 1, 2 and 3.

Definition 3.1.1. For any element a of R, we define

χ(a) = {e ∈ R | e2 = e and a− e ∈ U(R) or a + e ∈ U(R)}.

The weak clean index of R denoted by Win(R) is defined as

sup{|χ(a)|: a ∈ R},

where |χ(a)| denotes the cardinality of the set χ(a).

3.2 Basic properties

Some basic properties related to weak clean index are presented here as a preparation

for the chapter.

Lemma 3.2.1. Let R be a ring and e, a, b ∈ R., Then the following hold:

(i) For a central nilpotent n ∈ R, |χ(n)|= 1. Whereas for a central idempotent
e ∈ R, |χ(e)|≥ 1. Thus Win(R) ≥ 1, for any ring R.

(ii) If a− b ∈ J(R) then |χ(a)|= |χ(b)|.

(iii) If e ∈ χ(a) then 1 − e ∈ χ(1 − a) or 1 − e ∈ χ(1 + a). The converse holds if
2 ∈ J(R).

(iv) Let σ be an automorphism or anti-automorphism of R. Then e ∈ χ(a) iff
σ(e) ∈ χ(σ(a)); so |χ(a)|= |χ(σ(a))|. In particular |χ(a)|= |χ(uau−1)|, where
u is a unit of R.

34
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(v) If a ring R has at most n units or at most n idempotents, then Win(R) ≤ n.
In particular, if R is a local ring then Win(R) ≤ 2.

(vi) If R is local, then Win(R) = 1 iff R/J(R) ∼= Z2.

(vii) Let R be a clean ring with 2 ∈ U(R). Then Win(R) = |χ(2−1)|, or in other
words Idem(R) = χ(2−1).

Proof. (i) Let a be a central nilpotent such that an = 0 for some n ∈ N. Then

a = (a+ 1)− 1

is a weak clean expression, hence

1 ∈ χ(a) thus |χ(a)|≥ 1.

If possible let e( 6= 1) ∈ χ(a), then there exists a u ∈ U(R) such that

a = u+ e or u− e.

If a = u− e, by using binomial expansion and the fact that an = 0 we have

0 =(u− e)n

=un −

(

n

1

)

eun−1 +

(

n

2

)

eun−2 − · · ·+ (−1)n−1eu+ (−1)ne.

This implies

un ∈ eR,

contradicting the fact that e 6= 1. Next, if a = u+e, similarly we get a contradiction.

Let e be a central idempotent. Then

e = 1− (1− e)

is a weak clean expression for e. Thus |χ(e)|≥ 1. For example, 4̄ ∈ Idem(Z6),

χ(4̄) = {1, 3}

as

4 = 1 + 3 = 5− 1
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where 3, 1 ∈ Idem(Z6). This example shows that for central idempotent e, |χ(e)|

need not be equal to one.

(ii) let w = a− b ∈ J(R). If e ∈ χ(a), we have

a + e ∈ U(R) or a− e ∈ U(R).

Case I:

If

u = a+ e ∈ U(R), then

u = b+ w + e

⇒ b+ e = u− w ∈ U(R)

⇒ e ∈ χ(b).

Case II:

If v = a− e ∈ U(R), similarly we get b− e = v − w ∈ U(R), so e ∈ χ(b). Therefore

χ(a) ⊆ χ(b).

By symmetry

χ(b) ⊆ χ(a),

hence χ(a) = χ(b).

(iii) Let e ∈ χ(a). Then we have

a + e ∈ U(R) or a− e ∈ U(R).

If a− e ∈ U(R), then we have

(1− a)− (1− e) = e− a ∈ U(R),

so 1− e ∈ χ(1− a). Similarly if a+ e ∈ U(R), then we have

(1 + a)− (1− e) = a + e ∈ U(R).
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Therefore 1− e ∈ χ(1 + a).

Conversely, if (1− e) ∈ χ(1− a), we have

(1− a)− (1− e) = u ∈ U(R) or (a− 1) + (1− e) = v ∈ U(R),

that is, a− e = −u or a− e = v, so in this case e ∈ χ(a). If (1− e) ∈ χ(1 + a),

(1 + a)− (1− e) = u ∈ U(R) or (a + 1) + (1− e) = v ∈ U(R),

implying, a+ e = u or a− e = v − 2 ∈ U(R), as 2 ∈ J(R). Hence we get e ∈ χ(a).

(iv) and (v) are straightforward.

(vi) R is a local ring, so we have Win(R) ≤ 2, as Idem(R) = {0, 1}. Let

R/J(R) ∼= Z2.

Then, R is uniquely clean[18]. If possible let Win(R) = 2, that is, there exists

an element a ∈ R such that {0, 1} = χ(a). So a ∈ U(R) and a − 1 ∈ U(R) or

a + 1 ∈ U(R). If

a ∈ U(R) and u = a− 1 ∈ U(R),

then we have two clean expressions for a, which is a contradiction. Similarly if

a ∈ U(R) and u = a + 1 ∈ U(R),

then we have, two clean expressions for u, which is a contradiction, hence Win(R) =

1. Conversely, let Win(R) = 1. Then In(R) = 1 as In(R) ≤ Win(R). Hence the

result follows by Theorem 2.1 of [18].

(vii) Let e ∈ Idem(R) and let 2 ∈ U(R). Now we have (2−1−e) ∈ U(R), as 2(1−2e)

is the inverse of 2−1 − e. Therefore Idem(R) ⊆ χ(2−1), so Win(R) = |χ(2−1)|. �

In a ring R, q ∈ R is called quasi-regular element, if there is a p ∈ R, such that

q + p+ qp = 0 = p+ q + pq.

The set of all all quasi-regular elements of R is denoted by Q(R).
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Lemma 3.2.2. If S is a subring of a ring R, where R and S may not share same
identity, then Win(S) ≤ Win(R).

Proof. For a ∈ R, let

J(a) = J1(a) ∪ J2(a),

where

J1(a) ={q ∈ Q(R) : (a− q)2 = a− q} and

J2(a) ={q ∈ Q(R) : (q − a)2 = q − a}.

Claim:

Win(R) = sup{|J(b)|: b ∈ R}.

Note that

U(R) = {1 + q : q ∈ Q(R)}.

For any a ∈ R,

χ(a) = {(a− 1)− j : j ∈ J1(a− 1)} ∪ {j − (a− 1) : j ∈ J2(a− 1)}.

Therefore |χ(a)|= |J(a− 1)|. Thus

Win(R) = sup{|J(b)|: b ∈ R}.

Because Q(S) ⊆ Q(R) it follows that Win(S) ≤ Win(R).

Proof of |χ(a)|= |J(a− 1)|:

We have e ∈ χ(a)

⇔ a− e = u or a+ e = u, for some u ∈ U(R)

⇔ a− u = e or u− a = e, for some u ∈ U(R)

⇔ a− 1− q = e or 1 + q − a = e, for some q = 1 + u as U(R) = 1 +Q(R)

⇔ (a− 1)− q = e or q − (a− 1) = e

⇔ e ∈ J1(a− 1) or e ∈ J2(a− 1).

�
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Theorem 3.2.3. Let k ≥ 1 be an integer. Then the following are equivalent for a
ring R :

(i) Win(R[[x]]) = k.

(ii) Win(R[x]) = k.

(iii) R is abelian and Win(R) = k.

Proof. By Lemma 3.2.2, we have

Win(R) ≤ Win(R[x]) ≤ Win(R[[x]]).

Suppose that R is not abelian and e is a non-central idempotent of R. Let er 6= re

for some r ∈ R. So either

er(1− e) 6= 0 or (1− e)re 6= 0.

Without loss of generality we may assume that er(1− e) 6= 0. For i = 1, 2, 3, . . .

a :=(1 + er(1− e))− e

=(1 + er(1− e)(1 + xi))− (e + er(1− e)xi),

where (1 + er(1− e)(1 + xi)) ∈ U(R[x]), as

(1 + er(1− e)(1 + xi))(1− er(1− e)(1 + xi)) = 1− (1 + er(1− e)(1 + xi))2 = 1

and e + er(1 − e)xi ∈ Idem(R[x]). Thus there are infinitely many distinct weak

clean expressions of a in R[x]. Now suppose R is abelian. It is easy to see that

idempotents of R[[x]] are all in R, and for any

α = a0 + a1x+ a2x
2 + · · · ∈ R[[x]]

where a0, a1, a2, . . . ∈ R,

χR[[x]](α) ⊆ χR(a0).

Thus |χ(α)|≤ |χ(a0)|, so Win(R[[x]]) ≤ Win(R). Hence the result follows. �
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3.3 Rings with weak clean index 1, 2 and 3

Theorem 3.3.1. Win(R) = 1 iff R is abelian and for any 0 6= e2 = e ∈ R, e 6= u+v
for all u, v ∈ U(R).

Proof (⇒) Let e2 = e ∈ R. For any 0 6= r ∈ R,

1− e = [1 + er(1− e)]− [e+ er(1− e)]

are two weak clean expressions of 1 − e; so e = [e + er(1 − e)]. That is re = ere.

Similarly, we have er = ere. So R is abelian. Suppose that 0 6= e2 = e ∈ R, e = u+v

for some u, v ∈ U(R). Then v = v + 0 = −u + e are two weak clean expressions of

v, implying |χ(v)|≥ 2, a contradiction.

(⇐) Let a ∈ R has two weak clean expressions,

a = u1 + e1 or u1 − e1 and

a = u2 + e2 or u2 − e2

for e1, e2 ∈ Idem(R), e1 6= e2 and u1, u2 ∈ U(R).

Case I:

If a = u1 + e1 = u2 + e2, we have

e1 − e2 = u2 − u1.

Define f := e1(1− e2). Then f = f 2 ∈ Idem(R). Now

f =[e2 + (u2 − u1)](1− e2)

=u2(1− e2)− u1(1− e2)

=[u2(1− e2) + e2]− [u1(1− e2) + e2].

As u2(1 − e2) + e2, u1(1 − e2) + e2 ∈ U(R), we have, f = 0. Hence e1 = e1e2. By

symmetry, we have e2 = e1e2. Hence e1 = e2 , a contradiction. So χ(a) ≤ 1.

Case II:

If a = u1 + e1 = u2 − e2, then

e1 + e2 = u2 − u1.
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Define f := e1(1− e2). Then f = f 2 and

f =[−e2 + (u2 − u1)](1− e2)

=u2(1− e2)− u1(1− e2)

=[u2(1− e2) + e2]− [u1(1− e2) + e2].

As u2(1 − e2) + e2, u1(1 − e2) + e2 are units in R, we have f = 0, so e1 = e1e2. By

symmetry, e2 = e1e2. Hence e1 = e2, a contradiction. So χ(a) ≤ 1.

Case III:

If a = u1 − e1 = u2 − e2, we have

e1 − e2 = u1 − u2.

Define f := e1(1− e2). Then f = f 2 ∈ Idem(R) and

f =[e2 + (u1 − u2)](1− e2)

=u1(1− e2)− u2(1− e2)

=[u1(1− e2) + e2]− [u2(1− e2) + e2].

Since R is abelian, u2(1−e2)+e2, u1(1−e2)+e2 ∈ U(R). This is again a contradiction.

As in above case χ(a) ≤ 1. Thus combining above cases we conclude that Win(R) =

1.

Lemma 3.3.2. Let R = A × B be a direct product of rings A and B, such that
Win(A) = 1. Then Win(R) = Win(B).

Proof. Since A,B are subrings of R, so by Lemma 3.2.2,

Win(B) ≤ Win(R).

If Win(B) = ∞, then Win(R) = ∞, thus we have Win(R) = Win(B). So let

Win(B) = k <∞

where k is a positive integer. So there is a b ∈ B, such that |χ(b)|= k. Now for

(0, b) ∈ R, |χ(0, b)|= k, hence Win(R) ≥ k. Suppose that Win(R) > k. Then there
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exists (a, b) ∈ R that has at least k + 1 weak clean expressions in R. Let g be an

integer such that 1 ≤ g ≤ k and let

(a, b) =

{

(ui, vi) + (ei, fi), i = 1, 2, 3, . . . , g

(uj, vj)− (ej , fj), j = g+1, g+2, . . . , k, k+1.

are k + 1 distinct weak clean expressions for (a, b), such that no two (e, f)’s are

equal. Now,

a = ui + ei (i = 1, 2, 3, . . . , g, )

= uj − ej , (j = g + 1, g + 2, . . . , k + 1)

are weak clean expressions of a in S. Since |χ(a)|≤ 1, all e′is and e
′

js are equal. So

k + 1 =|χ((a, b))|

=|{(ei, fi), (ej , fj)|i = 1, 2, 3, . . . , g; j = g + 1, g + 2, . . . , k + 1}|

=|{ei, ej|i = 1, 2, 3, . . . , g, }|×|{fi, fj|j = g + 1, g + 2, . . . , k}|

=|χ(a)|×|χ(b)|

=|χ(b)|,

which is a contradiction. This proves the result. �

Definition 3.3.3. Lee and Zhou [30], called a ring R, a elemental ring. If idempo-
tents of R are trivial and 1 = u+ v, for some u, v ∈ U(R).

Theorem 3.3.4. For a ring R, Win(R) = 2 iff one of the following holds:

(i) R is elemental.

(ii) R = A×B, where A is elemental ring and Win(B) = 1.

(iii) R =

(

A M
0 B

)

, where Win(A) = Win(B) = 1 and AMBis a bimodule with

|M |= 2.

Proof (⇐) If (i) holds then by the definition of elemental ring, we have 1 = u + v

for some u, v ∈ U(R). Therefore by Theorem 3.3.1, Win(R) > 1. Also by

Lemma 3.2.2(v), Win(R) ≤ |Idem(R)|= 2. So Win(R) = 2.
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If (ii) holds then Win(R) = 2 by (i) and Lemma 3.3.2.

If (iii) holds, for α0 =

(

0 0

0 1

)

, we have

{(

1 w

0 0

)

: w ∈M

}

⊆ χ(α0).

So,

Win(R) ≥ |χ(α0)|≥ |M |= 2.

For any α =

(

a x

0 b

)

∈ R,

|χ(α)|=

∣

∣

∣

∣

∣

{(

e w

0 f

)

∈ R : e ∈ χ(a), f ∈ χ(b), w = ew + wf

}∣

∣

∣

∣

∣

.

As |M |= 2, |χ(a)|≤ 1 and |χ(b)|≤ 1, it follows |χ(α)|≤ 2. Hence Win(R) = 2.

(⇒) Suppose R is abelian. As Win(R) 6= 1, there exists (0 6=)e = e2 ∈ R such that

e = u+ v, where u, v ∈ U(R).

So we have e = eu+ ev, where eu, ev ∈ U(eR). Hence

Win(eR) ≥ 2.

But Win(eR) ≤ Win(R) = 2 by Lemma 3.2.2. So Win(eR) = 2. Now R = A×B,

where A = eR and B = (1 − e)R, so it follows that Win(B) = 1. If A has a non

trivial idempotent f then

A = fA+ (e− f)A

where

f = fu+ fv and e− f = (e− f)u+ (e− f)v.

Now fu, fv ∈ U(fA) and (e − f)u, (e − f)v ∈ U((e − f)A), so by Theorem 5 of

[30] we have

In(fA) ≥ 2 and In((1− f)A) ≥ 2,

so

In(A) ≥ 2× 2 = 4.
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As In(R) ≤ Win(R), this is a contradiction. Thus (i) holds if e = 1 and (ii) holds if

e 6= 1. Suppose R is not abelian and let e2 = e ∈ R be a non central idempotent. If

eR(1− e) 6= 0 and (1− e)Re 6= 0,

then for

0 6= x ∈ eR(1− e) and 0 6= y ∈ (1− e)Re

we have

1− e = (1 + x)− (x+ e)

= (1 + y)− (y + e).

Therefore |χ(1 − e)|≥ 3, which is a contradiction. So without loss of generality we

can assume that

eR(1− e) 6= 0 and (1− e)Re = 0.

The Peirce decomposition of R gives

R =

(

eRe eR(1 − e)

0 (1− e)R(1− e)

)

.

As above 2 = Win(R) ≥ |eR(1− e)|; so |eR(1− e)|= 2. Write

eR(1− e) = {0, x}.

Suppose Win(eRe) = 2. Then there exists a ∈ R such that |χ(a)|= 2. Thus we have

the following cases.
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Case I:

Let a = u1+e1 = u2+e2, where u1, u2 ∈ U(eRe) and e1, e2 ∈ Idem(eRe). If e1x = 0,

we have for A =

(

a 0

0 0

)

∈ R,

A =

(

u1 0

0 −1

)

+

(

e1 0

0 1

)

=

(

u2 0

0 −1

)

+

(

e2 0

0 1

)

=

(

u1 x

0 −1

)

+

(

e1 x

0 1

)

are three distinct weak clean expressions of A in R, which implies |χ(A)|≥ 3, a

contradiction. If e1x = x, then for B =

(

a 0

0 1

)

,

B =

(

u1 0

0 1

)

+

(

e1 0

0 0

)

=

(

u2 0

0 1

)

+

(

e2 0

0 0

)

=

(

u1 x

0 1

)

+

(

e1 x

0 0

)

are three distinct weak clean expressions of B in R, which implies |χ(B)|≥ 3, a

contradiction.
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Case II:

Let a = u1 − e1 = u2 + e2, where u1, u2 ∈ U(eRe) and e1, e2 ∈ Idem(eRe). So if

e1x = 0, we have for A =

(

a 0

0 0

)

∈ R

A =

(

u1 0

0 1

)

−

(

e1 0

0 1

)

=

(

u2 0

0 −1

)

+

(

e2 0

0 1

)

=

(

u1 x

0 1

)

−

(

e1 x

0 1

)

are three distinct weak clean expressions of A in R, which implies |χ(A)|≥ 3, a

contradiction.

If e1x = x then for B =

(

a 0

0 1

)

, we have

B =

(

u1 0

0 1

)

−

(

e1 0

0 0

)

=

(

u2 0

0 1

)

+

(

e2 0

0 0

)

=

(

u1 x

0 1

)

−

(

e1 x

0 0

)

are three distinct weak clean expressions of B in R, which implies |χ(B)|≥ 3, again

a contradiction.

Case III:

Let a = u1 − e1 = u2 − e2, where u1, u2 ∈ U(eRe) and e1, e2 ∈ Idem(eRe). Then we

get a contradiction similar to Case I.

This shows that Win(eRe) = 1. Similarly Win((1− e)R(1− e)) =1. �
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Theorem 3.3.5. Win(R) = 3 iff R =

(

A M
0 B

)

where Win(A) = Win(B) = 1

and AMB is a bimodule with |M |= 3.

Proof. (⇐) For α0 =

(

0 0

0 1

)

, we have

{(

1 w

0 0

)

: w ∈M

}

⊆ χ(α0).

So,

Win(R) ≥ |χ(α0)|≥ |M |= 3.

For any α =

(

a x

0 b

)

∈ R,

|χ(α)|=

∣

∣

∣

∣

∣

{(

e w

0 f

)

∈ R : e ∈ χ(a), f ∈ χ(b), w = ew + wf

}∣

∣

∣

∣

∣

.

As |M |= 3, |χ(a)|≤ 1 and |χ(b)|≤ 1 it follows |χ(α)|≤ 3, hence Win(R) = 3.

(⇒) Suppose Win(R) = 3. From the proof of Theorem 3.3.4, we see that an

abelian ring not satisfying condition (i) and (ii), contains a subring whose weak

clean index is greater than 4. Therefore R must be non abelian.

Let e be a non central idempotent in the ring R. Then the Peirce decomposition of

R gives

R =

(

eRe eR(1− e)

(1− e)Re (1− e)R(1− e)

)

.

Let A = eRe, B = (1−e)R(1−e), M = eR(1−e), N = (1−e)Re. Suppose |M |6= 0

and |N |6= 0. As

χ(1− e) ⊇ {e− x, e− y : x ∈M, 0 6= y ∈ N},

it follows that

3 = Win(R) ≥ |χ(1− e)|> |M |+|N |−1.

Therefore |M |= |N |= 2. Write

M = {0, x} and N = {0, y}.
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Note that

2x = 0 = 2y.

If xyx = 0, then (x+ y + xy + yx)4 = 0 and

χ(1− e) ⊇ {e, e− x, e− y, e+ x+ y + xy + yx},

so Win(R) ≥ 4, a contradiction.

If yxy = 0, then (x+ y + xy + yx)4 = 0 and

χ(2− e) ⊇ {1− e, 1− e + x, 1− e + y, 1− e + x+ y + xy + yx},

therefore Win(R) ≥ 4, a contradiction. Hence xyx 6= 0 and yxy 6= 0. It follows that

xyx = x and yxy = 0.

Let f = xy and g = yx. Clearly f, g are idempotents. So we have

R ⊇ L :=

(

fRf M

N gRg

)

.

By Lemma 3.2.2, Win(L) ≤ 3, but for α =

(

0 x

y g

)

we have

α =

(

0 x

y 0

)

+

(

0 0

0 g

)

=

(

0 x

y g

)

+

(

0 0

0 0

)

=

(

f x

y 0

)

+

(

f 0

0 g

)

=

(

f 0

y g

)

+

(

f x

0 0

)

=

(

f x

0 g

)

+

(

f 0

y 0

)

.

That is |χ(α)|≥ 5 in L, which is a contradiction. So either |M |= 0 or |N |= 0.
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Without loss of generality we may assume that |N |= 0. So

R =

(

A M

0 B

)

.

Clearly

2 ≤ |M |≤ 3 = Win(R).

By Lemma 3.2.2, Win(A) ≤ 3. To prove that |M |= 3, on contrary letM = {0, x}.

Assume Win(A) = 2. Then there exists at least one a ∈ A such that |χ(a)|≥ 2.

Case I:

Let a = u1 + e1 = u2 − e2 be two distinct weak clean expressions of a in A, where

u1, u2 ∈ U(A) and e1, e2 ∈ Idem(A). Then e1x = u2x − u1x − e2x = −e2x +

x − x = −e2x = e2x. If e1x = 0, then for α =

(

a 0

0 0

)

, we have χ(α) ⊇

{(

ei w

0 1

)

: i = 1, 2;w ∈M

}

, showing that Win(R) ≥ 4, which is not possible. If

e1x = x, then for α =

(

a 0

0 1

)

, we have χ(α) ⊇

{(

ei w

0 0

)

: i = 1, 2;w ∈M

}

,

showing that Win(R) ≥ 4, which is a contradiction.

Similarly in Case II letting a = u1 + e1 = u2 + e2 be two distinct weak clean

expressions and in Case III letting a = u1 − e1 = u2 − e2 be two distinct weak

clean expressions of a in A, where u1, u2 ∈ U(A) and e1, e2 ∈ Idem(A), we get

contradictions. Therefore Win(A) = 1, similarly Win(B) = 1. Now by Theorem

3.3.4, we have Win(R) = 2, a contradiction, hence |M |= 3.

Now it remains to show that Win(A) = Win(B) = 1. For e2 = e ∈ A, we have

M = eM ⊕ (1− e)M.

Without loss of generality, let |eM |6= 0. On contrary let us assume Win(A) > 1. So

we have a ∈ A such that |χ(a)|≥ 2, i.e., we have at least two distinct weak clean

expressions of a in A.
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Case I:

If a = u1+e1 = u2−e2, where u1, u2 ∈ U(A) and e1, e2 ∈ Idem(A) such that e1 6= e2.

Let M = e1M . Then for w ∈M and for α =

(

a 0

0 1

)

, we have

α =

(

u2 0

0 1

)

−

(

e2 0

0 1

)

=

(

u1 −w

0 1

)

+

(

e1 w

0 0

)

,

implying χ(α) ≥ 4, a contradiction. If e1M = 0, for α =

(

a 0

0 0

)

we have

α =

(

u2 0

0 −1

)

−

(

e2 0

0 1

)

=

(

u1 −w

0 1

)

+

(

e1 w

0 1

)

,

implies χ(α) ≥ 4, thus a contradiction.

Similarly in Case II, letting a = u1 + e1 = u2 + e2 be two distinct weak clean

expressions and in Case III, letting a = u1 − e1 = u2 − e2 be two distinct weak

clean expressions of a in A, where u1, u2 ∈ U(A) and e1, e2 ∈ Idem(A), we get

contradictions. Therefore we have Win(A) = 1. Similarly Win(B) = 1. �


