Contents

1.	General Introduction	1
	1.1 Regional Frequency Analysis	1
	1.2 Background of the Study	2
	1.3 Data collection and Study Region	5
	1.4 Objective	9
	1.5 Organization of the Thesis	9
2.	Regional Annual Maximum Rainfall Frequency Analysis of North	
	East India using L-moment.	12
	2.1 Introduction	12
	2.2 L-moments	12
	2.3 Probability Distributions Used for the Study	13
	2.3.1 GPA Distribution	13
	2.3.2 GEV Distribution	14
	2.3.3 GLO Distribution	15
	2.3.4 GNO Distribution	16
	2.3.5 PE3 Distribution	17
	2.4 Index Flood Procedure	18
	2.5 Regional Rainfall Frequency Analysis Using L-moment	18
	2.5.1 Screening of Data	18
	2.5.2 Identification of Homogeneous Region	19
	2.5.3 Choice of a Frequency Distribution	20
	2.5.4 Estimation of Frequency Distribution	20
	2.6 Results and discussion	21
	2.7 Development of Regional Rainfall Frequency Relationship	24
	2.8 Conclusion	24
3.	Regional Annual Maximum Rainfall Frequency Analysis of North	
	East India using LQ-moment	25
	3.1 Introduction	25
	3.2 LQ-moments	25
	3.3 Trimean based parameter estimation of probability distributions	27

	3.3.1 GEV Distribution	27
	3.3.2 GPA Distribution	28
	3.3.3 GLO Distribution	28
	3.3.4 GNO Distribution	28
	3.3.5 PE3 Distribution	28
	3.4 Regional Rainfall Frequency Analysis Using LQ-moment	29
	3.4.1 Screening of Data	29
	3.4.2 Identification of Homogeneous Region	30
	3.4.3 Choice of a Probability Distribution	31
	3.4.4 Estimation of Frequency Distribution	33
	3.5 Development of Regional Rainfall Frequency Relationship.	34
	3.6 Conclusion	34
4.	Regional Annual Maximum Rainfall Frequency Analysis of North	
	East India using LH-moment	36
	4.1 Introduction	36
	4.2 LH-moment	36
	4.3 LH-moments of Probability Distributions	38
	4.3.1 GEV Distribution	38
	4.3.2 GPA Distribution	39
	4.3.3 GLO Distribution	39
	4.4 Regional Rainfall Frequency Analysis Using LH-moment	40
	4.4.1 Screening of Data	40
	4.4.2 Identification of Homogeneous Region	43
	4.4.3 Choice of a Probability Distribution	44
	4.4.4 Estimation of Frequency Distribution	49
	4.5 Development of Regional Rainfall Frequency Relationship	49
	4.6 Conclusion	50
5.	Regional Annual Maximum Rainfall Frequency Analysis of North	
	East India Using TL-moment	52
	5.1 Introduction	52
	5.2 TL-moment	52
	5.3 TL-moments of Probability Distribution	53
	5.3.1 GPA Distribution	53

	5.3.2 GEV Distribution	54
	5.3.3 GLO Distribution	54
	5.4 Regional Rainfall Frequency Analysis Using TL-moment	55
	5.4.1 Screening of Data	55
	5.4.2 Identification of Homogeneous Region	56
	5.4.3 Choice of a Probability Distribution	57
	5.4.4 Estimation of Frequency Distribution	59
	5.5 Development of Regional Rainfall Frequency Relationship	59
	5.6 Conclusion	60
6.	Comparative Study Among the Parameter Estimation Methods	61
	6.1 Introduction	61
	6.2 Monte Carlo Simulation	61
	6.3 Box plot	62
	6.4 Comparison between L-moment and LQ-moment methods	62
	6.5 Comparison between L-moment and LH-moment methods	67
	6.6 Comparison between LH-moment and TL-moment methods	73
	6.7 Comparison between L-moment and TL-moment methods	79
	6.8 Comparison between LQ-moment and TL-moment methods	83
	6.9 Comparison between LQ-moment and LH moment methods	88
	6.10 Conclusion	94
7.	Conclusion	95
8.	Bibliography	98
9.	Appendix	103

List of Tables

Table 2.1 : Discordancy measures of each sites of the NE region using	
L-moments	21
Table 2.2: Heterogeneity measures using L-moments	22
Table 2.3 : Z-statistics values of the distributions using L-moments.	22
Table 2.4 : Regional parameters of best fitting distribution using L-moments	23
Table 2.5: Quantile estimates by using best fitting distribution	23
Table 3.1: Discordancy measures of each sites of the NE region using	
LQ-moment	30
Table 3.2 : Z-statistics values of the distribution using LQ-moments	32
Table 3.3 Parameters of the best fitting distribution using LQ-moments	33
Table 3.4 Quantile estimates by using best fitting distribution	34
Table 4.1 Coefficients of the relations for different levels of LH-moments	38
Table 4.2 Discordancy measures of each sites of the NE region	
using L ₁ -moments.	41
Table 4.3 Discordancy measures of each sites of the NE region	
using L ₂ -moments.	42
Table 4.4 Discordancy measures of each sites of the NE region	
using L ₃ -moments.	42
Table 4.5 Discordancy measures of each sites of the NE region	
using L ₄ -moments.	43
Table 4.6 Heterogeneity measures using LH-moments (L1, L2, L3& L4)	44
Table 4.7 Z-statistics values of the distributions using	
LH-moments (L_1 , L_2 , L_3 & L_4)	46
Table 4.8 Regional parameters of best fit distributions using	
LH-moments (L_1 , L_2 , L_3 & L_4)	49
Table 4.9 Quantile estimates by using best fitting distributions	49
Table 5.1 Discordancy measures of each sites of the NE region	
using TL-moments	55
Table 5.2 Z-statistics values of the distributions using TL-moment	58
Table 5.3 Parameters of the best fitting distribution using TL-moment	59

Table 5.4 Quantile estimates by using GPA distribution	59
Table 6.1 RRMSE values of different quantiles of PE3 distribution	
and GPA distribution for L-moment and LQ-moment method	
respectively	63
Table 6.2 RBIAS values of different quantiles of PE3 distribution and GPA	
distribution for L-moment and LQ-moment method respectively	64
Table 6.3 RRMSE values at different return periods of best fit distributions	
designated by L-moment and LH-moment of four orders	68
Table 6.4 RBIAS values at different return periods of best fit distributions	
designated by L-moment and LH-moment of four orders.	69
Table 6.5 RRMSE values at different return periods of best fit distributions	
designated by TL-moment and LH-moment of four orders	74
Table 6.6 RBIAS values at different return periods of best fit distributions	
designated by TL-moment and LH-moment of four orders	75
Table 6.7 RRMSE values at different return periods of PE3 distribution and	
GPA distribution for L-moment and TL-moment method respectively	79
Table 6.8 RBIAS values of different quantiles of PE3 distribution and	
GPA distribution for L-moment and TL-moment method respectively	80
Table 6.9 RRMSE values at different return periods of best fit distributions	
designated by LQ-moment and TL-moment method respectively	84
Table 6.10 RBIAS values at different return periods of best fit distributions	
designated by LQ-moment and TL-moment method respectively	84
Table 6.11 RRMSE values at different return periods of best fit distributions	
designated by TL-moment and LH-moment of four orders.	89
Table 6.12 RBIAS values at different return periods of best fit distributions	
designated by TL-moment and LH-moment of four orders	90
Table A.1 Coefficients of the approximations for GLO distribution.	103
Table A.2 Coefficients of the approximation for PE3 distribution	103
Table A.3 Polynomial approximations of τ_4 as a function of τ_3	103
Table A.4 Polynomial approximation of η_4 as a function of η_3	104
Table A.5 Polynomial approximation of τ_4^{η} as a function of τ_3^{η}	104
Table A.6 Polynomial approximation of $\tau_4^{(1)}$ as a function of $\tau_3^{(1)}$	105

List of Figures

Figure 1.1 Map showing the 12 gauzed stations of North East India	7
Figure 2.1 L-moment ratio diagram for NE region	23
Figure 3.1 LQ-moment ratio diagram for NE region	33
Figure 4.1 L ₁ -moment ratio diagram	47
Figure 4.2 L ₂ -moment ratio diagram	47
Figure 4.3 L ₃ -moment ratio diagram	48
Figure 4.4 L ₄ -moment ratio diagram	48
Figure 5.1 TL-moment ratio diagram for NE region	58
Figure 6.1 Box plot of RRMSE values for PE3 and GPA distribution	
for sample size 30	64
Figure 6.2 Box plot of RRMSE values for PE3 and GPA distribution	
for sample size 50.	65
Figure 6.3 Box plot of RRMSE values for PE3 and GPA distribution	
for sample size 80.	65
Figure 6.4 Box plot of RBIAS values for PE3 and GPA distribution	
for sample size 30	66
Figure 6.5 Box plot of RBIAS values for PE3 and GPA distribution	
for sample size 50	66
Figure 6.6 Box plot of RBIAS values for PE3 and GPA distribution	
for sample size 80	67
Figure 6.7 Box plot of RRMSE values of best distributions designated by	
L-moment and LH-moment of four orders for sample size 30.	70
Figure 6.8 Box plot of RRMSE values of best distributions designated by	
L-moment and LH-moment of four orders for sample size 50.	70
Figure 6.9 Box plot of RRMSE values of best distributions designated by	
L-moment and LH-moment of four orders for sample size 30.	71
Figure 6.10 Box plot of RBIAS values of best distributions designated by	
L-moment and LH-moment of four orders for sample size 30.	71
Figure 6.11 Box plot of RBIAS values of best distributions designated by	
L-moment and LH-moment of four orders for sample size 50.	72

Figure. 6.12 Box plot of RBIAS values of best distributions designated by	
L-moment and LH-moment of four orders for sample size 80.	72
Figure. 6.13 Box plot of RRMSE values of best distributions designated by	
TL-moment and LH-moment of four orders for sample size 30	76
Figure 6.14 Box plot of RRMSE values of best distributions designated by	
TL-moment and LH-moment of four orders for sample size 50	76
Figure 6.15 Box plot of RRMSE values of best distributions designated by	
TL-moment and LH-moment of four orders for sample size 80.	77
Figure 6.16 Box plot of RBIAS values of best distributions designated by	
TL-moment and LH-moment of four orders for sample size 30.	77
Figure 6.17 Box plot of RBIAS values of best distributions designated by	
TL-moment and LH-moment of four orders for sample size 50.	78
Figure 6.18 Box plot of RBIAS values of best distributions designated by	
TL-moment and LH-moment of four orders for sample size 80.	78
Figure 6.19 Box plot of RRMSE values of best distributions designated by	
L-moment and TL-moment for sample size 30.	80
Figure 6.20 Box plot of RRMSE values of best distributions designated by	
L-moment and TL-moment for sample size 50.	81
Figure 6.21 Box plot of RRMSE values of best distributions designated by	
L-moment and TL-moment for sample size 80.	81
Figure 6.22 Box plot of RBIAS values of best distributions designated by	
L-moment and TL-moment for sample size 30.	82
Figure 6.23 Box plot of RBIAS values of best distributions designated by	
L-moment and TL-moment for sample size 50.	82
Figure 6.24 Box plot of RBIAS values of best distributions designated by	
L-moment and TL-moment for sample size 80.	83
Figure 6.25 Box plot of RRMSE values of best distributions designated by	
LQ-moment and TL-moment for sample size 30.	85
Figure 6.26 Box plot of RRMSE values of best distributions designated by	
LQ-moment and TL-moment for sample size 50.	85
Figure 6.27 Box plot of RRMSE values of best distributions designated by	
LQ-moment and TL-moment for sample size 80.	86
Figure 6.28 Box plot of RBIAS values of best distributions designated by	

LQ-moment and TL-moment for sample size 30.	86
Figure 6.29 Box plot of RBIAS values of best distributions designated by	
LQ-moment and TL-moment for sample size 50.	87
Figure 6.30 Box plot of RBIAS values of best distributions designated by	
LQ-moment and TL-moment for sample size 80.	87
Figure 6.31 Box plot of RRMSE values of best distributions designated by	
LQ-moment and LH-moment of four orders for sample size 30.	91
Figure 6.32 Box plot of RRMSE values of best distributions designated by	
LQ-moment and LH-moment of four orders for sample size 50.	91
Figure 6.33 Box plot of RRMSE values of best distributions designated by	
LQ-moment and LH-moment of four orders for sample size 80.	92
Figure 6.34 Box plot of RBIAS values of best distributions designated by	
LQ-moment and LH-moment of four orders for sample size 30.	92
Figure 6.35 Box plot of RBIAS values of best distributions designated by	
LQ-moment and LH-moment of four orders for sample size 50.	93
Figure 6.36 Box plot of RBIAS values of best distributions designated by	
LQ-moment and LH-moment of four orders for sample size 80.	93