Chapter 3

Weak clean index of a ring

3.1 Introduction

In this chapter we have introduced and studied weak clean index of arbitrary rings
and characterized all rings with weak clean index 1, 2 and 3.
Definition 3.1.1. For any element a of R, we define
x(a)={e€R|e*=eanda—e € U(R) ora+ec UR)}.
The weak clean index of R denoted by Win(R) is defined as
sup{[x(a)|: a € R},

where |x(a)| denotes the cardinality of the set x(a).

3.2 Basic properties

Some basic properties related to weak clean index are presented here as a preparation
for the chapter.
Lemma 3.2.1. Let R be a ring and e,a,b € R., Then the following hold:

(i) For a central nilpotent n € R, |x(n)|= 1. Whereas for a central idempotent
e€ R, |x(e)|>1. Thus Win(R) > 1, for any ring R.

(ii) If a — b€ J(R) then [x(a)|= [x(b)].

(iii) If e € x(a) then 1 —e € x(1 —a) or 1 —e € x(1 +a). The converse holds if
2€ J(R).

(iv) Let o be an automorphism or anti-automorphism of R. Then e € x(a) iff
o(e) € x(o(a)); so [x(a)|= [x(o(a))|. In particular |x(a)|= [x(uau™)|, where
u 1s a unit of R.
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(v) If a ring R has at most n units or at most n idempotents, then Win(R) < n.
In particular, if R is a local ring then Win(R) < 2.

(vi) If R is local, then Win(R) =1 iff R/J(R) = Z,.

(vii) Let R be a clean ring with 2 € U(R). Then Win(R) = |x(271)|, or in other
words Idem(R) = x(271).

Proof. (i) Let a be a central nilpotent such that a™ = 0 for some n € N. Then
a=(a+1)—1
is a weak clean expression, hence
1 € x(a) thus |x(a)|> 1.
If possible let e(# 1) € x(a), then there exists a u € U(R) such that
a=u-+eoru—e.
If a = u — e, by using binomial expansion and the fact that a” = 0 we have
0=(u—e)"
=u" — <711> eu ! + (Z) eu" 2 — - (=1)"teu+ (—1)".

This implies

u" € eR,

contradicting the fact that e # 1. Next, if a = u+e, similarly we get a contradiction.

Let e be a central idempotent. Then
e=1—(1—¢)

is a weak clean expression for e. Thus |x(e)|> 1. For example, 4 € Idem(Z),

x(4) = {1,3}
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where 3,1 € Idem(Zg). This example shows that for central idempotent e, |x(e)
need not be equal to one.

(17) let w=a—b e J(R). If e € x(a), we have

a+ee€U(R)ora—eeU(R).

Case I:
If
u=a+eec U(R), then
u=b+w+e
= b+e=u—weUR)
= e x().
Case 1I:

If v=a—e € U(R), similarly we get b —e =v —w € U(R), so e € x(b). Therefore

By symmetry

hence x(a) = x(b).
(177) Let e € x(a). Then we have

a+e € U(R)ora—eeU(R).
If a — e € U(R), then we have
(1—a)—(1—¢€)=e—aecUR),
so 1 —e € x(1 — a). Similarly if a + e € U(R), then we have

(I1+a)—(1—e)=a+eecUR).
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Therefore 1 — e € x(1 + a).

Conversely, if (1 —e) € x(1 — a), we have
(1—a)—(1—e)=ueUR)or (a—1)+ (1 —e)=v e UR),

that is, @ —e = —u or a — e = v, s0 in this case e € x(a). If (1 —¢) € x(1 + a),
(14a)—(1—e)=uecUR)or (a+1)+(1—e)=v e UR),

implying, a +e=uora—e=v—2 € U(R), as 2 € J(R). Hence we get e € x(a).
(iv) and (v) are straightforward.

(vi) R is a local ring, so we have Win(R) < 2, as Idem(R) = {0,1}. Let
R/J(R) = Zs.

Then, R is uniquely clean[18]. If possible let Win(R) = 2, that is, there exists
an element a € R such that {0,1} = x(a). So a € U(R) and a — 1 € U(R) or
a+1€UR). If

a€ U(R)and u =a—1€ U(R),

then we have two clean expressions for a, which is a contradiction. Similarly if
a € UR)and u=a+ 1€ U(R),

then we have, two clean expressions for u, which is a contradiction, hence Win(R) =
1. Conversely, let Win(R) = 1. Then In(R) = 1 as In(R) < Win(R). Hence the
result follows by Theorem 2.1 of [18].

(vii) Let e € Idem(R) and let 2 € U(R). Now we have (27! —¢) € U(R), as 2(1—2¢)
is the inverse of 27! — e. Therefore Idem(R) C x(27'), so Win(R) = |x(271)]. O

In a ring R, ¢ € R is called quasi-regular element, if there is a p € R, such that

g+p+agqp=0=p+q+pq.

The set of all all quasi-regular elements of R is denoted by Q(R).
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Lemma 3.2.2. If S is a subring of a ring R, where R and S may not share same
identity, then Win(S) < Win(R).

Proof. For a € R, let
J(a) = Ji(a) U Jy(a),

where
Ji(a) ={qg € Q(R) : (a —¢)* = a— g} and
Jo(a) ={q € Q(R) : (¢ — )’ = ¢ — a}.
Claim:
Win(R) = sup{|J(b)|: b € R}.
Note that

U(R) = {1 +q:q€Q(R)}.
For any a € R,
x(a)={la=1)=j:jehla—1}U{j—-(a—1):j€ls(a—1)}
Therefore |x(a)|= |./(a — 1)|. Thus
Win(R) = sup{|J(b)|: b € R}.

Because Q(S) C Q(R) it follows that Win(S) < Win(R).
Proof of |x(a)|=|J(a —1)|:
We have e € x(a)

a—e=uora+e=u, for some u € U(R)
a—u=ceoru—a=e, for some u € U(R)
a—1—g=ceorl4+qg—a=e, forsome g=1+wuas UR)=1+Q(R)

(a—1)—g=eorg—(a—1)=e

(I I

e€ Ji(a—1)oree Jola—1).
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Theorem 3.2.3. Let k > 1 be an integer. Then the following are equivalent for a
ring R :

(1) Win(R[[z]]) = k.
(11) Win(R[z]) = k.
(i11) R is abelian and Win(R) = k.

Proof. By Lemma 3.2.2, we have
Win(R) < Win(R[z]) < Win(R][[z]]).

Suppose that R is not abelian and e is a non-central idempotent of R. Let er # re

for some r € R. So either
er(l—e)#0or (1 —e)re#0.
Without loss of generality we may assume that er(1 —e) # 0. Fori=1,2,3,...

a:=(l4+er(l—e))—e

=(1+er(1—e)(1+a") —(e+er(l —e)x"),
where (1 + er(1 —e)(1 + %)) € U(R[z]), as
(I4+er(l—e)1+a)1—er(l—e)(1+2")=1—-Q+er(l—e)(l+2"))? =1

and e + er(1 — e)z* € Idem(R[z]). Thus there are infinitely many distinct weak
clean expressions of a in R[zx]. Now suppose R is abelian. It is easy to see that

idempotents of R[[z]] are all in R, and for any
a=ay+ a1 + ax® + -+ - € R[[z]]

where ag, ay,as,... € R,
XR[2]) (@) € xr(ao).

Thus |x(a)|< |x(ao)], so Win(R][[z]]) < Win(R). Hence the result follows. O
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3.3 Rings with weak clean index 1, 2 and 3

Theorem 3.3.1. Win(R) = 1 iff R is abelian and for any 0 # e* =e € R, e # u+v
for all u,v € U(R).

Proof (=) Let ¢ =e € R. For any 0 # r € R,
l—e=[l+er(l—e)]—[e+er(l—e)

are two weak clean expressions of 1 —e; so e = [e + er(1 — e)]. That is re = ere.
Similarly, we have er = ere. So R is abelian. Suppose that 0 # e?> =e € R, e = u+v
for some u,v € U(R). Then v = v+ 0 = —u + e are two weak clean expressions of
v, implying |x(v)|> 2, a contradiction.

(<) Let a € R has two weak clean expressions,

a=1u, +e oru —e; and
a = Uy + €9 OT Uy — €9
for ey, ey € Idem(R), €1 # €2 and uy, us € U(R).

Case I:

If a = uy + 61 = us + €9, we have
€1 — €y = Uy — Uj.
Define f :=e;(1 —e3). Then f = f? € Idem(R). Now
f=lez + (uz — u1)](1 — e2)

:Ug(]_ — 62) — u1(1 — 62)

=[ua(1 — e3) + ea] — [ur(1 — e3) + ea].

As us(1 — e9) + eg,us(1 — e3) + e € U(R), we have, f = 0. Hence e; = ejey. By
symmetry, we have e; = ejes. Hence e; = ey , a contradiction. So y(a) < 1.
Case II:

If a =u; 4+ €1 = ug — ey, then

€1+ ey = Uy — Uj.
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Define f := e;(1 — e3). Then f = f? and

f=[—e2+ (ug —ur)](1 — e2)
:Ug(]_ — 62) — u1(1 — 62)
=[ua(1 — ea) + ea] — [ur(1 — ea) + ea].
As ug(1 — ey) + e9,ui (1 — e2) + €5 are units in R, we have f = 0, so e; = ejey. By
symmetry, e; = ejes. Hence e; = eg, a contradiction. So x(a) < 1.

Case III:

If a =u; — ey = uy — ey, we have
€1 — €2 = UL — Ug.
Define f :=e;(1 —e3). Then f = f? € Idem(R) and

f=lea + (ur —u2)|(1 — e2)
=up (1 — e3) —us(1 —e3)

=lui(1 —e3) + ea] — [ua(1l — es) + es).

Since R is abelian, us(1—es)+e2,u;(1—ez)+es € U(R). This is again a contradiction.
As in above case x(a) < 1. Thus combining above cases we conclude that Win(R) =

1.

Lemma 3.3.2. Let R = A x B be a direct product of rings A and B, such that
Win(A) = 1. Then Win(R) = Win(B).

Proof. Since A, B are subrings of R, so by Lemma 3.2.2,
Win(B) < Win(R).

If Win(B) = oo, then Win(R) = oo, thus we have Win(R) = Win(B). So let
Win(B) =k < o0

where k is a positive integer. So there is a b € B, such that |x(b)|= k. Now for
(0,b) € R, |x(0,b)|= k, hence Win(R) > k. Suppose that Win(R) > k. Then there
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exists (a,b) € R that has at least k + 1 weak clean expressions in R. Let g be an
integer such that 1 < g < k and let

( b) { (Uijvi)_‘_(ei?fi)? 1= 17 27 3a o g
a, = )
(uj,v;) — (&5, f;), =g+l g+2, ..., k k+1.

are k + 1 distinct weak clean expressions for (a,b), such that no two (e, f)’s are

equal. Now,

a=u; + € (1=1,2,3,...,9,)

=u; — ej, (J=g+1,9g+2,....k+1)
are weak clean expressions of a in S. Since [x(a)|< 1, all €}s and €’s are equal. So

k+1=[x((a,))]
=[{(e;, fi),(ej, f[)i=1,2,3,...,9;0 =9+ 1,9+2,...,k+ 1}
=Heieili=1,2,3,.. .9, Hx{fi, fili =9+ 1Lg+2,....k}
=[x(a)[x[x(b)|
=[x (0)l,

which is a contradiction. This proves the result. 0

Definition 3.3.3. Lee and Zhou [30], called a ring R, a elemental ring. If idempo-
tents of R are trivial and 1 = uw+ v, for some u,v € U(R).

Theorem 3.3.4. For a ring R, Win(R) = 2 iff one of the following holds:
(i) R is elemental.
(ii)) R = A x B, where A is elemental ring and Win(B) = 1.

A M

(i1i)) R = 0 B

M= 2.

), where Win(A) = Win(B) = 1 and 4Mgis a bimodule with

Proof (<) If (i) holds then by the definition of elemental ring, we have 1 = u + v
for some u,v € U(R). Therefore by Theorem 3.3.1, Win(R) > 1. Also by
Lemma 3.2.2(v), Win(R) < |Idem(R)|= 2. So Win(R) = 2.
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If (4i) holds then Win(R) = 2 by (i) and Lemma 3.3.2.

0 0
If (4i7) holds, for ay = < > , we have
01

{((1) z:)}>:we]\/[}gx(ozo).
So,

a x
For any a = € R,
0 b

|x<a>|zH<g ;‘j)eR:eexm),fex<b>,w:ew+wf}‘.

As |M|= 2, |x(a)|< 1 and |x(b)|< 1, it follows |x(«)|< 2. Hence Win(R) = 2.
(=) Suppose R is abelian. As Win(R) # 1, there exists (0 #)e = e¢* € R such that

e =u+v, where u,v € U(R).
So we have e = eu + ev, where eu,ev € U(eR). Hence
Win(eR) > 2.

But Win(eR) < Win(R) = 2 by Lemma 3.2.2. So Win(eR) = 2. Now R = A x B,
where A = eR and B = (1 — ¢)R, so it follows that Win(B) = 1. If A has a non
trivial idempotent f then
A=fA+(e—-f)A
where
f=fu+fvande— f=(e— flu+ (e — f)v.
Now fu, fv € U(fA) and (e — f)u, (e — f)v € U((e — f)A), so by Theorem 5 of

[30] we have
In(fA) >2and In((1 — f)A) > 2,

SO

In(A) >2x2=4.
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As In(R) < Win(R), this is a contradiction. Thus (i) holds if e = 1 and (4¢) holds if

e # 1. Suppose R is not abelian and let e? = ¢ € R be a non central idempotent. If
eR(1 —e)#0and (1 —e)Re # 0,

then for
O#z€eR(l—e)and 0 #y € (1 —¢€)Re
we have
l—e=(1+z)—(z+e)

=(1+y)—(yte).

Therefore |x(1 — €)|> 3, which is a contradiction. So without loss of generality we
can assume that

eR(1 —e)# 0 and (1 —e)Re = 0.

The Peirce decomposition of R gives
eRe eR(1—e)
R = .
0 (1—eR(l—e)
As above 2 = Win(R) > |eR(1 — e)|; so [eR(1 — e)|= 2. Write
eR(1 —e) ={0,z}.

Suppose Win(eRe) = 2. Then there exists a € R such that |x(a)|= 2. Thus we have

the following cases.
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Case I:

Let a = u;+e; = us+eq, where uy, uy € U(eRe) and eq, e5 € Idem(eRe). If e;x = 0,

a 0
we have for A = € R,
0 0

(VA1 0 €1 O
A= +
0 -1 0 1

are three distinct weak clean expressions of A in R, which implies |x(A)|> 3, a

a 0
contradiction. If e;z = x, then for B = ( ),
0 1

0 1 0 0
U9 0 (&) 0

= -
0 1 0 0
Uy I €1 T

= -
0 1 0 0 )

are three distinct weak clean expressions of B in R, which implies |x(B)|> 3, a

0 0
=" +€1>

contradiction.
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Case II:
Let a = uy — €1 = ug + €9, where uy,us € U(eRe) and e, ey € Idem(eRe). So if

0
elx:O,WehaveforA:<a >€R
0 0

0 0
A— Ui B €1
0 1 0 1
U2 0 €9 0
= -
0 -1 0 1
- u I €1 X
0 1 0 1

are three distinct weak clean expressions of A in R, which implies |x(A)|> 3, a

contradiction.

0
If eqx = x then for B = (a >,We have
0 1

are three distinct weak clean expressions of B in R, which implies |x(B)|> 3, again
a contradiction.

Case III:

Let a = uy — ey = ug — ey, where uy, us € U(eRe) and ey, e5 € Idem(eRe). Then we

get a contradiction similar to Case 1.

This shows that Win(eRe) = 1. Similarly Win((1 —e)R(1 —e)) =1. O
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Theorem 3.3.5. Win(R) = 3 iff R = (
and AMp is a bimodule with |M|= 3.

61 ]\é[ ) where Win(A) = Win(B) = 1

0 0
Proof. (<) For ag = , we have
0 1

{(1 w):we]\/[}gx(ao).
0 0
So,

a x
For any a = € R,
0 b

|x<a>|zH<§ Z‘j)eR:eexm),fex<b>,w:ew+wf}‘.

As |[M|=3, |x(a)|[< 1 and |x(b)|< 1 it follows |x(«)|< 3, hence Win(R) = 3.

(=) Suppose Win(R) = 3. From the proof of Theorem 3.3.4, we see that an
abelian ring not satisfying condition (i) and (i7), contains a subring whose weak
clean index is greater than 4. Therefore R must be non abelian.

Let e be a non central idempotent in the ring R. Then the Peirce decomposition of

R ( eRe eR(1—e) > '
(1—e)Re (1—e)R(1—e)
Let A=eRe, B=(1—¢e)R(1—¢), M = eR(1—¢), N = (1—e)Re. Suppose |M|# 0
and |N|# 0. As

R gives

X(l—e)Q{e—x,e—y:xEM,O%yEN},

it follows that
3=Win(R) > |x(1 —e)|> |M|+|N|-1.

Therefore |M|= |N|= 2. Write

M ={0,z} and N = {0, y}.
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Note that
20 =0 = 2y.

If zyr = 0, then (z +y + 2y + yr)* = 0 and
xX(1—e)2{e,e—z,e—y,et+r+y+ay+yz}

so Win(R) > 4, a contradiction.

If yry = 0, then (z +y + 2y + yz)* = 0 and
x2—e)D{l—el—ec+ax,l—e+yl—e+z+y+azy+yx},
therefore Win(R) > 4, a contradiction. Hence zyz # 0 and yzy # 0. It follows that
ryr =z and yry = 0.

Let f = zy and g = yx. Clearly f, g are idempotents. So we have

RQL:z(fRf M >
N gRg

0 =z
By Lemma 3.2.2, Win(L) < 3, but for o = ( ) we have
Yy g

N—

e o © o v o
N———

0
y
0
y
f
y
f
y
f
0

R O O = O = O o o o
o O O 08

That is |x(«)|> 5 in L, which is a contradiction. So either |M|= 0 or |[N|= 0.
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Without loss of generality we may assume that |N|= 0. So
A M
R = )
0 B

2 < |M|< 3 = Win(R).

Clearly

By Lemma 3.2.2, Win(A) < 3. To prove that |M|= 3, on contrary let M = {0, z}.
Assume Win(A) = 2. Then there exists at least one a € A such that |y(a)|> 2.
Case I:

Let a = u; + e; = uy — es be two distinct weak clean expressions of a in A, where

u,us € U(A) and ej,ey € Idem(A). Then ey = usr — wyx — eax = —eqnw +
a 0

r—x = —eyxr = eyx. If egx = 0, then for a = < ), we have y(a) 2
0 0

{ < € w ) i=12%we M}, showing that Win(R) > 4, which is not possible. If
0 1

a 0 e, w )
elx:x,thenforoz:< ),Wehavex(a)2{< ):z:l,Q;wEM},
0 1 0 O

showing that Win(R) > 4, which is a contradiction.
Similarly in Case II letting a = u; + ey = us + e be two distinct weak clean
expressions and in Case III letting a = u; — e; = uy — €3 be two distinct weak
clean expressions of a in A, where uj,us € U(A) and ej,ey € Idem(A), we get
contradictions. Therefore Win(A) = 1, similarly Win(B) = 1. Now by Theorem
3.3.4, we have Win(R) = 2, a contradiction, hence |M|= 3.

Now it remains to show that Win(A) = Win(B) = 1. For e = e € A, we have

M=eM & (1—e)M.

Without loss of generality, let |eM|# 0. On contrary let us assume Win(A) > 1. So
we have a € A such that |y(a)|> 2, i.e., we have at least two distinct weak clean

expressions of a in A.



Case I:

20

If @ = uj+e; = ug—ey, where ug, us € U(A) and eq, e5 € Idem(A) such that e; # es.

Let M =e; M. Then for w € M and for o = ( “

0
, we have
0 1)

D-(00)
T

a 0
IfetM =0, fora:< )We have

0 0
0 €9 0
—1 0 1
—w e w
+ ;
1 ) ( 0 1 >

implies x(«) > 4, thus a contradiction.

Similarly in Case II, letting a = u; + e; = us + e be two distinct weak clean

expressions and in Case III, letting a = u; — e; = us — ey be two distinct weak

clean expressions of a in A, where uj,us € U(A) and ej,ey € Idem(A), we get

contradictions. Therefore we have Win(A) = 1. Similarly Win(B) = 1.

O



